ISSN 0084-6198

Algol Bulletin no. 51

DECEMEER 1984

CORTENTS PAGE
AB51.0 Editor's Notes 2
AB51.1 Announcements
ABS51.1.1 Book Review : Programming Languyages and their
Definition 3
AB51.1.2 Books Received : An Analysis of Sparse Matrix
Storage Schemes 4
ABS51.1.3 Books Received : Abstraction, Specification and
Implementation Techniques 4
ABS51.1.4 New Journal — Parallel Computing 4
ABS1.3 Working Papers
ABS1.3.1 Survey of Viable ALGOL 68 Impolementations -
ABS1.4 Contributed Papers

AB51.4.1 C.H., Lindsey and I. Domville,
Implementing random in ALGOL 68 9
AB51.4.2 Peter G. Craven, Interactive ALGOL 68 16

AB 51p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Pederation for Information Processing (IPIP WG2.1,
Chairman Peter R. King, University of Manitoba),

The following statement appears here at the request of the Council of IFIP:

*“The opinions and statements expressed by the contributors to this Bulletin
do not necessarily reflect those of IFIP and IPFIP undertakes no
responsibility for any action that might arise from such statements. Except
in the case of IFIP documents, which are clearly so designated, IFIP does not
retain copyright authority on material published here. Permission to
reproduce any contribution should be sought directly from the authors
concerned. No reproduction may be made in part or in full of documents or
working papers of the Working Group itself without permission in writing
from IPIP."

Pacilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester. Word-processing
facilities have been provided by the Barclay's Microprocessor Unit, University of
Manchester, using their Vuwriter system,

The ALGOL BULLETIN is published at irregular intervals, at a subscription of
311 (or £6) per three issues, payable in advance. Orders and remittances (made
payable to IFIP) should be sent to the Editor. Payment may be made in any currency
(a list of acceptable approximations in the major currencies will be sent on
request), but it is the responsibility of each sender to ensure that his payment
is made in accordance with the currency requirements of his own country.
Subscribers in countries from which the export of currency is absolutely
forbidden are asked to contact the Editor, since it is not the policy of IFIP that
anyone should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4.50 (or £2.40) each. However,
it is regretted that only AB32, AB34, AB35, AB36, AB38-43 and AB45 onwards are
currently available. The Editor would be willing to arrange for a Xerox copy of
any individual paper to be made for anyone who undertook to pay for the cost of
Xexroxing.,

AB 51p.2

AB51.0 EDITOR'S NOTES.
ALGOL 68 Standardization

I wmentioned in the last issue that the proposals to produce an International
Standard for ALGOL 68 had been to a letter ballot within ISO. This had produced an
overall majority in favour, and even five coutries willing to participate in
preparing the Standard (W. Germany, Belgium, Netherlands, U.S.S.R and
Czechoslovakia), but unfortunately two of the would-be participators (U.S.S.R.
and Czechoslovakia) were not the right kinds of wember of the right ISO
committees, and so the project did not get through. There now seems a possibility
that a further two countries with the right status could be persuaded to
participate, and it is therefore likely that we shall shortly be pressing for a
second ballot to be held within ISO.

ALGOL 60 Standardization

ISO Standard 1538, "Programming languages - ALGOL 60", was published on
October 9th 1984. Copies can be obtained through your own national standards
organisation. The new International Standard essentially consists of the Modified
ALGOL 60 Report (as previously printed in the Computer Journal), preceded by an
introductory section setting out standards for conformance, etc.

Su of viable lementations

This issue contains an updated version of the survey of viable ALGOL 68
implementations, originally published in AB47. It contains information about 5
implementations not included last time, including the first one available on a
micro. I would be pleased to hear of any other implementations that may appear,
with a view to publishing a further version sometime.

ALGOL Bulletin Policy

A8 you will see, this is again a thin issue, and it has been an awful long
time since the last one. I am quite willing to publish thicker issues more often,
but for this I first need the material. I welcome, indeed I solicit (and even beg)
contributions connected not only with ALGOL 60 and ALGOL 68, but indeed with any
topic concerned with the principles of programming languages. This is supposed to
be an informal, unreferreed journal where developing ideas can be aired, but if
you, the readers, have no ideas to air, then there will be little point in
continuing publication.

In the meantime, because issues have been so thin and therefore have cost
little to print, we have been accumulating quite significant sums of money. I have
therefore decided to declare a free issue. I.e. everyone whose subscription would
have expired with this issue, or latexr, will have his subscription extended by one
issue (so, if you do get a subscription reminder this time, it will be because
your subscription actually expired at AB50, and it will be one of those red
"final®” ones).

AB 51p.3

AB51.1 Announcements.

AB51.1.1 Book Review : Programming Languages and their Definition

By H. Bekic.
Lecture Notes in Computer Science 177, Springer Verlag 1984
ISBN 3-540—-13378-X or 0-387-13376-X

Hans Bekic, a leading mewber of the IBM Laboratory Vienna, and for many years
a member of IFIP Working Groups 2.1 and 2.2, died in 1982 (see AB49.1.1). This
posthumous collection of papers has been put together by his former colleague C.B.
Jones. Although he published little in the recognised computing journals, he was a
recognised authority on denotational semantics and many of his technical reports
written for IBM Laboratory Vienna were extensively referred to by other workers in
the field. Many of these reports are here published in accessible form for the
first time.

The paper "Pormalization of Storage Properties™ arose from a dissatisfaction
with the underlying model of the original AILGOL 68 Report. He proposed that
locations to hold stowed values should be regarded as having sub-locations for the
components, that flex should be a property of names rather than of values, that
the oconcept ™instance of a value” was unnecessary, that the linearization of
multi-dimensional arrays was superfluous, and much else besides. The amazing
thing is that this paper was quite unknown to the editors of the Revised ALGOL 68
Report (certainly to this editor, at least), and yet all of these changes were
incorporated in the Revision in almost the same form as he had proposed them. (It
should be noted in general that, where this book refers to ALGOL 68, it is always
the original ALGOL 68 Report that is implied.)

Several papers refer to shortcomings in PL/l, and give a good description of
the techniques used in the original "VDL"” formal definition of that language. This
definition contained an operational semantics based on an extremely barogue model
of the machine state (only to be expected, I suppose, for such a baroque
language). This gave him a healthy distaste for operational semantics, and most of
the rest of the book is therefore concerned with denotational semantics. This
includes a definition of a substantial subset of PIy/1l in the denotational style
(Cliff Jones has edited out the bulk of the details, but enough is left to show
how the method worked). However, his main interest was in finding a sound
denotational model for nondeterminacy and parallelism.

This proceeded in two phases. The 1971 paper "Towards a Mathematical Theory
of Processes"” tried to regard the parallel composition of the denotations of two
actions as a set of functions. This paper has been very widely referenced but,
unfortunately, it contains a serious bug, and several subsequent items in the book
discuss its possible fixes. A later group of papers, dating from 1981, examines an
alternative formulation of parallelism in which the composition results in a
function returning a set of possible outcomes, each carefully indexed by a value
from an indexing set recording a possible merging of the component primitive
actions. The treatment here is very sketchy, since Hans was still developing these
ideas at the time of his death.

C.H. Lindsey

AB 51p.4

AB51.1.2 Books Received : An Analysis of Sparse Matrix Storage Schemes

by M. Veldhorst
Mathematical Centre Tracts 150, Mathematisch Centrum, Amsterdam 1982.
ISBN 90 6196 242 O

This is a reprint of a thesis from the University of Utrecht. It deals with
an extension, known as TORRIX-SPARSE, of the TORRIX matrix handling package, as
developed by the author and S.G. van der Meulen — see Mathematical Centre Tracts
86). Two storage methods for sparse matrices are considered, one in which rows are
stored with leading and trailing zeroces omitted, and one in which the matrix is
partitioned into blocks and subblocks, with the possibility that subblocks filled
entirely with zeroes need not be stored. Methods of organising matrices to fit
into one or other of these strategies are investigated, and examples of the use of
the techniques are given.

ABS51.,1.3 Books Received : Abstraction, Specification and Iwmplementation
Techniques

by H.B.M. Jonkers
Mathematical Centre Tracts 166, Mathematisch Centrum, Amsterdam 1963.
ISBN 90 6196 263 3

This is a reprint of a thesis based on research conducted at the
Mathematical Centre. It describes, by way of a case study, the design and
implementation of a garbage collector for a machine—independent ALGOL 68
implementation. However, the prime purpose of the work is to explore the
systematic way in which the garbage collector was arrived at, by way of a
specification language for algorithms and data structures, and
correctness—preserving transformations to an efficient implementation.

ABS51.1.4 New Journal : Parallel Computing

North-Holland has recently published wvolume 1, issue 1 of PARALLEL
COMPUTING, a new international journal presenting the theory and use of parallel
computer systems, including wvector, pipeline, array and fifth generation
computers. Within this context, the journal covers all aspects of high-speed
computing. Its publication style is intended to be generally oriented to the
international and interdisciplinary character of the parallel computing
community.

PARALLEL, COMPUTING features original research work, tutorial and review
articles, as well as accounts on practical experience with, and techniques for,
the use of parallel computers.

A free copy of PARALLEL COMPUTING can be obtained by writing to:
North-Holland, a Division of Elsevier Science Publishers, attn:
Karin van Schouten, P.O. Box 1991, 1000 BZ Amsterdam, The Netherlands.

AB 51p.5

AB 51.3.1

Survey of Viable ALGOL 68 Implementations

This survey, which we hope to republish from time to time as further
information becomes available, has been restricted to implementations which
you can actually cbtain and use. Each of them has an identifiable person or
organisation responsible for its maintenance, and has been used on at least
one site other than that where it was developed.

AB 51p.6

Most of the column headings are self-explanatory. “Deviation" wmeans
that it is possible to write some program, valid and with defined
meaning both in the given implementation and according to the Revised
Report, which will provide results different from those defined by the
Revised Report. Under "Money”, "nominal" usually means under $200, “yes"
means a realistic commercial rate. ™"MC Test" means that it has been
tested using the MC Teat Set (see AB 44.1.2) and that the implementor
claims it ran correctly. In all cases, the people listed in the last
column should be able to provide further information.

Devia- | Money? MC Other features Where to obtain it

tions? Test?

No Yes Yes load and go version Chion Corporation
available Box 4942, EDMONTON
very complete checking| Alberta

(hence not-so—-fast Canada T6E 5G8
running)

[lu-. of |Hardware |Operating| Principal Principal
System System Sublanguage features | Superlanguage feature
PLACC IBM 370 08/VS/MVS exception handling
Amdahl /MPT/NVY Portran interface
Siemens |CP/CMS
urs
ALGOL 69C) IBM 360 OS/MVT no sema automatic op:= for
Release 1| IBM 370 |OS/VS2 no flex any op
08/MVS no format upto, downto and untt
OS/MPT restricted transput in loop-Clauses
08/VSl displacement operator
(2msm)
andf, orf and thef
separate compilation
scopes not checked
/S
DEC-10 TOPS-10
DEC-20 TOPS-20
DEC VAX |Berkeley
UNIX 4.2
Prime
Tele- BS3 improved transput
funken available
TR440
TR445
CYRER 205/vs0s 2.1

Yes | Nominal! No fast running ALGOL 66C Distribution

to no garbage collector Service
Univer- Computer Laboratory
gities Corn Exchange Street
CAMBRIDGE CB2 3QC
United Kingdom
Robert Hill

Computing Sexvice
Oniversity of Leeds
LEEDS LS2 9J7T
United Kingdom

Dr R. G. Blake
Computing Sexvice
University of Essex
Wivenhoe Park
COLCHESTER CO4 33Q
United Xingdom

ALGOL 68C Distribution
Service (see above)

Dr E. P. Elsworth

Dept. of Computer Science

University of Aston in
Birmingham

BIRMINGHAM

United Kingdom

Hanno Wupper

Rechenzentrum der
Ruhr-Universitaet

Postfach 102148

D—4630 BOCHUM

Pederal German Republic

Hanno Wupper (see above)

AB 51p.7

Name of |Hardware |Operating |Principal Principal
System System Sublanguage features | Superlanguage features
TESLA 200 no fler (except bounds in formal-
(similar string) declarers
to no unton
IBN 360) no gema
no heap
CONTROL CDC 6000 |NOS 2 one long no transient name
DATA =7000 |NOS/BE flexibility is an restriction
ALGOL 68 | 170 SCOPE 2 attribute of a ICP macros allow defin—
series multiple value ition of operators in
machine instructions
A68S CDC Cyber |NOS 2 official sublanguage
NOS/BE (SIGPLAN Notices
SCOPE 2.1 12 5 May 1977 or
Informal Introduc-
PERQ PRX 2 tion Appendix 4)
but heap is allowed
A68RS ICL 2900 |VME/B indicators to be mode vector
declared before use| indexable structures
no sema forall elements of
Honeywell | MULTICS scopes not checked array
Series 60 no transient name
Level 68 restriction
DEC VAX |[VMS
UNIVAC EXEC no garbage collector {bin of any primitive
1100 VIII scopes not checked wode
series complex mathematical
functions
min and max
matrix and vector
operators
exception handling
Victor (e { no par, format, op, mode address for access
Sirius MSDOS format, unton, to memory-mapped
Apricot goto, bytes, long addresses

short, heap, flex
no anonymous routine
texts
temporary transput
restricted scope of
arrays, restricted
balancing, res—
tricted [1[] wmodes

access to CPM primi-
tives, machine coded
subroutines and 8087
chip features

uses interpreted inter—
mediate lanquage

AB 51p.8
Devia- | Money? | MC Other features Where to obtain it ﬂ—w
ions? Test?
No No No TRACE facility J. Nadrchal
independent compi- Institute of Physics
lation of routines Czechoslovak Academy of
fast running Sciences
160 40 PRAHA 8
Na Slovance 2
Czechoslovakia
No Yes Yes | separate compilation Control Data Services
P.B. 111
RIJSWIJK (24)
The Netherlands
No Nominal | No very complete Dr €. H. Lindsey
checking Dept. of Computer Scienco}
fast compilation University of Manchester
slow running MANCHESTER M13 9PL
United Kingdom
Yes Yes Yes | modular compilation ICL local sales office
Yes | Nominal| Yes Richard Wendland
to Praxis Systems Limited
Univer— 6/7 Trim Street
sities BATH BAl 1HB
United Kingdom
Yes Yes Yes | re-entrant compiler Products Group
and object code SPL International
source-level symbolic | Research Centre
debugger The Charter
ABINGDON OX14 3LZ
United Kingdom
Yes No Yes | French represen- Daniel Taupin
tations (inhibitable| Laboratoire de Physique
by pragmat) des Solides
independent com— Universite de Paris Xi
pilation of 91405 ORSAY
routines France
No Yes No incremental compil- Algol Applications Ltd

ation with ismediate
execution

many of the missing
features will appear
in later releases

369 Ipswich Road
COLCHESTER CO4 4HL
United Kingdom

AB 51p.9
AB51.4.1 Implementing random in ALGOL 68

by C. H. Lindsey and I. Domville
(University of Manchester)

1. The Problem.

The ALGOL 68 Revised Report [1] specifies a pseudo-random number generator
that is to be provided in the standard-prelude. The precise form of this poses
some problems not usually encountered by implementors of such generators. Here,
to refresh your wmemory, is the specification taken from R10.2.3.12.x and
R10.5.1.b.

proc L next random = (ref L int a) L real:

(a = ¢ the next pseudo-random L integral value after ‘'a’ from a
uniformly distributed sequence on the interval (L 0, L max int] C
H

c the real value corresponding to ‘'a’ according to some mapping of
integral values (L 0, L maxr int] into real values (L O, L 1) (i.e.,
such that 0 € x ¢ 1} such that the sequence of real values so
produced preserves the properties of pseudo-randomness and uniform
distribution of the sequence of integral values c) ;

L int L last random := round (L max int / L 2) ;
proc L random = L yeal: L next random (L last random) ;

Remewber that L (L) is to be replaced, consistently, by a suitable number of ilongs
(longs) or shorts (shorts).

Now for the problems:

a) Unlike most random number generators, we are asked to produce a sequence of
ints (0 € r € marint) rather than of reals. Assuming marint is of the form
2-1, this means we are in the business of producing n-bit words composed of
random bits.

b) A random nusber generator depends on a "seed"” which is initialized to some
value (such as round(marint/2)) and updated after each call of the
generator. The random number produced is some function of the last seed. In
the case of the generator nert random specified by the RR, the random int
produced is the new seed, and therefore the seed itself is of mode int. This
rules out generators of the type proposed by Wichmann and Hill [2,3] in which
the seed consisted of three separate numbers, each producing its own
peeudo-random sequence, these being combined to produce a final sequence
with much better randomness and with a much longer cycle (although not the
product of the three individual cycle lengths as Wichmann and Hill had
originally supposed {3]).

c) Now that 16-bit micros are in common use, one would expect to implement ALGOL
68 on them. Since the seed is required to be a positive int, this leaves us
just 15 usable bits and a waximum cycle length of 32768, which is distinctly
on the short side. One cannot afford an actual cycle length significantly
shorter than thias. Moreover, it is unlikely that a generator with such a
short cycle will give as good randomness as longer ones.

d) We would like to have an algorithm that is portable to all implementations.
Therefore, it must be written in a high-level language and cannot take
advantage of any special facilities (such as multi-length arithmetic)
provided in the order code of the particular hardware. On the other hand, all

AB 51p.10

such implementations (with a given word length) will then give the same
sequence of pseudo-random integers.

e) The sequence of real numbers returned by next random (and hence by random) is
to be derived from the sequence of ints. It is not allowed to use a long int
seed to produce the real sequence (a long int seed can only be used to
pProduce a long real sequence).

2. Implementation.

2.1, of rator.

The simplest random number generator is the "multiplicative congruential
generator”. This takes the following form:

Xn+1 = (Xp x P) mod Q

where X and P are positive integers and Q is (usually) a prime nuber. Any value
of P which gives the maximal cycle length Q-1 is known as a "primitive root" of Q.
To decide if a number is a primitive root, the following theorem is used.

Theorem. The number A is a primitive root of a prime number P iff
A # 0 (modulo P) and A(P-1)/Q % 1 (modulo P) for any prime divisor Q of
P-1.

where X £ Y (modulo Z) means X mod Z # ¥ mod Z.

This is taken from a more general case given by Knuth {4], to which the interested
reader should refer for a more detailed discussion.

Two types 65 generator were considered:

SMC(n/P) Q is a prime number as close as possible to 2. P is a primitive root of
Q. chosen to be close to vQ. This gives a cycle of length Q-1.

OPS(n/P) Q is 2™ and P is an odd power of 5. Moreover, X, = 4xseed+1, and the next
seed is (Xp41-1)+¢ (the bottom two bits of X, abd Xp,; are always 01). The
advantage of this method is that the cycle length is the full 2", and that the mod
operation is trivial to implement. We needed to implement generators with n equal
to 15 and 31 (for 16— and 32-bit machines) and 46 (for CDC Cyber machines).

The following table shows the values of Q and P that were tried.

OPS generators SMC generators
n Q P Q P
15 215 125, 3125 215.19 171, 172, 175, 176, 182, 189
=32768 =32749
31 231 125, 3125 231, 46339, 46340, 46341, 46342
48 248 125, 3125 248_59 16777213, 16777214, 16777215

2.2, Stretching.

Whereas the Revised Report requires the generator to produce ints uniformly
in the range O..maxrint, the SMC generators produce them in the range 1..Q-1 so
that, for example, in the SMC(15) generators the numbers 32749..32767 are never

AB 51p.11

generated at all. To ensure that the mean value of the numbers generated is
marint/2, we need to "stretch"” the output of the generator so that the missing
numbers are distributed uniformly throughout the range, and to "shrink” it again
before the generator is called the next time. The shrinking formula is

Xn := seed + (1 - emtiex(seed/ahrinker))
where shrinker = (maxint+1)/((maxint+1) -(Q-1) + 1).

The stretching formula is

newseed := Xp,; + entier((Xnp,; - 1)/stretcher) -1
where stretcher = (Q-2)/((maxint+1) ~ (Q-1) + 1).

2.3. Multi~length Arithmetic,

Obviously, if we multiply an n-bit seed by P, we shall cause an overflow., We
must therefore resort to multi-length arithmetic which, for portability, must be
coded entirely using int arithmetic.

We split the n-bit seed into MIDBITS (the top m = (n+1)+2 bits) and LOBITS
(the bottom 1L = n+2 bits). We also provide HIBITS to hold the overflowed part of
the product. This gives, for the 16-bit machine,

- mee -~ - =7 -
[HIBITS] [umat‘rs] [wsn's]

Each part is multiplied by P, and any overflows from LOBITS and MIDBITS are
carried forward to MIDBITS and HIBITS respectively. In all the generators to be
considered, 2v ¢ P < 2", Thus LOBITS*P < 2", but MIDBITS*P might exceed marint.
MIDBITS is therefore decreased by 2m-! beforehand, thus effectively using the
g8ign bit of an int to allow products up to 2*marint. Pinally, we recombine MIDBITS
and LOBITS into one n-bit value in LOBITS.

The next calculation, to take the resgult S§ (now regiding in HIBITS and
LOBITS) modulo Q, is not quite so simple. We make use of the fact that Q is only
slightly less than 27, and thus S mod 2" (which is almady held in LOBITS) is a
good approximation to S mod Q.

ilet q = 271-q
Observe that S < 2M+p and hence S/2" ¢ p

Then S+Q = S+(2N-q)
< s/(2"-q)
< (S/2M)*(1+q/27)
< §/2N + pwq/2n (since s/2" < P)
< S+2M+1 + pwq/2R
< S+2"+2 provided P*q < 2"
which is true for all the gs considered.

Thus, either S+Q = S+2" or S+Q = S+2M+1.,

If S+Q = S+27

Then S mod Q@ = S - S+Q*Q
=8 - S+2Nx(2N-q)
=S mod 2 + S42Nxg
= LOBITS + HIBITS*q

Else S+Q = S+2M+1

And Smod Q=5 - S+Q*Q

AB S51p.12

- 5 - (S+2N+1)x(2N-g)
= S mod 2" + S+2N2q - (2M-q)
= LOBITS + HIBITS*q - Q

The full algoritm is given is section 5 below.

3. Testing.

Since marint is of the form 2M-1 on all the machines considered, we are
essentially trying to generate random sequences of bits. It was therefore decided
to test the generators by regarding the ints produced as being made up of octal
digits, and seeing whether these occurred randomly. In wost of the tests, we
considered the 1st, 2nd, 3rd, etc. digits of each numbex, and compared them with
the corresponding digits of the succeeding numbers. The following tests, based on
those described by Wichmann and Hill (2], were tried.

a) Poker test. This test begins by taking octal digits from five consecutive
numbers to form poker hands of five "cards". The type of "hand™ (all
different, 1 pair, 2 pairs, 3 of a kind, full house, 4 of a kind and 5 of a
kind) is recorded. After 4800 hands, the number of occurrences of each type
is compared with its theoretical expectation, and a x2 value is computed.

b) Coupon collector's test. This test gets its name because we have a “coupon”
with all the digits 0 to 9 on it. Por each number r, emtiex(r/2"*10)
(effectively, the first decimal digit of r) is computed and the
corresponding digit on the coupon is ticked. When the coupon is completed,
the length of the sequence of digits is noted. After 10000 numbers, the
distribution of sequence lengths is compared with its expectation (we
considered all lengths from 11 to 75, plus a class for sequences outside this
range). A x2 value is computed.

c¢) Runs up and down. This test studies the length of monotonic runs up and down,
using Grafton's algorithm {5), and was thought to be one of the most powerful
testa. The first 10000 numbers were tested, producing separate xz values for
runs up and for runs down. The test was repeated using, in place of each r, r
- entiexr(r/2N*10)*2M+10 (effectively, after removing successive leading
decimal digits).

d) Serial test. From a sequence of octal digits, the triplet commencing at each
position was considered, and the dependency of the third digit of each
triplet on the 64 combinations of the other two was examined. We obtained 64
distributions of the third digit, and 64 x2 values showing how they deviated
from the uniform distribution expected. These x2 values were divided into 14
groups, eachcontainingulthexzvalueninagivennnge, andanoverallxz
value was computed.

a) Poker test.

Values of x2 with 5 degrees of freedom
(5% upper limit is 11.070)

SMC(15/182) OP5(15/125)
1st digit 6.136 6.720
2nd digit 0.754 6.932
3rd digit 3.937 107.564
4th digit 6.996 1849905

Sth digit 6.858 18605.714

AB 51p.13

The figures for SMC are entirely reasonable, as are the first 2 digits of
OP5. The disaster in the later octal digits of OP5 reflects the fact that, on
careful examination of the algorithm, one sees that the bottom few bits are bound
to follow a rather simple cycle. Thus OP5 is not an acceptable generator, although
it was not until we began to examine octal digits as opposed to decimal ones that
this became apparent.

b) Coupon collector's test.

Values of X2 with 64 degrees of freedom
(5% upper limit is 83.672)

SMC(15/182) SMC(15/176) OP5(15/125) SMC(31/46340) OP5(31/125)
958.8 956.8 1369 72.64 59.54

The high figures for the 15-bit generators reflect the difficulty of making a
satisfactory generator for a 16-bit wachine. The 31-bit generator is entirely
reasonable.
¢c) Runs up and down.

Values of x2 with 6 degrees of freedom
(5% upper limit is 12.590)

digits SMC(15/182) SMC(15/176) OP5(15/125) SMC(31/46340) OP5(31/125)
up down up down up down up down up down

1 7.89 1.94 1.54 1.17 3.07 2.30 3.21 2.89 19.22 10.48
2 4.18 1.93 1.92 5.44 0.80 4.77 1.22 4.17 18.55 2.63
3 4.52 6.41 1.51 1.31 2,23 1.80 1.65 5.26 12.50 8.19
4 3.46 12.59 3.54 1.82 9.12 4.84 6.33 6.49 4.18 5.05
S 2.69 8.40 1.83 1.59 2.74 4.98 3.62 6.36 6.25 10.55

These figures are all reasonable which only goes to show, in view of the
results of the next test, that runs up and down is not a very good test.

d) Serial test.

Up to this point, SMC(15/182) had seemad the best candidate, but on this test
it proved to be a disaster. Consider triplets starting with a particular pair of
digits, e.g. of the form (3,7,-). Suppose the observed frequency with which the
third digit takes the values 0,1,2,..,7 in 80 trials is

6 17 10 9 11 8 % 10
Does the digit 1 occur so many more times than expected because of a reasonable
sampling error, or does the pair 3,7 really prefer to be followed by a 1? If,
after examining triplets starting with all 64 combinations of two digits, we find
that wunusually high frequencies 1like 17 turn up unexpectedly often, then
something is clearly wrong with the generator. The following histogram shows how
often the various frequencies turned up in the SMC(15/182) generator. It also
shows the binomial distribution which these frequencies should have followed. The
discrepancy is obvious.

AB 51p.14

The x2 values yielded by this test, and given in the following table, show
the extent to which the observed distribution of the frequencies differred from
the binomial one. After the failure of SMC(15/182), various other primitive roots
of 32749 were tried, as the table shows.

Values of x2 with 13 degrees of freedom
(5% upper limit is 22.362)

SMC(15/171) /172 /175 /176 /182 /189 OP5(15/125)

1st digit 55.44 27.78 34.42 33.87 959.42 50.52 48.56

2nd digit 79.03 43.56 55.28 40.59 781.06 64.89 482.47

3rd digit 41.14 49.89 31.84 14.27 136.53 43.02 2432.00

4th digit 31.92 16.06 14.58 11.45 27.62 36.77 388.31

SMC(31/46339) /46340 /46341 /46342 SNC(48/16777213) /16777214 /16777215

1st digit 10.44 9.66 995.20 10.52 12.31 22.00 12.23
2nd digit 12.23 8.25 1086.84 13.17 5.52 7.86 2.94
3rd digit 13.41 8.80 971.53 8.17 7.00 12.16 10.12
4th digit 11.30 21.06 10l1l1.64 7.86

S5th digit 8.33 8.87 1058.87 10.67

The table shows how every prime number seems to have its maverick primitive
root (and also the fact that the OP5 generator degenerates into a cycle in its
later digits shows up clearly). The generators finally chosen were SMC(15/176),
SMC(31/46340) and SMC(48/16777215). The histogram below is for SMC(15/176) and
may be compared to that shown for SMC(15/182) above.

next random is required to return a real nuwmber r, 0.0 € r ¢ 1.0. We could

use

r = newseed/Q
but the number of significant bits in a real is likely to be more than the number
of bits in an int, and so the less significant bits of r will not appear very
random. We therefore used

r = newseed/Q + oldseed/Q2
thus constructing r out of two random integers.

AB 51p.15

5. The algorithm expressed in ALGOL 68

proc nexirandom = (ref int seed)real:
co version for 16-bit machine.
differences for 32- and 48-bit machines given between #...#%.
co
begin
co n=15, 1=7, m=8 CO # n=31, l=15, m=16; n=48, 1l=24, m=24 #
int twol = 128, # 32768; 16777216 #
twom = 256, # 65536; 16777216 %
P = 176, % 46340; 16777215 %
Q = 32749, % 2147403647; 281474976710597 %
q = 19, % 1; 59 #
veal shrinker = 1560.381, # 715827882.334; 4614343880501.61 %
atretcher = 1559.381, # 715827861.667; 4614343880502.55 #
loc int s := seed;
8 +:= (l-entier(s/shrinker));
real lshalfofrand = 8/Q/Q;
loc int lobits := s +* twol * P;
loc int middbits := (s+twol - twol)*P + lobits+twol;
loc int hidbits := (midbits>=0 | midbits+twom | (miabits+1)+twom-1);
midbits +*:= twom +:= P*twol;
hibits +:= midbits+twom;
midbits +%*:= twom;
lobits +%:= twol +:= midbits*twol;
s := lobits - Q + hibits»q;
if s8¢0 then s +:= Q fi;
real rand = seed/Q + lshalfofrand;
seed := s + entiex((s-1)/stretcher) - 1;
rand
end

6. Conclusions.

A pseudo-random number generator for 16— 32— and 48-bit machines, in strict
conformance with the requirements of the Revised Report, has been presented. The
versions for 32~ and 48-bit machines are entirely satisfactory; that for 16-bits
is somewhat less so (suggesting that a fully satisfactory 16-bit generator
strictly within the ALGOL 68 specification may be unachievable). Further details
and discussion may be found in reference ([6].

7. References.

f1] A. van Wijngaarden et al, Revised Report on the Algorithmic Language ALGOL
68, Acta Informatica 5 1,2,3 Dec 1975, also SIGPLAN Notices 12 5 May 1977.

{2] wichmann, B. A. and Hill, I, D., A Pseudo-Random Number Generator, NPL Report
DITC 6/82, 1962.

[3] Wichmann, B. A, and Hill, I. D., An Efficient and Portable Pseudo—random
Number Generator, Algorithm AS 183, Applied Statistics, 31 pples-190 (see
also Correction in Applied Statistics 33 pl23).

{4] Knuth, D. E., Seminumerical Algorithms, Vol 2 of The Art of Computer
Programming, Addison-Wesley 1969.

[5] GRAFTON, R. G. T., Algorithm AS 157: The runs—up and runs—down tests, Applied
Statistics 30 pp81-85, 1981.

{6] Domville, I., A Runtime System for ALGOL 68S, 3rd year Project Report,
University of Manchester Department of Computer Science, 1984,

AB 51p.16

AB51.4.2 Interactive Algolé8

Peter 6. Craven
(Algol Applications Ltd.)

How many non—computing departments have fallen for the bait of
an “"easy" start and are now teaching their students BASIC as a
first programsing language 7 And how do we answer colleagues even
in computing who scorn the "unnnecessary complexity” of Algolés8 ?

AB readers can now reply that there is an available Algolé8

(subset) implementation in which all one has to type is

1+13
and the answer

2 .
will be displayed immediately. Where one goes from there depends
perhaps on the audience, but hardened programmers seem to be
impressed by the fact that after:

PROC ferment = (STRING fruit)STRING:
IF fruit = "hops” THEN "Beer"
ELIF fruit = “grapes"” THEN "Wine"
ELIF fruit = "apples"” THEN *“Cider"

ELSE “Try it and see !"
Fl;

one has only to type:
ferment ("apples");
to get:
"Cider"

So what is really happening ? The Algol Applications compiler
is a one—-pass affair in which forward references are disallowed.
in the interactive version it is expecting a series, and after each
complete phrase at the global level the newly compiled code is
executed immediately. If the phrase was a non-VOID unit, the
resulting value is then displayed as a side-effect of the voiding
demanded by the language.

AB51p.17
Exactly how the values should be displayed is open to
discussion. We have taken the view that "straightening” is not
appropriate and that beginners would probably prefer to see the
value in more or less the same form as they would have to type it
in (a denotation or display). Thus
CIINT(1, 243, ABS "A")j;

will be returned as
(1, 5, 33

and for structures we also display the field names, so
213~ 2

gives ({re} -5.0000000000, {im} 12.000000000)

The author believes strongly that REFs should be identified as
such, so that the vital distinction between

REAL. x = 75 x3

giving

7 . 000000000
and

REAL v =75 vy;
giving

[6]1 refers to 7.0000000000
is there for all to see. More esoterically, after
PROC p = INT: 3;

REF PROC INT r := LOC PROC INT := p;
typing
rs
gives
[14] refers to [16] refers to PROC delivers 3
whereas
r+i;
gives
4

The ability of most constructs to deliver values is something
most languages regard as an unnecessary luxury, but in an
interactive context it gives exactly the right "feel”. Indeed,
beginners are most disappointed to find that

FOR i TO S DO i+1 OD;
does NOT return

2, 3, 4, 5, 6)
WG 2.1 please note !

AB 51p.18

The compiler is self-compiling and uses recursive descent
parsing. The execution model is stack based, using separate static
and dynamic stacks as in Algol&BC, and all expressions are
evaluated on the stack. At present, compilation is to an
interpreted intermediate code (bearing somewhat more resemblance to
BCPL’s O-code than Pascal’s P-code) and all operations conceptually
demanded by the language are slavishly performed. If one uses a
statement—oriented programming style this leads to some
inefficiency, since for example after an assignment a separate code
is issued to void the result. However by making good use of the
expression capablilities of the language, algorithms can be
expressed quite compactly, and the code for the current batch
compiler occupies only 30K bytes. A nice feature of stack
evaluation is that identity declarations generate no code other
than that for the right hand side - the compiler simply remembers
where the result is and carries on.

The extension to provide incremental compilation was made with
remarkably little effort. Effectively the outermost block is
parsed specially, and the normal voiding at a semicolon is replaced
by a call to execute the newly generated code. At this point the
resulting value is on the execution stacks, and the mode
information is on the compiler’s semantic stack. A recursive
procedure now generates and executes the code to strip off REFs and
PROCs one by one, displaying to the screen as it goes (and taking
care not to dereference NIL nor to deprocedure a comorph!).

Finally a plain or stowed value is reached which can be displayed
and voided.

Another aspect which gave less trouble than expected is error
recovery. At the beginning and again after each successful
execution, a snapshot is taken of the compiler and execution
states, and a backtrack is performed to this point in the event of
a compilation or execution error in the next phrase. In practice
errors causing general corruption are rare, and it suffices to
snapshot the compiler and execution stack pointers plus a few key
variables. Altogether, backtracking is probably easier than
continuing after a syntax error in a batch compiler.

More tedious was arranging that the display to the user is
consistent with the compiler’®s view of the world. In the current
system, if a compilation error is detected on a line part way
through a procedure, a message is inserted above the line and the
cursor moves up to the top of the procedure (the backtrack point).
One can then use the "cursor down” key to re-submit as much as was
good without re-typing. Alternatively extra text can be inserted
~ maybe to fix up an undeclared identifier - and in this case one
has the satisfaction of seeing the error message politely disappear
when the offending line is re-submitted in the correct context .

The use of an intermediate code naturally results in execution
slower than the raw speed of the processor (Intel 8086) by at least
a factor 10. However for the interactive user, the more relevant
comparison is with interpreted BASIC, and here Algolé8 is seen to
be faster by a factor 10. It will be interesting to see whether
this fact can be used to woo the many who value speed more than
structure !

