
ISSN 0084-6198

Algol Bulletin no. 49

MAY 1983

CONTENTS

AB49.0 Editor's Notes

PAGE

1

AB49.1 Announcements

AB49.1.1
AB49.1.2
AB49.1.3

AB49.1.4
AB49. i. 5

AB49.1.6

AB49.2

AB49.2.1

AB49.3

AB49.3.1

Hans Bekic 2
Yet another definition of ALGOL 60 3
Book Review - Correctness Preserving Program

Refinements: Proof Theory and Applications 3
Book Review - A Bibliography of Lambda-Calculi 3
Book Review - Deterministic Top-down and

Bottom-up Parsing (Bibliography) 4
Book Review - ALGOL 68 Preludes for Arithmetic

in Z and Q 4

Letter to the Editor

RS ALGOL 68 Implementors Group (RIG)

Working Papers

Clarification to Modified ALGOL 60

AB49.4

AB49.4.1

AB49.4.2

AB49.4.3

Contributed Papers

C.H.Lindsey, A Proposal for Exception
Handling in ALGOL 68 i0

Martyn Thomas, An Exception-Handling Mechanism
for ALGOL 68 16

E.F.Elsworth. A Self-replicating Program
in ALGOL 68C 18

AB 49p.]

The ALGOL BULLETIN Is produced under the auspices of the Working Group
on ALGOL of the International Federation for Information Processing (IFIP WG2. "1,
Chairman Robert B. K. Dewar. Courant Institute).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin do not
necessarily reflect those of IFIP and IFIP undertakes no responsibility for any
action that might arise from such statements. Except in the case of IFIP
documents, which are clearly so designated. IFIP does not retain copyright
authority on material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No reproduction may be
made in part or in full of documents or working papers of the Working Group itself
without permission in writing from IFIP."

Facilities for the reproduction of the Bulletin have been provided by courtesy of
the John Rylands Library. University of Manchester. Word-processing facil it ies have been
provided by the Barclay's Microprocessor Unit, University of Manchester, using their
Vuwrlter system.

The ALGOL BULLETIN is published at irregular intervals, at a subscription of $1]
(or £6) per three issues, payable in advance, Orders and remittances (made payable to
IFIP) should be sent to the Editor. Payment may be made in any currency (a list of
acceptable approximations in the major currencies will be sent on request) , but it is the
responsibility of each sender to ensure that his payment is made in accordance with the
currency requirements of his own country, Subscribers in countries from which the export
of currency is absolutely forbidden are asked to contact the Editor, since it is not the
policy of IFIP that anyone should be debarred from receiving the ALGOL BULLETIN for
such a reason,

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Llndsey,
Department of Computer Science,
University of Manchester,
Manchester. M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4 (or £1,80) each, However. it Is
regretted that only AB32. AB34, AB35, AB36. AB38-43 and AB45 onwards are currently
available. The Editor would be willing to arrange for a Xerox copy of any individual paper
to be made for anyone who undertook to pay for the cost of Xeroxing.

AB49, 0 EDITOR'S NOTES,

ALGOL 60 Standardization

The long process of producing as ISO Standard for ALGOL 60 is about to
terminate. The draft which was voted upon by the various member bodies of ISO
contained a reference to the Modified Report (actually, Clause 6 of the Draft Standard
simply stated that the text of the Report was deemed to be inserted at that point).
Now, the ISO Secretariat have decided to print the actual text in this place (however,
what they print is actually a photograph of the text from the Computer Journal, but
with all the published errata incorporated, so there is no need to worry that some
suibtle change has Crept in). It will be known as ISO Standard 1538 and, if there
are no last minute hitches, it should be published about the same time as this
bulletin.

This issue of the Bulletin also contains a clarif ication to the Modified Report.
This has been approved by the Working Group, It cloes not alter the language In any

AB 49p. 2

way, but it may save you some ef for t in trying to puzzle out wha t the Report means
in the par t icu lar s i tuat ion cons idered.

ALGOL 68 Standard izat ion

This has now reached Its cr i t ica l stage. Af ter var ious adminis t rat ive delays, the
formal proposa l f rom IFIP to ISO f inal ly resul ted In a let ter bal lot of the member
count r ies of ISO/TC97. The votes have to be returned by the beginning of May, and
we have to get at least 5 count r ies who will agree to "par t ic ipate" in the work. Thus,
I canno t tel l you what is going to happen yet, but keep your f ingers crossedl

Except ion handl ing in ALGOL 68

The ALGOL 68 Suppor t Subcommi t tee of WG 2.1 has been cons ider ing
except ion handl ing at its last few meet ings. There have been two proposals under
cons idera t ion . One, which is all done with rou t ine- tex ts , is designed to b e readi ly
added to any exist ing imp lementa t ion simply by wri t ing some addi t ions to the
s tanda rd -p re lude (maybe even a cus tomer of the implementat ion Could do it h imse l f) .
However, this Causes the syntact ic sugar for what the user has to wri te to be a l itt le
bit cumbersome. The o ther is cons idered to be more conven ient in use, but it seems
that, at least in some styles of imp lementa t ion , it will be necessary to t inker with the
comp i le r in o rder to imp lement it.

As well as f inding dif f iculty in choos ing between these two schemes , the
subcommi t tee is also in some doubt as to whether it is proper to produce even
semi -o f f i c ia l e~ens lons to ALGOL 68 at this late stage. Since both schemes are now
we l l -de f ined and unders tood, it has been decided to publish them both in this
bul let in, but wi thout any off ic ial recommenda t ion . Comments f rom you (and even tr ial
imp lementa t ions) are now in o rder , and it may be that the Subcommi t tee will
recons ider the mat ter at a future meet ing.

AB49.1 Announcements .

A B 4 9 . 1 . 1 Hans Beklc 1938 - 1982

Hans Bekic, who was for many years a member of IFIP Working Group 2 / 1 ,
died in a mounta ineer ing acc ident on October 24th, 1982. Since 1961, he had been
a leading member of the IBM Laboratory Vienna, where he was heavily involved,
f irst ly, in the fo rma l , opera t iona l , def in i t ion of PL/1 and, lat ter ly, in dentot ional
methods of language def ini t ion (and especia ly thei r appl icat ion to paral lel
p rocesses) .

For his WG 2.1 assoc ia t ions , however, one must look f i rst of all to his work
on ALGOL 60 - his imp lementa t ion , with Peter Lucas, of that language (one of the
few to take accoun t of al__~ the concepts of ALGOL 60) b and its systemat ic
t rans format ion into a more pr imit ive language (ef fect ive ly the f irst successfu l formal
def in i t ion of the semant ics of a p rogramming language) . He was involved in the
d iscuss ions leading up to the def ini t ion of ALGOL 68, but my own ch ie f reco l lec t ion
of him was his at tempts, spread over many meet ings dur ing the revision of ALGOL
68, to persuade us to relax the scope rest r ic t ion on rout ines (so as to enable
compos i t ion of funct ions, and the l ike) . He did not win this par t icu lar batt le but we
did, a f te rwards, p repare a par t ia l -paramet r i za t ion feature for the language which gave
many of the same benef i ts.

His work was always marked by depth, insight and ext remely high personal
s tandards. He publ ished l i t t le, but his unpubl ished manuscr ip ts were circulated and
re fe renced widely. The In f luence of his ach ievements will stil l be fel t for many years
to come.

C. H. Llndsey
(wi th help f rom H. Zemanek and C .B . Jones)

AB 49p. 3

AB49.1 .2 Yet another definition of ALGOL 60

Ever since the work by Beklc mentioned above, ALGOL 60 has been used as
a Test Bed by those who wanted to try out their latest formal language-definit ion
technique. The latest in this line Is a denotational definition using the Vienna
Development Method (VDM), and contained in the book "Formal Specification and
Software Development" by Dines Bj~rner and Cliff B. Jones, published by Prentice
Hall (at an exorbitant price for which Cliff denies all responsibil i ty).

AB49 .1 .3 Book Review : Correctness Preserving Program Refinements: Proof Theory
and Applications

by R.J.R. Back.
Mathematical Centre Tracts 131, Amsterdam 1980.
ISBN 90 6196 207 2.

This "118 page monograph presents an Interesting theory of program design by
stepwlse refinement. The author rightly points out that the weakest pre-condlt ion
technique described by E.W. DiJkstra does not handle data refinement proofs. (This
crit icism can also be applied to many other books on program proofs - e .g . "The
Science of Programming" by D. Grles.) Here, the author presents a notion of
specification and refinement which embraces both decomposition of control structure
and refinement of data,

Specifications are written with "atomic descript ions'. These both contain a
logical expression and bind variables: this combination takes some time to get used
tol An Infinitary logic is used in which Infinite disjunctions and conjunctions over
formulae are allowed. Little detailed justification is given for this choice beyond
claiming that such expressions are needed to express the weakest pre-condit ion of
loops.

The semantics of specifications are relations and, following de Bakker,
undefined elements are introduced to indicate non-terminat ion of non-determinist ic
constructs. There is some discussion of unbounded non-determinism. It would have
been interesting to have a comparison with D. Park's transfinite approach (cf.
Springer LNCS No. 86). The ultimate reason for rejecting unbounded
non-determinism Is the Inability to express such specifications In the chosen logic
because of the restriction to a countable number of terms.

This is an extremely readable report which represents a development of the
author's thesis. The only general crit icism Is that the examples are rather small.

C.B. Jones
Manchester

AB49. 1.4 Book Review : A Bibliography of Lambda-Calcull, Comblnatory Logics and
Related Topics

by A. Rezus, Mathematisch Centrum, Amsterdam 1982.
ISBN 90 8"196 234X.

This is an extensive bibliography of nearly 80 pages plus two Addenda of a few
pages each. As a source of references it will no doubt be of considerable use to
experts in the field. There is. however, little to aid the non-expert In finding
interesting material. There are no "annotations'. Furthermore, there is no attempt to
classify the material along the lines suggested In Hank Barendregt's foreword (1. e.
pure theory, the theory related to foundations, appl icat ions).

C.B. Jones
Manchester

AB 49p. 4

AB49. 1.5 Book Review : Deterministic Top-Down and Bottom-Up Parsing: Historical
Notes and Bibliographies

by Anton Nijholt.
Mathematisch Centrum. Amsterdam.
ISBN 90 8198 245 5. Price Dfl 16.50.

This bibliography contains over 1000 references, dealing primarily with
theoretical problems In the theory of parsing, but also covering some more
appl icat ion-oriented Issues. such as compiler construction techniques.

The book Is divided Into three main sections, covering Top-down Parsing (I . e .
LL(k) methods), LR-Grammars and Parsing, and Precedence Parsing. Each section
starts with a survey covering the History of the particular method, the Formal
Properties of the relevant grammars, the associated Parsing methods, Error
Handling, Parser Generators, etc.

The three Bibliographies themselves are exceedingly thorough, entries from the
most obscure journals taking their place beside all the classical papers on the
subject. However, the entries are given only In strict alphabetical order of first
author's name, with only the title of the paper and the bibliographic reference. There
is, In general, no way to Identify a paper on a particular topic, save for those
papers which are explicitly referenced in the introductory surveys (although these do
indeed include all the most Important papers). How much more useful the book would
have been with only one sentence to say what each paper was about (for titles of
papers are notoriously unhelpful in this respect) .

C.H. Lindsey
Manchester

AS49. 1.6 Book Review : ALGOL 68 Preludes for Arithmetic in Z and Q

by Guenter Baszenskl
Rechanzentrum der Ruhr-Universitaet Bochurn,
Report No. 8203 ISSN 034]-0358.

1982 .

This paper defines (and provides Implemantations for) two ALGOL 68 preludes
- one for performing arithmetic on integers of arbitrary size and one for performing
arithmetic on rational numbers.

In the long-integer prelude, the mode LINT Is defined together with operators
-I. - • % MOD • * ÷ := - : = ~:= %:= MODAB ABS ODD SIGN plus the
usual relational operators. These also work between L INT and INT and v.v. There
are conversion operators L and I, from and to INT, and also a procedure over, to
give quotient and remainder, and operators FAC (factor ia l) , C (binomial
coeff ic ients), GCD and LCM. Special transput and conversion procedures are
provided for LINTs. The implementation is in terms of a sign and a modulus, which
is stored as a row of INTs on the heap. It runs on the CDC implementation of ALGOL
68, but contains nothing that should prevent porting to other implementations.

The rational prelude defines the mode RAT, which Is a structure of two LINTs.
The operators provided are exactly those provided for the mode REAL in the ALGOL
68 standard-prelude, and work for all sensible combinations of RAT, LINT and INT
(however, a special operator FR had to be provided for division of two INTs, because
/ is already defined in the standard-prelude to yield REAL in this case). As with
LINTs, there are special transput and conversion routines.

It is not stated, but I would think tt reasonable to suppose that both preludes
would be available in machine-readable form from Bochum.

C. H. Lindsey
Manchester

AB 49p. 5

A B 4 9 . 2 Letter to the Edi tor

Director J R Brookes MA FeCS

South West Universities
Regional Computer Centre

University of Bath
Claverton Down

Bath BA2 7AY

Telephone Bath (0225) 60371
Telex 449097

18 F e b r u a r y 1983

Dr C H L t n d s e y
E d i t o r , A l g o l B u l l e t i n
Dept o f C o m p u t e r S c i e n c e
U n i v e r s i t y o f M a n c h e s t e r
MANCHESTER
MI3 9PL

D e a r Dr L i n d s e y

I w o u l d l i k e t o i n f o r m r e a d e r s o f ' A l g o l B u l l e t i n * , p a r t i c u l a r l y
t h o s e i n t e r e s t e d i n A l g o l 68 , a b o u t t h e f o r m a t i o n o f t h e RS A l g o l 68
I m p l e m e n t o r s Group (R I G) , and t o d e s c r i b e some o f t h e work we h a v e
d o n e .

As t h e name s u g g e s t s , members o£ t h e g r o u p a r e t m p l e m e n t o r s o f
A l g o l 68 s y s t e m s b a s e d on t h e p o r t a b l e R e v i s e d R e p o r t *'RS" c o m p i l e r
f r o n t e n d f r o m RSRE M a l v e r n (d e s c r i b e d i n RSRE T e c h n i c a l No te 8 0 2) .
RSRE t h e m s e l v e s a r e a l s o r e p r e s e n t e d . The g r o u p h a s b e e n m e e t i n g
r e g u l a r l y s i n c e May 1981 , i t s p r i n c i p a l o b j e c t i v e s b e i n g t o m a i n t a i n
c o m p a t i b i l i t y b e t w e e n RS i m p l e m e n t a t i o n s , t o p r o v i d e a f o r u m f o r t h e
d i s c u s s i o n o f common p r o b l e m s and p o i n t s o f i n t e r e s t b e t w e e n
t m p l e m e n t o r s and RSRE, and t o p r o m o t e t h e u s e o f A l g o l 68 i n g e n e r a l .

C o m p a t i b i l i t y i s s e e n a s v e r y i m p o r t a n t f o r u s e r a c c e p t a n c e o f
f u t u r e i m p l e m e n t a t i o n s ; we f e e l i t i s h i g h l y d e s i r a b l e t h a t s o u r c e
p r o g r a m s s h o u l d be r e a d i l y p o r t a b l e f r o m a ny one RS i m p l e m e n t a t i o n
t o any o t h e r , and t h a t t h e r e s h o u l d be a c o n s i s t e n t u s e r v i e w o f t h e
RS ' f a m i l y ' o f c o m p i l e r s . The RS s y s t e m i t s e l f , on t h e o t h e r h a n d ,
p e r m i t s c o n s i d e r a b l e f l e x i b i l i t y i n t h e i m p l e m e n t a t i o n o f t h e b a c k end
t r a n s l a t o r and t h e r u n - t i m e s o f t w a r e . C o n s e q u e n t l y , RIG h a s a g r e e d
on a s e t o f s t a n d a r d s and g u i d e l i n e s f o r t m p l e m e n t o r s t o f o l l o w so
t h a t c o m p a t i b i l i t y i s m a i n t a i n e d . T h i s c o m p a t i b i l i t y w i l l become
e v e n m e r e i m p o r t a n t e a r l y i n 1983 w i t h t h e p u b l i c a t i o n by Edward A r n o l d L t d
o f a new A l g o l 68 t e x t book , a ime d p r i m a r i l y a t u s e r s o f RS s y s t e m s ,
and w r i t t e n by P h i l i p Woodward and S u s a n Bond. (Many r e a d e r s w i l l r e c a l l
w i t h a f f e c t i o n t h e i r ' A l g o l 68-R U s e r s G u i d e *) .

To c l a r i f y ~uy m i s c o n c e p t i o n s r e a d e r s m i g h t h a v e , I s h o u l d p o i n t o u t
t h a t R6 A l g o l 68 was d e s i g n e d t o be v e r y much c l o s e r t o t h e R e v i s e d
R e p o r t t h a n A l g o 1 6 8 - R , i t s p o p u l a r p r e d e c e s s o r f r o m RSRE. RIG h a s
i n f a c t s p e n t some t i m e r e v i e w i n g t h e l a n g u a g e i m p l e m e n t e d by t h e
RS c o m p i l e r , and a s a r e s u l t , many m i n o r r e s t r i c t i o n s and d e v i a t i o n s
f r o m t h e R e p o r t h a v e b e e n r e m o v e d . (The m a i n r e m a i n i n g r e s t r i c t i o n s

a r e t h a t , a p a r t f r o m l a b e l s and s i m p l y r e c u r s t v e p r o c e d u r e s , i d e n t i f i e r s
m u s t be d e c l a r e d b e f o r e t h e y a r e u s e d , a nd t h a t no p a r a l l e l t t y f e a t u r e s

AB 49p. 6

a r e p r o v i d e d ; on t h e p l u s s i d e , RS s y s t e m s c o n t a i n a m o s t p o w e r f u l
and s e c u r e m o d u l a r c o m p i l a t i o n s y s t e m) .

A n o t h e r a c t i v i t y o f RIG h a s b e e n t o p r o d u c e a s t a n d a r d t e s t s e t
f o r RS i m p l e m e n t a t i o n s . T h i s c o n s i s t s o f t h e MC (A m s t e r d a m) t e s t s ,
m o d i f i e d w h e r e a p p r o p r i a t e t o a l l o w f o r l a n g u a g e d i f f e r e n c e s , a l o n g
w i t h a s e t o f t e s t s d e v e l o p e d by B e r n a r d H o u s s a i s a t t h e U n i v e r s i t y
o f Rennes (w h e r e t h e y a r e u s i n g t h e H o n e y w e l l M u l t i c s i m p l e m e n t a t i o n
o f RS A l g o l 6 8) . The Rennes t e s t s a r e g e n e r a t e d a u t o m a t i c a l l y f r o m
a d e s c r i p t i o n o f A l g o l 68 s y n t a x and h a v e p r o v e d r e m a r k a b l y s u c c e s s f u l
a t w e e d i n g o u t o b s c u r e b u g s I n t h e c o m p i l e r s .

I n c i d e n t a l l y , t h e i n f o r m a t i o n g i v e n i n AB47 on a v a i l a b l e RS
i m p l e m e n t a t i o n s i s now o u t o f d a t e . The ICL 2900 S e r i e s i m p l e m e n t a t i o n
i s a v a i l a b l e u n d e r VME/B and VME 2900 (n o t VME/K) and t h e r e i s now
an i m p l e m e n t a t i o n f o r H o n e y w e l l L e v e l 68 m a c h i n e s u n d e r t h e M u l t i c s
o p e r a t i n g s y s t e m . T h i s i m p l e m e n t a t i o n i s a v a i l a b l e a t c o m m e r c i a l
r a t e s (b u t a t a n o m i n a l c h a r g e f o r e d u c a t i o n a l u s e) and i s now i n u s e a t
s i x i n s t a l l a t i o n s i n E u r o p e and N o r t h A m e r i c a . F u r t h e r i n f o r m a t i o n
may be o b t a i n e d f r o m

S y s t e m s D e v e l o p m e n t Manage r
S o u t h West U n i v e r s i t i e s R e g i o n a l C o m p u t e r C e n t r e
U n i v e r s i t y o f B a t h
B a t h BA2 7AY
UK

I n a d d i t i o n , SPL a r e c u r r e n t l y d e v e l o p i n g an RS i m p l e m e n t a t i o n f o r
t h e VAX, and RSRE h a v e i m p l e m e n t e d RS A l g o l 68 on t h e i r own F l e x
a r c h i t e c t u r e . An i m p l e m e n t a t i o n f o r M o t o r o l a 68000 i s a l s o b e i n g
c a r r i e d o u t a s a r e s e a r c h p r o j e c t a t t h e U n i v e r s i t y o f C a m b r i d g e .
We a r e n a t u r a l l y k e e n t o e n c o u r a g e a d d l t i o n a l i m p l e m e n t a t i o n s and
wo u ld be p l e a s e d t o p r o v i d e i n f o r m a t i o n and a s s i s t a n c e t o a n y o n e
i n t e r e s t e d .

F i n a l l y , one o b j e c t i v e o f RIG t h a t h a s b e e n r e l a t i v e l y n e g l e c t e d so
f a r h a s b e e n t h a t o f p r o m o t i n g A l g o l 68 . Why i s i s t h a t A l g o l 68 ,
d e s p i t e a l m o s t i n v a r i a b l y b e c o m i n g t h e p r e f e r r e d l a n g u a g e o f a n y o n e
who t a k e s t h e t r o u b l e t o l e a r n i t , h a s f a i l e d t o become w i d e l y u s e d ?
To my mind t h e p r i n c i p l e f a i l u r e h a s b e e n one o f m a r k e t i n g , and h e r e
a l l o f u s i n t h e A l g o l 68 c o m m u n i t y mus t s h a r e t h e b l a m e ; f o r t o o
l o n g we h a v e b e e n u n d u l y I n w a r d - l o o k i n g , i g n o r i n g t h e o u t s i d e w o r l d
o f FORTRAN and P a s c a l p r o g r a m m e r s who f a i l t o r e a l t s e t h e b e n e f i t s
t h e y a r e m i s s i n g . Can I t h e r e f o r e e x h o r t a l l o f you who a r e i n t e r e s t e d
i n s a v i n g t h e l a n g u a g e t o t h i n k s e r i o u s l y a b o u t wha t c a n be d o n e , and
t o be c o n s c i o u s o f any o p p o r t u n i t i e s t h a t may a r i s e t o p u t f o r w a r d
t h e m e r i t s o f t h e A l g o l 68 c a s e (no pun i n t e n d e d !) .

Yours s i n c e r e l y

G a v i n F i n n i e
S e c r e t a r y , RIG

AB 49p. 7

AB49 .3 . "1
Clar i f icat ion to Modif ied ALGOL 60.

The fo l lowing c lar i f ica t ion has been Issued by IFIP Working Group 2 . 1 , a n d
deals with a quest ion which was raised In connec t ion with the Modif ied Report on the
A lgor i thmic Language ALGOL 60. This c lar i f ica t ion Is not to be const rued as a
modi f icat ion to the text of the Modif ied Report.

In terpretat ion of "cal l by name" where the actual and f o r m a l parameters di f fer In
type.

"1 • In t roduct ion

1.1

1 .2

1 .3

2.

2 .1

2 . 2

The Modif ied Report on ALGOL 60 (sec t ion 4 . 7 . 3 . 2) says that , when a formal
pa ramete r Is ca l led by name, "If the actual and formal parameters are of
d i f ferent ar i thmet ic types, then the appropr ia te type convers ion must take
p lace, I r respect ive of the context of use of the p a r a m e t e r . " A query having
been ra i sed about the exact meaning of this requ i rement , it seems worth whi le
to try to c lar i fy It. The aim Is solely to make a c lar i f i ca t ion, not to change
the Intent ion.

First It should be noted that ALGOL 60 has only three types, of which Boolean
Is not ar i thmet ic , so It is only conf l ic ts between real and In teger that are
Involved. The possib le cases are (1) rea l (In teger) actual pa ramete r with
In teger (rea l) fo rmal pa ramete r (2) rea l procedure (In teger procedure) actual
pa ramete r with In teger procedure (rea l procedure) fo rmal parameter .

A pre l iminary vers ion of this note was publ ished, In t rans la t ion, In the Russian
vers ion of the Modif ied Report (T rans la to r A . F . Rat, Edi tor A . P . Ershov,
Moscow, 1982). However, that p re l iminary version has been found to be
Inadequate In that It did not al low for the case where a formal pa ramete r Is
used as an actual pa ramete r In a fur ther p rocedure s ta tement , nor the case
of an ass ignment s ta tement with more than one left part.

In terpretat ion

If an actual pa ramete r , cal led by name, and the co r respond ing formal
parameter are of d i f ferent ar i thmet ic types, then the formal pa ramete r is said
to be I l l -matched . If an actual pa ramete r , cal led by name, Is Itself an
I l l -ma tched formal pa ramete r , then the cor respond ing formal pa ramete r Is a lso
said to be I l l -ma tched .

For the fo l lowing explanat ion, let the funct ions p and # be def ined as:

In teger procedure p (h) ;
value h; rea l h;
p := h;

rea l procedure fb(k) ;
value k; Integer k;

: = k;

Note: the Greek let ters p and # have been used for these funct ions to avoid
any clash of Ident i f ier with those of the p rogram, and to make c lear that
these are not s tandard funct ions that can be used by a p rog rammer . For
ease of human unders tand ing, p may be pronounced ' round" and ~ may
be pronounced 'f loat" if des i red.

If a formal pa ramete r Is I l l -ma tched , then each use of It In the p rocedure
body, o ther than as a dest inat ion or as an actual parameter cal led by name,

2 . 4

2 . 5

2 . 6

2 . 7

AB 49p. 8

Is t reated as If enc losed In parentheses and preceded by p. If f u r the rmore It
Is speci f ied as ree l (o r as rea l procedure) the funct ion des ignator so formed
Is t reated as if enc losed in fur ther parentheses and preceded by ,ll.. In the case
of a typed p rocedure its actual pa ramete r part Is, of course , also conta ined
within the parentheses.

If a formal pa ramete r Is I l l -matched and Is used as a dest inat ion, the
ar i thmet ic express ion whose value Is to be assigned Is t reated as If enc losed
in parentheses and preceded by p.

Automat ic type changes across an ass ignment may occur , accord ing to the
usual ru les, af ter the above opera t ions have been appl ied.

The above opera t ions , together with the o ther opera t ions ment ioned In sect ions
4 . 7 . 3 . 2 and 4 . 7 . 3 . 3 of the Modif ied Report, may lead to a left part l ist
conta in ing dest inat ions of d i f ferent types, In violat ion of the f i rst sen tence of
sect ion 4 . 2 . 4 . In such a case, the str ict In terpretat ion would be that the
procedure s ta tement ts undef ined because It has not led to a co r rec t ALGOL
sta tement , as requi red by sect ion 4 . 7 . 5 .

However, It may be found more conven ient to al low such a const ruc t ion as an
extension, In which case the process should take p lace In three steps as laid
clown in sect ion 4 . 2 . 3 , except that the value assigned should be the value of
the expression for all dest inat ions that are of real type and not I l l -ma tched ,
p (t h e value of the express ion) for all dest inat ions of In teger type and not
I l l -ma tched , ~ (p (t h e value of the exp ress ion)) for all I l l -matched
dest inat ions. The express ion Is to be evaluated once only, however, not
th ree t imes.

3. Notes and Examples

3. I In the p rogram

begin rea l a, t ;
p rocedure f (x, z) ; In teger x; real z;

begin
z : : z-I-x; x := z.~'x
end f ;

s := 3. 1; f := 5. 1;
f (s . t) ; p r i n t (s) ; p r i n t (t)
end

the procedure s ta tement f (s , t) is t reated as

begin
t : = t + p (a) ; s := p (t + p (3))
end

3 . 2

Consequent ly the values pr inted are f f . O and 8. 1.

I t may seem surpr is ing that, If the actual parameter is Integer and the formal
parameter is real , both p and ~ are appl ied. This is necessary however In
specia l cases, and does no harm in o ther cases. Consider :

begin real x. z;
procedure b (y) ; rea l y; z : : y;
procedure a (I) ; Integer i ; b (/) ;
x := 12. 7; a (x) ; p r in t (z)
end

In this program z := y is In terpreted as z := f b (p (x)) . The p is necessary as
z is given the value 13.0 , not 12. 7, because Jt has passed through the Integer
parameter /. The ¢ is necessary to make y of real type within the b procedure .
In the above case ~ is not essent ia l (but does no harm) as the change of

AB 49p. 9

type of the assigned value happens automatically as It is assigned to z, but
the fact that y is rea l Is important in Its own right (for example to disallow y+2,
as Integer division Is allowed only for operands of I n teger type).

3 .3 It may also seem surprising that, when a formal parameter is used as a
destination, p is always used but not @. This Is because, if there is
I l l -matching at any stage, the Integral value is required. If the expression Is
already Integral p does no harm. @ is not required, as a change of type is
automatic, If needed, across an assignment. The argument in 3.2 above,
concerning Integer division, does not apply here because the entire expression
is having the function applied to it.

3 .4 The program

beg in In teger I ;
p rocedu re f (y) ; rea l y;

beg in rea l x;
x : = y := 1 3 . 3 ; p r i n t (x) ; p r i n t (y)
end f ;

f (I) ; p r i n t (I)
end

Is technically incorrect because

x := I : = 1 3 . 3

Is incorrect. Compiler writers, however, will probably find it considerably easier
to allow it as an extension than to detect it as erroneous. If such an extension
Is permitted, the three values to be printed should be 13.3 (for x) , 13. 0 (for
y) and 13 (for I) . (The pr in t procedure might not, of course, distinguish
between the last two In the form of its printing.)

;I

AB 48.4.1
A Proposal for Exception Handling In ALGOL 68.

AB 49p. 10

by C. H. LIndsey
(University of Manchester)

] . Informal Description.

Even In programs which are logically correct, exceptional things can happen. When
presented with Inappropriate data, time and space can become exhausted, numbers can
go out of range, and matrices can turn out to be singular. Sometimes, these exceptions
are detected by hardware or by the implementation (we call these "system except ions') .
Sometimes, they are detected by tests Incorporated by the programmer (we call these
"user except ions') . Sometimes, they are not detected at all (e. g. because some run-t ime
check has been turned off - we call these "undetected except ions') . The Report does
not distinguish between system and undetected exceptions - It merely states that at such
a point the further elaboration Is undefined (RI. 1 .4 .3 . b, 2. 1 .4 .3 . h, 2 .2 .2 . b}. In actual
Implementations, a system exception usually causes Immediate suspension of the program
with suitable diagnostic messages. An undetected exception allows the program to
continue with erroneous results, possibly tr iggering a system or user exception later
on.

In many situations, suspension of the program could be most embarasslng. A
database might be left In an Inconsistent state. Some piece of equipment being
controlled might fall. Results already accumulated might be lost. The user, particularly
an Interactive one, might have preferred to Ignore the data that caused the trouble and
to continue with the next Input. The system to be described allows the programmer to
specify traps for both system and user exceptions.

A "trap" Is a routine to be called only when the associated exception happens.
Different traps may be associated with different kinds of exception, and the association
lasts throughout a specific range (unless reassociated within an inner range, of course).
In our proposal, this range Is some routine-text, and we will illustrate the method with
an example of a user exception for handling singular matrices.

EXCEPTION s ingu la r = new except ion ; # EXCEPTION la a new mode #
PROC gauss = (REF [,] REAL a. REF [] REAL rhs) VOID:

C O M M E N T a procedure to solve a set of simultaneous
equations C O M M E N T

BEGIN C the usual algorithm for gaussian elimination which, at some
point, may discover that a is singular C;

IF C it makes this discovery C
THEN RAISE s ingu la r
F I ;
C rest of algorithm C

END;

Within some given range of his program, the user decides how he wants to handle
this situation:

[l : n . 1 : n] REAL matr ix , [l : n] REAL r ;
handle (VOID:

BEGIN # of range in which the proposed trap is to apply #
C compute matr ix etc. C;
gauss (ma t r i x , r) ;
C process the results in r C

END # of range of trap # .
TRAP (s ingu la r , VOID: (

p r i n t (' m a t r l x was s ingu la r ; p roceed with next c a s e ') ;
GOTO next case))

AB 49p. 11

where next caae Is a suitable label elsewhere In the program. Here handle is a
procedure of mode PROC(PROC VOID, [] TRAP) , where

MODE TRAP = STRUCT(EXCEPTION exc, PROC VOID h a n d l e r) .
Calls of hand le will usually be written In this form. with routine-texts written in sltu for
all the PROC VOIDs. In general, a row-display of TRAPs providing handlers for various
exceptions would be provided, but in this case there was just one. and so the rowing
coercion took care of It (observe the cast TRAP (.) which is syntactically necessary
for the rowing to work properly, and Is desirable for clarity In other cases).

This particular handler was a very simple one. but was typical insofar as it finally
terminated with a jump. One could Imagine a much more complex handler which made
some subtle alteration to matr ix and called gauss again, possibly Inside a different call
of hand le to deal with any further singularities. But. In general, a handler should finally
terminate with a jump (which. according to the syntax of the language, must be to some
label outside the call of h a n d l e) . Of course, there may exist at some moment several
nested handlers for a given exception. For example, the programmer may have provided
some general handler for s ingu la r which enclosed most of his program; but at some
particular Inside call of gauss, where he foresaw some particular possibility of singularity
arising, he might provide a more local one. When the exception occurs, it is always the
most local handler (In the dynamic sense) that Is entered. If it terminates with a jump.
then the matter is presumed to be resolved, and the program continues from the label
jumped to. If. however. It tries to return to its caller, it is presumed that the matter Is
not resolved and the next outer handler is entered. Eventually. there will be no outer
handlers left and the program is aborted (presumably with whatever diagnostic printout
the system normally produces).

Since a handler will frequently do nothing but jump to a place where there Is a
sensible continuation, It Is possible to make use of the automatic *procedurlng" of jumps
{R5.4 .4 .2 . Case B} and the option of omitting the GOTO (ne i t he r feature available in ALGOL
68S, however). This combines well with the use of the compleUon-symbol (EXIT) In a
ser ia l -c lause [R3.2. 1. b},

REAL x =
BEGIN

INT / , REAL y;
PROC rec ip roca l = (INT I) REAL: 1 . 0 / I ;
handle (VOID:

BEGIN r e a d (/) ;
Y := r e c i p r o c a l (I) ;

END ,
(TRAP (ar i thmet ic e r ro r , over f low) ,

TRAP (o thers , o ther e r ro r))
) ;

Y
EXIT
over f low:

max rea l
EXIT
o ther e r ro r :

p r i n t (' b a d i n p u t ') ;
rec ip roca l tmax int)

END

ar i thmet ic e r ro r and others are built-in exceptions. In this case. ar i thmet ic e r ro r
would Catch division by zero. and others might catch troubles in read (assuming no
suitable event routine had been provided). Whatever happens, some value or other is
bound to get ascribed to x. The example also shows how a construct involving handle
can be made to return a result (unfortunately. handle Itself must always return VOID) .
and also how objects should be declared in order that they may be visible either inside
the handler or. as in this case. at the place that the handler Jumps to.

The full list of built-in exceptions is as follows. Not all implementations will

AB 49p. 12

necessarily be able to raise them all. They have dellberately been left general slnce,
although one piece of hardware might be able to dlsUngulsh "floatlng polnt overflow" and
"division by zero" as two dlstlnct cases, another mlght glve the same Interrupt for both.
It is thought that no system should have difficulty In selecting the approprlate exception
from the following list. The errors listed wlthln square brackets after some of the Items
are specific transput errors recognlsed by J.C. van Vllet's Implementatlon Model for
ALGOL 68 Transput (Mathematlcal Centre Tracts 110, Part 2) : thls suggested
alloocatlon may help to olarlfy the intent of those exceptlons.

t ime exhausted
space exhausted

there might not be much that a handler could actually do in these
cases

undef ined value
cases where an operation on a value requires It to be well defined; e .g .
the destination of an assignation or an object to be dereferenced

ar i thmet ic e r ro r
all kinds of overflow, division by zero. square roots of negative quantities.
etc.

bounds e r ro r [wrongmul t , posmax, posmln]
Including errors In subscripts and In trtmmers, Incompatibilit ies when
assigning complete multiple values, and a few transput errors as
Indicated

acope e r ro r
t ransput Imposs ib le [nowrl te, noread, noestab, noset , noreset ,

nobackspace , noshl f t , no re ld f , nob/n , noa l ter ,
nomood , no topen, bed ld f , notaval l]

mainly for when something Is attempted for which the appropriate x posa lb le
returns FALSE

f i le end [nocharpos, no l ine , nopage , amal l l l ne , wrongpos,
wrongset , wrongbacksp]

logical or physical file end
char e r ro r [no d ig i t , wrongchar]
value e r ro r [wrongval , wrongbln]
fo rmat e r ro r [no format , wrongformat]

observe that the last five exceptions all correspond to specific calls of
unde f ined In the standard-prelude, and the last four are In general only
raised If no user's event routine has been provided (or when same has
returned FALSE)

abor l

others

to be RAISEd by users In order to abort their programs deliberately;
unless It had been explicitly trapped, the system's usual postmortem
action would then ensue

any of the above or any user exception, for which no more specific handler
has been provided.

Note that there Is no reason why a user should not RAISE a built-in exception
(one can even envisage sensible applications of this).

2. Formal Definition

1. Standard prelude

The following forms are added to the standard-prelude. In these forms, the
phrase =the calling of A ' , where A is an Identifier or an operator, stands for *the
calling [R5 .4 .3 .2 . b) of the routine ascribed, during the elaboration of these forms,
to A' .

AB 49p. 13

a) MODE EXCEPTION = STRUCT(INT F) ;
b) ? PROC makexceptlon = (INT I) EXCEPTION:

(EXCEPTION e; F OF e := I ; e) ;
c) ? INT last exception := I ;
d) PROC newexceptlon = EXCEPTION: makexceptlon (lastexception + : = 1) ;
e) MODE TRAP = STRUCT(EXCEPTION exc, PROC VOID handler) ;
f) PROC handle = (PROC VOID user p rogram, [] TRAP traps) VOID:

user p rogram ;
g) OP RAISE = (EXCEPTION e) VOID:

BEGIN

C consider the environ in which the c losed-clause suggested by
this pseudo-comment {R10. "I.3 Step 7} Is being elaborated C;
WHILE

(C the considered environ is not the first environ
established (according to a declarative) during a
calling of handle C

OR

C the considered environ has been considered
previously during some other calling of RAISE from
which the elaboration of the c losed-clause suggested
by this pseudo-comment Is descended (R2. "1.4.2. b}
C

)

AND

DO

OD;
IF
THEN

PROC

PROC

PROC

C the considered environ Is not the primal environ
(R2.2.2. a) C

C consider instead the environ upon which the considered
environ was established (R3.2.2. b} (or around which it was
established if no version to be established upon had been
specified) C

C the considered environ is not the primal environ C

COMMENT the locale of the environ now considered
corresponds {R2. 1.1. 1.b} to the parameters of the
newest, not heretofore considered, calling of handle

COMMENT
[] TRAP traps =

CO the traps parameter of that handle, i .e . CO
C the (multiple} value accessed inside the locale of
the considered environ by "STOWED letter t letter •
letter a letter p letter s' {traps}, where 'STOWED" is
the mode specified by TRAP C;
others handler :=
VOID: RAISE e;

may be called if traps does not include others #
handler : =
VOID: others handler ;

will be called if traps does not include a specific
TRAP for e #
choose trap = ([] TRAP traps) VOID:
examines the traps collaterally #
IF UPB traps >= LWB traps
THEN (

(TRAP f irsttrap = traps[LWB t raps] ;
F OF exc OF f ir~ttrap = F OF e

I handier := handler OF f l rst t rap
I : F OF exc OF f i rst t rap = 0
I others handler := handler OF f l rst t rap

)

choose trap (traps[LWB traps -t 1;]

AB 49p. 14

FI;
choose t rap(t rapa) ;

to assign a suitable routine to handler #
handler ;
COMMENT If the elaboration of handler Is terminated {with

a jump}, then all elaborations taking place within the
considered envlron, or any newer environ, are
terminated {slnce the jump can only be to a label not
contained wlthln the considered call of handle}:
otherwise, the elaboratlon of handler may RAISE an
exceptlon not trapped wlthln itself, or It may return
{whereupon the RAISE e which follows Is
elaborated) :
In either event some other handler Is called or
ultimately, when the primal environ Is reached (no
Intermediate handler having been terminated),
undefined Is cal led}.

COMMENT
RAISE e

ELSE undefined
FI

END ;
h) EXCEPTION others = make except ion(O) ;
i) EXCEPTION t ime exhausted = new exception ;

the operating system proposes to terminate the elaboration peremptorily
|

EXCEPTION space exhausted = new exception ;
there Is insufficient storage space to elaborate some generator or
call #

EXCEPTION undef ined value = new exception ;
some value is undefined (or nil) and the further elaboration depends
upon it t

EXCEPTION ar i thmet ic e r ro r = new exception ;
the result of some arithmetic operation cannot be computed (or is
meaningless) #

EXCEPTION bounds e r ro r = new exception ;
one of the requirements in R5 .3 .2 .2 . a. Case A or Case B or
R5.2..1.2. a. Case B is not satisfied #

EXCEPTION scope er ror = new exception ;
the scope requirement in 'R5.2 .1 .2 . b or R3.2 .2 . a is not satisfied #

EXCEPTION transput Impossib le = new exception ;
a call of undef ined consequent upon one of the possib le procedures
(R]0 .3 . 1.3. b . . h) returning FALSE, or upon an incompatibility of one
of the mood fields of a file (R 1 0 . 3 .] . 3 . a) , or the attempted use of
an unopened file #

EXCEPTION f i le end = new exception ;
a call of undef ined consequent upon one of the g e t good procedures
(R10 .3 .1 .6 . e , f , g) returning FALSE #

EXCEPTION char e r ro r = new exception ;
a call of undef ined consequent upon char er ror mended OF some
FILE returning FALSE, or the suggested character being unsuitable #

EXCEPTION value er ror = new exception ;
a call of undefined consequent upon value er ror mended OF some
FILE returning FALSE #

EXCEPTION format e r ro r = new exception ;
any of the calls of undefined contained in get next p icture
(R10.3 .5 . b) (or in do fpattern - see Commentary "12} #

EXCEPTION abort = new exception ;
an exception which may be raised by the user for the purpose of
intentionally aborting the part icular-program #

(Further declarations such as these may appear in the l ibrary.prelude.)

AB 49p. 15

2. Semant ics

a) When, during the e laborat ion of a par t icu lar -program, an action Is Interrupted
{R2 .1 .4 ,3 . h} or the fur ther e laborat ion becomes undefined (e . g . R l , l . 4 . 3 . b]. and
the Implementation Is able to detect that such a situation has ar isen, then a "system
exception" may be {Indeed. It should be} raised {; If the situation Is not detected,
It might be said that an "undetected except ion" has occurred, and If a formula
containing RAISE is e laborated. It might be said that a "user exception" has
occurred}.

b) The raising of a "system exception" consists of the e laborat ion. In the environ
of the Interrupted or undef ined act ion, of a MONADIC-formula {R5 .4 .2 .1 . b},

• whose app l ied -opera to r Identif ies the de f in ing-opera to r {RAISE) contained In
form 1 .g above, and

whose operend yields the value {of the mode specif ied by EXCEPTION} that
was ascr ibed, during the e laborat ion of the s tandard-p re lude or the
l ib rary-pre lude, to some "appropr iate" Identif ier.

c) It is not fur ther def ined which such Identi f iers should be cons idered the most
"appropr iate" {since the manner in which interrupts etc. are classif ied and the
possibi l i t ies for fur ther action thereaf ter vary so much from one implementat ion to
another}. However. the def in ing- Ident i f iers contained In form 1. i above are
accompanied by comments which suggest the c i rcumstances envisaged as being
appropr iate for each,

.3.. Implementation

It should be possible to Incorporate the exception handl ing feature Into an
existing compi ler by modifying only the run- t ime system, leaving the compi ler Itself
untouched. The implementer has only to devise means of per forming the fol lowing
operat ions:

1. to fol low the dynamic chain, starting from the stack f rame of the current
rout ine and locating. In order , all stack f rames between there and the bottom
of the stack, which must Itself be recognizable as such;

2. to recognlse any stack f rame cor responding to a call of hand le ; If the
Implementation already provides 8 field within each stack f rame to identify the
code that Is being cal led, this Is no problem; In genera l , implementat ions can
be expected already to provide some such feature, s ince they mostly are able
to print out some identi f icat ion of the active rout ines upon program fai lure;
once a stack f rame for handle has been recognlsed, It Is a simple matter to
find the value of its t raps parameter ;

to mark a stack f rame for handle as having been "considered previously ' : if
a spare bit can be found In the stack f rame, this Is easy; alternatively, It
would be suff icient to replace the t raps parameter of handle with a flat multiple
value (al lowing the gartbage col lector to dispose of the old parameter) ;

to invoke the implementat lon's normal fai lure act ion, which Is usually to print
a (more or less complete) list of the active rout ines, their local var iables,
etc. ; this Invocation should take place at the call of unde f ined at the end of
RAISE.

3.

4.

A cknowledements

The underlying idea behind this proposal came from Hanno Wupper. Many
other members of the WG 2. 1 ALGOL 68 Support Subcommittee also contr ibuted Ideas
- notably Martyn Thomas, Chris Thomson and Martin Cole,

AB 49p. 16

AB49 .4 .2
An Except ion-Handl ing Mechanism for ALGOL 68

by Martyn Thomas
{South Western Universit ies Regional Computer Centre. Bath, UK)

Objectives

This proposal Is designed to provide an except ion-handl ing mechanism within
ALGOL 68 without any language changes. The mechanism should provtde the fol lowing
faci l i t ies:

- programmer -c rea ted traps for system except ions;
- t raps for p rogrammer-de f ined exceptions.

Except ion-handlers should be bound dynamical ly to their except ions, to al low a
handler to be set up before a l ibrary .procedure Is cal led, to handle any untrapped
except ions which are raised Inside the procedure.

The Proposal

The handlers would normal ly be set up to trap except ions within a
c losed-c lause, as follows:

BEGIN
on(over f low, overf low hand le r) ;
o n (b o u n d check, bound check h a n d l e r) ;

C body of the c losed-c lause C

EXIT
over f low hand le r :

C handle overf low except ions C
EXIT
bound check hand le r :

C handle bound check C
END

User-except ions are created by

EXCEPTION my except ion = new except ion ;
r a i s e (m y except ion] CO this signals the new exception CO

The fol lowing are included In the s tandard-pre lude:

a) MODE
b) PROC

C) PROC

d) PROC

e) PROC

EXCEPTION = S T R U C T (I N T ?unique) ;
new except ion = EXCEPTION:
C guaranteed to yield an unique EXCEPTION value C;
ra ise = (EXCEPTION e) VOID:
C signal e C;
re ra lse = VOID:
C ra ise the current exception outside the range of the current handler.
ra ise the standard exception no except ion if there is no valid current
exception C;
on = (EXCEPTiON e. PROC VOiD I) BOOL:
C set a trap for e, cal l ing I when e Is ra ised , cal l ing system act ion if
I returns. Return FALSE If e may not be t rapped (for example, "lob
cance l led by o p e r a t o r ') ; otherwise, return TRUE C;

AB 49p. '17

f) EXCEPTION
over f low = new except ion,
bound check = new except ion,
under f low = new except ion,

g) PROC system act ion = VOID:
C handle untrapped except ions or any return f rom a user except ion
handler C;

Discussion

When an except ion Is ra ised, e i ther by the run - t ime system detect ing some
except lonal condi t ion or by the p rog rammer cal l ing ra ise , a search Is made for the
most recent ly establ ished, I n - scope handler for this except ion. Control then passes
to the hand ler ' s PROC VOID (which will most common ly be a p rocedured j ump) . If
there Is no valid handler , or If the PROC VOID re turns, the standard postmor tem
act ion is Invoked by system act ion.

The main Implementat ion prob lems with this proposal result f rom the at tempt
to def ine a sensib le range for a handler (I , e , when does a handler establ ished by
a cal l of on cease to be l inked to Its except ion, so that a handler establ ished at a
lower b lock- leve l Is reac t iva ted?) . It Is c lear ly des i rab le that nested handlers are
permit ted and safe, so that a l ibrary p rocedure can t rap its own except ions wi thout
destroy ing the handlers set up in the env i ronment embrac ing the cal l . For safety, and
for excel lent phi losophical reasons, it should be impossib le for a mistake in the cal led
procedure to destroy the embrac ing handlers , so the reestab l ishment of the old
env i ronment must be automat ic once the range of the handler is left,

Unfor tunate ly this Impl ies some system act ion at the end of any range which
inc ludes a call of on, and this probably ensures that this proposal will not be adopted
by any comp i le r cur rent ly in use. If the range of the handler Is def ined in a way
which Is eas ie r to Imp lement wi thout a l ter ing the runt lme systems of exist ing
compi le rs , the behavlour of nested handlers becomes far harder for the p rog ramer
to understand and cont ro l .

Never the less, this proposal seems to be the s implest to use and to understand
tn the common cases ; it handles the except ion condi t ions In t ransput In a
s t ra ight forward way and, as a f inal bonus, it provides a whol ly accep tab le use for
the comp le te r EXIT. Comments on this proposal would be we lcomed.

Acknow ledgement

This proposal arose f rom discussions with members of WG 2. "1 ALGOL 68
Suppor t Subcommi t tee , notably Chris Thomson. Char les Llndsey and Lambert
Meer tens.

AB 49p. 18

AB49.4, 3
A Self-repUcatln R Program In ALGOL 68C

by E. F. ElswoMh
(Unlver$1~ of Aston, Birmingham, UK)

After reading [AB47.4.1] on self-replicating programs, I decided to try the
problem using Algo168C. The solution given for (standard) Algol 68 was the

following, entered as a single line:

(.STRING a:" (.STRING a:"";print(2*a[:12]+2*a[12:])";

print (2*a [: 12]+2"a [12:]))

However Algo168C has two features which prevent the direct use of this solution:

i) Mode STRING is not equivalent to any ROW mode and so STRING values
can't be trimmed. (But the eonstruction'iELEMs'can be used to obtain
the ith character of a STRING 's'.)

ii) * is used as an escape character in STRING and CHAR denotations, so
that to represent a literal quote character "*"" (and not """") is
required, and "**" is required to represent literal *.

Nevertheless, we can still make use of the general principle behind the above
solution, which is:

tail
head l

r i I
STRINGa="STRINGa =''" ;print (head+head+tail+tail) ";
print (head+head + tal l + tai l)

By adding some STRING-construction features to the head part and using these to
produce a satisfactory taiZ part4, I was able to find an Algo168C solution which
gets round problems (i) and (ii) above. Once again this needs to be input as a
single line; laid out for clarity, its form is:

STRING a="STRING a ='',
x=,,***,,xt=, ,,,
t="*";print(a,2ELEMx,a,2ELEMx,6ELEMx,

3ELEMx, 5ELEMx,2ELEMx, IELEMx,IELEMx,x,2ELEMx,6ELEMx,
4ELEMx,5ELEMx, 2ELEMx,iELEMx, t,t)";

print(a,2ELEMx,a,2ELEMx,6ELEMx,
3ELEMx, 5ELEMx,2ELEMx, iELEMx,iELEMx,x,2ELEMx,6ELEMx ,
4ELEMx,5ELEMx, 2ELEMx,iELEMx,t,t)

Note that in Algo168C a program is a series, not a closed clause, and that
'print' only ever requires single brackets.

I now decided to test this using our local Algo168C compiler, but ran into a
snag - it will not accept source lines longer than 132 characters: Seeing no
way to get an Algo168C solution down to 132 characters, and always being keen
to test theory in practice, I now had to tackle the problem of constructing a
multi-line self-replicating program. Here is my solution:

i. OP% =(INTi,STRINGs)CHAR:iELEMs;STRINGa="OP% =(INTi,STRINGs)CHAR:iELEMs;
i~ STRINGa=",x="***"xt=,",t ="*
2. *";print(a,2%x,a,2%x,6%x,3%x,5%x,2%x,l%x,l%x,x,2%x,6%x,4%x;5%x,2%x,l%x,
2f newline,l%x,t,l%x,newline,t)*
3. ";print(a,2%x,6%x,3%x,5%x,2%x,l%x,l%x,x,2%x,6%x,4%x,5%x,2%x,l%x,
3f newlin~,l%x,t,l%x,newline,t)

AB 49p. 19

Notes: i) 1 and 1 ~, 2 and 2", 3 and 3" above should be entered as the ..
single lines i, 2 and 3 of the program.

ii) To continue a string denotation onto a new line, Algo168C
requires a * before the end-of-line.

iii) The operator declation defining % as equivalent to ELEM is
necessary to save enough characters to get the 'print(....)'
part into one line. Even if a solution with this part split
can be found, it will certainly be significantly more complicated.
(The space after OP% is necessary to terminate the operator symbol).

This program has been successfully compiled and tested using our Prime Algo168C
system --Can anyone come up with a shorter Algo168C solution
whose correctness can be demonstrated by actual compilation and execution?

Reference

AB47.4.1 C. Thomson, 'Self-Replicating and n-cycle Programs',
pp19-20, Algol Bulletin no. 47, August 1981

