
ISSN 008q-6198

Algol Bulletin no. 47
AUGUST 1981

CONTENTS

AB47.0 Editor's Notes 2

AB4?.I
AB47.1.1
AB47.I.2
AB47.1.3
ABqT.1.4

AB47.I.5
AB47.I.6

Announcements
International Symposlum on Algorithmic Languages 2
ALGOL 68 Implementations - FLACC 4
International Conference on ALGOL 68 - Proceedings 4
An Axiomatic Semantics for Expression Languages, 5

by P.A.Pritchard
An ALGOL 68 Indenter - Correction 6
Book Review - Intermediate Language for Graphics 6

AB47.2
AB47.2.1
AB47.2.2

Letters to the Editor
ALGOL 68 Syntax Chart on Microfiche
On the Efficiency of ALGOL 68 Transput

ABqT.3
AB47.3.1

AB47.3.2

AB47.3.3

Working Papers
Errata to "A Modules and Separate Compilation

Facility for ALGOL 68"
Errata to "ALGOL 68 Transput, Pt.II:

An Implementation Model"
Survey of viable ALGOL 68 implementations

11

12

15

AB47.4
AB47.4.1

AB47.4.2
AB47.4.3

Contributed Papers
C.M.Thomson, Self-replicating Programs and 19

n-cycle Programs
C.M.Thomson, ALGOL 68 as a Living Language 21
M.R.Levlnson, An ALGOL 68 Implementation Companion 25

AB47.5 Supplements
AB47.5.1 Documentation on ALGOL 68 on michrofiche

LIBRARIANS please take note.

There is a microfiche enclosed with this issue. Please file it away
wherever you keep microfiches, and write your catalogue number for it
here:

AB 47p.1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The followin E statement appears here at the request of the Council of
IFIP:

"The opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that miEht arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIP".

Facilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester.

Facilities for the reproduction of the microfiche enclosed with this
issue have been provided by the courtesy of the Rechenzentrum of the
Ruhr-Univeritaet, Bochum.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $10 per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any currency (a llst of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency %s absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receivinE the ALGOL BULLETIN for such a reason,

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4 each. However, it is
reEretted that only AB32, AB34, AB35, AB36, AB38, AB39, AB40, AB41, AB42,
AB43, AB45, and AB46 are currently available. The Editor would be willing to
arranEe for a Xerox copy of any individual paper to be made for anyone who
undertook to pay for the cost of Xeroxing.

A8 47p.2

AB47.0 gDITOR'~ NOTES.

First, my usual remarks about paucity of contributions, and hence the
thinness of this issue. However, you do get your free plastic insert again.
This time, it contains the complete Revised Report (together with the
Commentaries collated from AB43.3.1 and AB44.3.1), the Sublanguage Report,
and the Standard Hardware Representation. These are the three official
documents, approved by I.F.I.P. Also included are the Parti@l
Parametrizatinn Proposal (AB39.3.1) and the Modules and Separate Compliatio~
Proposal (AB43.3.2).

Standardization of ALGOL 68.

Following a suggestion from the ISO committee concerned with programming
languages (ISO TC97/SC5), Working Group 2.1 decided, at its meeting in
August 1980, to press for an International Standard on ALGOL 68. The
Standard will be prepared Jointly by IFIP and ISO, and I have been appointed
to coordinate these activities.

The intention is to leave the Revised Report intact as the definition of
the language. The Standard will refer to the Report, and will prescribe
precise requirements for conforming programs, implementations and
accompanying documentation. I hope to publish a working draft of the
standard in a future edition of the ALGOL Bulletin.

In the meantime, there are many political problems to overcome. We have
to persuade sufficient National Standards Organisations to vote, first to
have the proposed standard even considered, and later to have it approved.
The danger is that they may be unaware of the interest in ALGOL 68 within
their respective countries, and that they will refuse to take it seriously.
Here is where each of you, if you believe this to be a worthwhile endeavour,
can help. Write to your National Standards Organization. Tell then that
ALGOL 68 matters; that people really do use it; and that a Standard
therefore ought to exist.

AB47.1 Announcements.

A=4/.I.i International Svmnosium on Al~orithmic Languages.

This Symposium is organized by the Mathematical Centre under the auspices
of IFIP TC2 as a tribute to Professor A. van WiJngaarden on the occasion of
his retirement from the Mathematical Centre. Professor van WiJngaarden is
well known for his contributions in the area of programming language design
(ALGOL 60, ALGOL 68, two-level grammars). The Symposium is to be held from
Oct. 26-29, 1981 at the Free University of Amsterdam, in The Netherlands.

Program:

H.Zemanek (IBM, Vienna) : "The r o l e o f P r o f e s s o r van WiJngaarden in the
early history of IFIP", (invited address).

A.I.Wasserman (University of California, San Francisco), R.P.van de Riet
and M.L.Kersten (Free University, Amsterdam): "PLAIN, an algorithmic
language for interactive information systems".

AB ~7P.3

a process-oriented R.Schild (Landys ~ Gyr, Switzerland): "PORTAL,
real-time algorithmic lar~uage".

J.D.Roberts (University of Reading): "Naming by eolours: a
graph-theoretic approach to distributed structure".

H.S.Warren, Jr. (IBM, ~crktcwn Heights): "Optimization of inductive
assertions".

A.Bossavit and B.Meyer (Electricite de France, Clemart): "Methods for
vector programming".

P.Klint (Mathematical Centre, Amsterdam): "Formal language definitions
can be made practical".

J.Backus (IBM, San Jose): "Is computer science based on the wrong
fundamental concept of "program"? An extended concept", (invited
address).

L.G.L.T.Meertens (Mathematical Centre, Amsterdam): "Issues in the design
of a beginners' programming language".

D.Grune (Mathematical Centre, Amsterdam): "From VW-grammar to ALEPH".

M.Broy, P.Pepper and M.Wirsing (Technical University of Munich): "On
design principles for programming languages: An algebraic approach".

J.DarlinEton (Imperial College, London): "Structured descriptions of
algorithm derivations", (invited address).

M.Sato and M.Bagiya (University of Tokyo): "H~PERLISP".

D;de Champeaux and J.de Bruin (University of Amsterdam): "Symbolic
evaluation of LISP functions with side effects for verification".

P.Naur (University of Copenhagen): "Aad van WiJngaarden's contributions
to ALGOL 60", (invited address).

M.M.Fokki~a (Technical University of Twente): "On the notion of strong
typify".

H.B.M.Jonkers (Mathematical Centre, Amsterdam): "Abstract storage
structures".

J.C.Reynolds (Syracuse University): "The essence of ALGOL", (invited
a d d r e s s) .

B.Kuiper ~Mathematical Centre , Amsterdam): "An ope ra t i ona l semant ics for
nondeterminism equ iva l en t to a deno t a t i ona l one".

O.Gramberg, N.Francez, J.A.Nakowsky (Technion, H a i f a l and W.P. de Roever
(University of Utrecht): "A proof r u l e for fair termination of guarded
coNNands".

W.M.Turski (University of Warsaw): ALGOL 68 revisited twelve years
later, or: from Aad to Ada", (invited address).

A full social program has also been arranged.

Full details concerning registration, fees and hotel accomodation may be
obtained from:

AB q7p.q

Mrs.S.J.Kuipers,
Mathematical Centre,
Postbus 4079,
1009 AB Amsterdam,
The Netherlands.

AB47.1.2 ALGOL 68 Imnlementation - FLACC,

Some recent adjustments in the pricing structures for the FLACC system
may be of interest.

These changes are primarily aimed at helpin E those interested in Algol 68
by making a high-quallty implememtation generally available. We particularly
wish to help people who want to learn and to use Algol 68, but who cannot
Justify the FLACC lease price.

We propose therefore, to distribute an unsupported version of FLACC. The
frozen version is designated "FLACC VI.4U", and is available to universities
and technical schools for a one-time charge of C$1500. This price does not
include maintenance or update services, nor is there any provision for an
acceptance period.

For complete licensing information, please write to:

Sigrid Fritz,
Chion Corporation,
Box 4942,
Edmonton, Alberta,
CANADA T6E 5G8.

AB47. I.3 International Conference on ALGOL 68 - Proeeedin=s,

The Proceedings of the International Conference on ALGOL 68, held at
Bocbum on March 30-31 1981, under the sponsorship of the WG2.1 Subcommittee
o~ ALGOL 68 Support and of the Rechenzentrum der Ruhr-Universitaet, can he
obtained from:

Mathematical Centre,
Postbus 4079,
1009 AB Amsterdam,
The Netherlands.

Table of Contents:

What can we do with ALGOL 68 (invited lecture), by S.G. van ser Meulen.

Syntactic errors made by beginners using an ALGOL 68 subset, by J.Andre &
J.Barre.

A comparative evaluation of ALGOL 68 for programming instruction, by
P.R.Eggert & R.C.Uzgalls.

Teaching with ALGOL 68 in Dresden (invited lecture), by G.Stiller.

Semantic analysis and synthesis in the ALGOL 68 R 4000 compiler, by
H.Loeper, H.-J.Jaekel & H.Pietseh.

Essay on copying, by K.Wright.

AB 47p.5

On the design of an abstract machine for a portable ALGOL 68 compiler, by
L.G.L.T.Meertens.

An implementation of modular compilation in ALGOL 68 (invited lecture), by
G.J.Finnie & M.C.Thomas.

Programming languages for a course in data structures, by
V.J.Rayward-Smith.

Context-free grammars and derivation trees in ALGOL 68, by V.Linnemann.

An ALGOL 68 prelude for the implementation of test generation algorithms, by
S.D.Butland.

A programming system for interval arithmetic in ALGOL 68, by G.Guenther &
G.Marquardt.

Teaching with ALGOL 68, in Manchester (invited lecture), by C.H.Lindsey.

The price of tne proceedings, published as Mathematical Centre Tract 134,
is Dfl 29.40 (including VAT). Foreign payments are subject to an additional
Dfl 6.50 per remittance to cover bank, postal and handling charges.
Forwarding of the publlcation(s) ordered from abroad will take place on
receipt of remittance. Payment should be made in Dutch currency or its
equivalent.

AB47.1.4 An Axiomatic Semantics for Expression Lan~ua=ea.

This is the Ph.D. Thesis of P.A.Pritchard, as submitted to the Australian
National Universlty. Subject to availability, copies may be obtained by
writing to:

Professor P.A. Pritchard,
Department of Computer Science,
Cornell University,
Ithaca, New York 14853,
U.S.A.

The work is closely related to that on ALGOL 68 by Richard Schwartz (see
AB4q.l.5).

ABSTRACT

This thesis addresses the problem of giving Hoare-style axiomatic
definition of the semantics of expression-oriented block-structured
programming languages. This problem is tackled per medium of an exemplary
expression language E1 which caters for the manipulation of both 1-values
and r - v a l u e s .

A notational extension is presented which allows the effects of
state-changing expressions to be naturally described, and a formal
Hoare-style program logic D is then given which defines the partial
correctness semantics of El.

Proofs of the consistency and completeness (in the sense of CooK) of D
are obtained by a novel method involving a translation of E1 programs in an
underlying statement-oriented language. This method enables clear
comparisons to be made of the two styles of programming language.

It is shown that efficient syntax-driven program verification is possible

AB 47p.6

for E1 in both of the major styles, viz. backward substitution and symbolic
execution, but that the latter style is more natural when l-values are
manipulated.

Finally, the above mentioned work on E1 is related to and compared with
other work in the literature concerned with "slde-effects" in conventional
languages, and Schwartz's closely related work on ALGOL 68 is examined in
some detail.

AB47.I.5 An ALGOL 68 Indenter - Correction.

The following correction should be made to fix a bug in the ALGOL 68
indenter given in AB46.4.4. The bug only affects programs which contain an
exit as a constituent of a serlal-clause which is enclosed between brief
delimiters.

Am46 p.34 "STATE=MIDDLER"+IO

THEN GAP => AND (CLAUSE<>EXIT) THEN GAP #

AB47.1.6 Book Review : Intermediate Lan=ua=e for Graphics.

by P.J.W.ten Hagen etal.
Mathematical Centre Tracts 130. ISBN: 90 6196 204 8

This text contains the definition of a special purpose data description
language for pictures, the Intermediate Picture Language (ILP). The authors
envisage ILP emdebbed in a high level programming language to provide, for
example, variables, conditionals and loop constructs. All the parameters to
ILP ape constants. No details of this embedding are given. ILP is a high
level plotfile and again no advice is offered on mapping ILP onto a
plotfile. They do not envisage a FORTRAN implementation, and having
eliminated the constraints such a language would imply has enabled the six
authors to create a graphics language pleasant to read.

The essential construct of ILP is:

<picture>:: PICT (<dim>) <pname> <rE>
<PE> :: {<picture element>} J {WITH <aname> DRAW <pname>}

The picture once defined and stored is subsequently referred to via its name
<pname>. <dim> specifies the dimensions of the coordinates used in the
picture elements.

Dimensions >4 seem to be unnecessary; (-7 is also syntactically correct)!
The picture elements (lines, text, connected lines or curves) must all be of
this dimension (unless a subspace has been selected). The authors do not
indicate actions in the event of a conflict between the picture elements and
the picture dimension. The simplest picture is a collection of picture
elements. This simple picture may be invoked as part of another picture
using the WITH <shame> DRAW <pname>. <aname> is the name of an attribute
pack, a collection of attributes to be applied to <pname>. Attributes
include line style, colour and width. More interestln4~ attributes are the
transformation control, specified either in basic operations such as
translate, rotate, scale, or perspective projection or through a complete
(afflne or homogeneous) transformation matrix. The number of parameters
required is determined by the current dimension specified as part of the
picture header.

Since pictures invoke other pictures, mixing rules for the attributes are

AB 47p.7

necessary; Chapter 3 deals with attribute concatenation rules and semantics
of ILP. Coordinate transformation matricies are multiplied together and, for
example, for line style patterns the latest style invoked is used. The
feature of ILP to be able to present the same picture' on different output
devices wlth differing attributes is ideal in a graphics environment.

The fourth and final chapter of the book is devoted to a discussion of
the group's design goals and how far they have been able to achieve them.
ILP was implemented in 197g as a compiler and interpreter. The compiler
checks the syntax and produces an efficient coding of the programs (a
plotfile?) for the interpreter which drives the drawing machine. 6Ok bytes
on a PDP11/45 for a plotfile spooler (be it so versatile) seems rather
largel

Appendices one and two contain the syntax rules in BNF, though a book on
graphics should have produced a graphic representation of them as for
example in books on ALGOL68, and Pascal. The page numbers indicated in the
index for the appendices are also one shortl The last appendix is an example
program, drawing a house and makes full use of ILP to produce a pythagoras
tree for the curtains.

W.T.Hewitt,
Computer Graphics Unit, University of Manchester.

AB47.2 Letters to the Editor.

AB47.2.1 ALGOL 68 Svntax Char t on M i c r o f i c h e .

135, East MAIN,
Apt. R6,
Westboro Ma. 01581,
U..S.A.

16th. Jan. 81.

Dr. Lindsey.

I recently received Algol Bulletin 46. I believe the following are errors
in the syntax charts on the enclosed microfiche. Parallel and collateral
clauses are missing, casts and format texts are not listed among the units,
the pesslble suppression in a complex frame is not shown, pragments after
the insertion of a boolean pattern are allowed, and only a single digit is
allowed in a replicator. I hope this arrives in time to be helpful.

Keith Wright.

Reply by C.H,Ltndsey:

I plead guilty on all counts. Also some further omissions in rowers were
pointed out by ~.G.Kaniuk. The casts and the format-texts were accidents
during editing. The others are mostly features which I have never used, and
certainly never teach. The diagrams below show how the offending items
should have looked. I have prepared a corrected version of the microfiche.
If any reader would llke one, please send me a fiche-sized envelope
addressed to yourself (readers in the U.K. are invited to supply a
second-class stamp also).

[NCLOS[O-
¢|IUBI

AR A7p.8

~ a r z L t l i -¢ lzuso

Lcotlxf;eral-clauee k
wbron~ :::,:,o.. aaJJ

| cku l l -d l c l | r l p -~
forlsl-dlcisrlP-~

vtrbul|-decl | r ip

Z2X
, ,

G:

rrLm~r~l '~

/ n0 [O =~S~AI_~O

i Formxl ~ r ~

Fo rma) l~

0

I
I uak

MO [O

coL |m©blon-
I tet -~

[r :t -z
Os ~ rlzL eampl
X, ~ cnm~L

AB 47p.9

AB47.2.2 On the Efficiency of ALGOL 68 Transnu~L

Katholleke Hogeschool Tilburg,
Postbus 90153, 5000 LE Tilburg,
The Netherlands.

In our computer centre we use for writing application programs mainly
ALGOL68 for about .6 years (first ALGOL68R, since two years the ICL 2900
compiler). I think we can say that we are quite happy with the language and
the compilers. Only transput is not exactly what we need.

One of the intentions of the design of ALGOL68 was that it "allows the
programmer to specify programs which we can be run efficiently on present
day computers" [I].

I t h i n k t h a t t h i s does no t a lways a p p l y t o the ALGOL68 t r a n s p u t ; some
f e a t u r e s a r e no t e f f i c i e n t , and t h i s migh t be due to the d e f i n i t i o n .

I. - In Tilburg we found that character transput in ALGOL68 is slow, when
compared with FORTRAN.

- Reading 1000 records gives 5.5 seconds, FORTRAN 2.9, on an ICL 2960
computer.

- Printing reals is also slower in ALGOL68 than in FORTRAN (5.4 seconds
for a [1:66,1:5] real, compared with 1.0).

- Some measurements on formatted transput seem to indicate that
formatted transput is slow compared with FORTRAN.

2. Transput of the CDC ALGOL68 compiler is also slower than FORTRAN [2,
table III and IV]. I do not know figures of other implementations, but I
am quite interested.

3. A different definition of some aspects of the transput might come closer
to out needs.

- The transput is not record oriented enough.
- Reading strings to the end of a line (the normal case in terminal

applications) is slow because of the possibility of 'make term'. If
'make term' was not possible, reading strings could be implemented
with more efficiency.

- Routines like 'whole', 'fixed' and 'float' are very useful. The
reverse functions (making a number out of a string) are hidden for the
user. Although they are easy to program, these functions should have
been defined.

- Formatted transput is hardly used in Tilburg (somebody said it is a
language on its own; we do not want to teach or use two languages);
the needed functions can easily be defined as character and string
operators and routines.

The question is left what other users of ALGOL68 think of the transput. I
am sure that implementors would not like redefinition, but on the other
hand, the usability of ALGOL68 could be improved.

Sincerely yours,
Joop Ccumou.

P.S. In your recent article (3) there is the statement "The indenter is
written in PASCAL (-... it needs to run efficiently...)". I do not
know whether this is due to transput, but any how the readers of the
ALGOL Bulletin could be interested in the arguments why PASCAL is
more efficient for this application.

AB 47p.10

I. A. van WiJngaarden et.al. Revised Report on the Algorithmic language
ALGOL 68.

2. H.J. Boom and E.de Jong. A critical comparison of Several Programming
Language Implementations, Software Practice and Experience 10(1980)

p435~473.

3. C.H.Lindsey. An ALGOL68 Indenter, AB46.4.q.

Editor's reply:

It may just be that the implementation of your ALGOL 68 transput is badly
written. Certainly, it is known that the transput in the CDC compiler was
the minimum that would guarantee correct operation, regardless of
efficiency. An implementation based on the "Hansput" model (see AB44.1.1)
could be expected to do much better. Indeed, an implementation of an early
version of the Hanspu t (see AB46.4.2) on a TR440 actually ran faster than
the FORTRAN implementation on that machine (but perhaps it was Just a badly
written FORTRAN implementation).

I think 'make term' can be acceptably efficient. In my own ALGOL 68S
implementation (see AB47.3.3) we followed the Hansput model in the main, but
implemented the terminating strings as bit-maps (PASCAL sets, actually), and
placed the detailed inspection of them at the lowest possible level in the
input primitives, so as to avoid procedure calls on a one-per-character
basis. The same primitives were used for input of numbers by making, for
example, the terminating string to be 'all the character set except for the
digits'. However, my ALGOL 68S implementation, intended primarily for
teaching, makes no claims to be efficient at run time (it is largely
interpretive) , which is why I wrote my indenter in PASCAL.

I agree that the ALGOL 68 transput is not record oriented enough, but
what is missing is a completely separate keyed "record transput" facility,
which ought to exist in parallel with the present "character transput" and
"binary transput". Indeed Mr.Coumou also sent me some information on such a
package for "indexed sequential" transput, which has been written at
Tilburg. It takes the form of an ALGOL 68RS Album, and operates on ICL VMEIB
indexed sequential files as understood by, for example, the ICL 2900 COBOL
compiler. I am sure that this system could be made available to other users

of ALGOL 68 on 2900s.

AB qTp.11 AB qTp.12

AB47.3 Workinm Paners.

ABqT.3.1
Errata to "A Modules and SeParate Comnilation Facility for ALGQ~ ~",

The following errata were authorized by the ALGOL 68 Sub-C0mmittee of
IFIP WG2.1 on May 12 1981. They are to be applied to:

"A Modules and Separate Compilation Facility for ALGOL 68" by
C.H.Lindsey and H.J.Boom,

as published in the ALGOL Bulletin AB~3.3.2
and also as Mathematisch Centrum Report IW I05/78.

Errors in Formal Definition.

~.9.1.b+I # DECSET~ invoked => DECSETY INKSET¥ invoked #

{q.9.1.b+3 is ambiguous; the rule may succeed with any TAU1 such that
TAUt TALLY = TAU.}

1 . 2 . 3 . R # TAU : : MU. => TAU : : MUum. #

3.6.1.h+3,h+5 # {h , i } => { h , l , - } #

Errors in Imolementatlon Methods.

2.5+9 # HOLE => NEST #

{In section 1.1, the grammar (although formally correct) should be brought
into llne with the corresponding grammar in the Formal Definition}.

1.1+1:1.1+17 # ??? =>

compilatlon input:
prelude packet &

impesed module interface option &
Joined module interface {for definition modules, if any,

accessed by this one};
definition module packet &

imposed module interface option &
Joined module interface {for definition modules, if any,

accessed by this one} &
hole interface;

particular program &
Joined module interface {for definition modules, if any,

accessed by the particular program};
stuffing packet &

hole interface &
Joined module interface {for definition modules, if any,

accessed by the stuffing}.

source packet:
prelude packet {a module-declaratlon within the standard environment};
definition module packet {a module-declaration within

a specified hole};
particular program {a stuffing within the standard environment};
stuffing packet {a stuffing within a specified hole}.

i

AB47.3.2 Errata to "ALGOL 68 Transnut. hart If: An Imnlementation Model.

The following errata were authorized by the ALGOL 68 Sub-Committee of
IFIP WG2.1 on May 12 1981. They are to be applied to:

"ALGOL 68 Transput, Part II: An Implementation Model" by
J.C.van Vliet (see AB~4.1.1),

as published as Mathematical Centre Tracts 111
and also in J.C.van Vliet's doctoral thesis.

I. {Typing error}
p47+7: # Intercative => interactive #

2. {Improper handling of the logical file end in the primitives 'do
newline' and 'do newpage' at page overflow}
p47c)+11, p~8d)+30:
At the end of a call of 'do newline' or 'do newpage', the buffer is
newly initialized if one is currently writing to the book. The logical
end as recorded in the book then stilt is at the end of the previous
line (because of the preceding call of 'write buffer'). In general,
this is no problem, since the 'write back'-flag is raised by 'init
buffer' if one is writing, so the buffer will eventually be written
back, also resulting in the proper updating of the logical file end
information. However, the 'write back'-flag is not (and should not be)
raised if s page overflow is detected by 'init buffer'. In that case,
an immediately following call of a routine like 'close', 'set' or
'reset' will not properly set the logical end (since no call of 'write
buffer' results). Therefore, the following change should be made in

both routines:

(init buffer OF cover)(f) =>
(init buffer OF cover)(f);
IF status OF cover SUGGESTS page end AND

status OF cover SUGGESTS ire in current line
THEN set logical pos(f)
FI

3. {Improper handling of the logical end in 'do newpage' at file

overflow}
This error is similar to the one reported above, and so is the remedy:

p48d)+27:

THEN status =>
THEN set logical pos(f);

status

4. {Interchanging lines in 'open'}
p69+12113:
Since a call of 'set write mood' may lead to a call of '£nit buffer',
the buffer primitives ought to be made available first. Therefore,

these two lines should be interchanged.

5. {Improper handling of the physical file end in 'associate'}

p70+25, p72+19:
It must be recorded that for associated files the physical file is also
ended if the logical flle is (on reading). (Otherwise a bounds error
may occur after a change to write mood.) Therefore:

AB 47p.13

logical file ended =>
logical file ended AND physical file end #

6. {Improper updating line end information in 'set write mood'}
pTq+15:
In va r i ous r o u t i n e s , l i ke ' s p a c e ' and ' g e t c h a r ' , the s e t t i n g of the
' l o g i c a l f i l e e n d ' - f l a g has p r e f e r e n c e over t h a t o f the ' l i n e e n d ' -
f l a g , though both may occur a t the same p o s i t i o n . , The re fo re , in case
the 'logical file end' is undone by a change to write mood, the test
for the line being ended must still be made.

IF =>
IF c OF cpos OF cover > char bound OF cover
THEN status ANDAB line end
FI;
IF

7. {Wrong p ragmat ics f o r the o p e r a t o r 'EXPLENGTH'}
p11qh)+2: This l i ne should obv ious ly read:

C The smallest E > 0 such that 'whole(exp, (sign I E ~ -E))' succeeds. This

8. {Typing e r r o r)
p116+8: # o IF => o I f #

9. {Re-initializing the buffer after a call of 'char error mended' in 'get
char'}
p140d)+17:
The tes t ' s t a tus SAYS l i n e ok' a lso f a i l s when the bu f fe r is not
initialized. At various p l ace s inside 'get', however, i t is only
intended to test for a proper llne end or logical file end (e.g., when
reading numbers or strings). Therefore, these tests should be guarded
against f a i l u r e because o f a n o n - i n i t i a l i z e d bu f fe r . Remedy:

; mended =>

IF NOT (s t a t u e OF cover OF f SAYS b u f f e r i n i t i a l i z e d)
TH~N (Init b u f f e r OF cover OF f)(f)
FI;
mended

10. {Small overs igh ts a f t e r a l a t e change
'DFRAME'}
p156g)+q, h)+ l , P1571)+1, J)+ l :

of the notion 'FIIAM~' to

FRAME => DFRAME #

11. {Bug in ' upda te c p ' }
p166+I~:

[cp OF p iece] => [cp OF pieqe - 1] #

12. {Typing e r r o r in 'do f p i c t ' }
p173+2:

UPB i ffi> OPE i l #

13. {Oversight o£ 7)
p188+I:
Obviously, 'indit string' is a routine hidden to the user, so:

]
]

,

15.

16.

17.

AH q7p.14

PROC indit string ffi> PROC ? indit string #

{Re-initializing the buffer while reading according to a
'choice-pattern')
p197+15:
This error is similar to the one in 'get char': the subsequent test
'status SAYS line ok' is only meant to test for a proper line end or
logical file end. The remedy is the same as the one given under entry 9
above:

BOOL =>
IF NOT (status OF cover OF f SAYS buffer initialized)
THEN (Inlt buffer OF COVER OF f)(f)
FI;
BOOL

{Typing e r r o r in ' g e t f ' }
p198+10:

(REF INT i) i:= k =>
(REF INT i): i:ffi k #

{Syntax error in 'get bin'}
p204+2q:
Both the assignment and the second parameter of the call of 'from bin'
are syntactically incorrect. The intention is better phrased as
follows:

C The yield of 'from bin(f, itk, bin)' is assigned to the yield
of 'it[k}', where 'itk' is the value referred to by the yield
of 'it[k}' C

{Omissions of w in the Index)
p210/213:
A . is missing in the entries for 'associated format', 'do fpict' and
'get next picture'. (These routines all use special generators which
cannot be properly expressed in ALGOL 68.)

AB 47p.15

AB 47.3.3 Survey o f Viable ALGOL 68 Implementations

This survey, which we-hmpm--~ republish from time to time as further
information becomes available, has been restricted to implementations which
you can actually obtgin and use. Each of them is already in use on at
least two sites, and has an identifiable person or organisation responsible
for its maintenance.

Name of HardwareiOperating

System System

FLACC IBM 370 OS/VSIMVS
Amdahl /MFTIMVT
Siemens CP/CMS

MTS

ALGOL68C IBM 560
Release 1 IBM 370

DEC-10
DEC=20

VAX

Tele-
funken
TR440
TR445

Prime

OS/MVT
OS/VS2
OS/MVS
OS/MFr
OS/VSi

CMS

TOPS-10
TOPS-20

Principal

Subianguage features

no sema
no f l e x
no f o rma t

Principal

Superlanguage features

automatic 92_:= for
any_op_

upto, downto and until
restricted tran~put
no garbage collector
scopes not checked

improved t r a n s p u t
available

in loop-clauses
displacement operator

(:=:=)
andf, orf and thef

AB 47p.16

Most of the column headings are self-explantory. "Deviations" means
that it is possible to write some program, valid and with defined meaning
both in the given implementation and according to the Revised Report, which
will provide results different from those defined by the Revised Report.
Under '~4oney',, "nominal" means under $200, "yes" means a realistic com-
mercial rate. "MC Test Set" means that it has been tested using the MC
Test Set (see AB 44.1.2) and that the implementor claims that it ran
correctly. In all cases, the people listed in the last column should be
able to provide further information.

Devi- Money? dC T e s t Other f e a t u r e s

a t i o n s ' Se t ?

No Yes Yes

Yes Nominal No
t o

Univer-
sities

load and go version
available

very complete checking
slow running

i s e p a r a t e c o m p i l a t i o n
! f a s t r u n n i n g

Where t o obtain i t

Chion Corporation
Box 4942, Edmonton
Alberta
CANADA T6E SG8

ALGOL68C Distribution Service
Computer Laboratory
Corn Exchange Street
CAMBRIDGE CB2 5QG
U n i t e d Kingdom

Dr. S. Chidlow/Dr. R. Hill
University Computing Service
The U n i v e r s i t y o f Leeds
LEEDS LS2 9JT
United Kingdom

Dr. R. G. Blake
Computing Service
University of Essex
Wivenhoe Park
COLCHESTER CO4 5SQ
United Kingdom

ALGOL68C D i s t r i b u t i o n Serv ice
(see above)

H. Wupper
Rechenzentrumder Ruhr-Univer-

sitaet
Postfach 102148 ,D-4650 Bochum
FEDERAL GERMAN REPUBLIC

Dr. E. F. E l s w o r t h
Dept . o f Computer S c i e n c e
U n i v e r s i t y o f As ton i n

Birmingham
BIRMINGHAM, U n i t e d Kingdom

Name o f

Sys tem

CONTROL
DATA
ALGOL68

A68S

A68RS

Hardware

TELSA 200
(similar

t o
IBM 360)

CDC 6000
-7000

170 series

CDC Cyber

ICL 2900

UNIVAC
ii00
series

AB ,47p.17

Operating

System

NOS 1
NOS/BE
SCOPE2

NOS 1
NOS/BE
SCOPE 2.1

VME/B
VME/K

EXEC-
VIII

Principal

Sublanguage f e a t u r e s

no flex (except
string)

no union
no sema
no heap
no exit

one long
flexibility is an
attribute of a
multiple value

official sublanguage
(see SIGPLANNotice
12 5 May 1977 or
Informal Introduc-
tion Appendix 4)
but heap is allowed

indicators to be
declared before use
no sema
s c o ~ s n o t checked

no garbage collector
scopes not checked

Principal.

Superlanguage features

bounds in formal-
declarers

no transient name
restriction
icf macros allow defini-
tion of operators in
machine instructions

mode vector
indexable structures
forall elements of
array

no transient name
restriction

bin of any primitive
mode
complex mathematical
functions

min and max
matrix and vector
operators

Devi-

Rtions ?

No

No

No

Yes

Yes

Money?

No

Yes

Nominal

Yes

Nominal ?

AB 47p.18

MC T e s t Other f e a t u r e s

Se t?

No TRACE f a c i l i t y
i n d e p e n d e n t compi-
l a t i o n o f r o u t i n e s
f a s t r u n n i n g

Yes [s e p a r a t e c o m p i l a t i o n

No very complete
checking

fast compilation
slow running

Yes modula r c o m p i l a t i o n

Yes French r e p r e s e n -
t a t i o n s

(i n h i b i t a b l e by
p ragmat)

i n d e p e n d e n t com-
p i l a t i o n o f
r o u t i n e s

Where to o b t a i n i t

J . Nadrcha l
I n s t i t u t e o f P h y s i c s
Czechos lovak Academy o f

S c i e n c e s
180 40 Praha 8, Na S lovance 2
CZECHOSLOVAKIA

C o n t r o l Data S e r v i c e s B.V.
P.B. 111
Rijswijk (24)
THE NETHERLANDS

C. H. L i n d s e y
Depar tment o f Computer Sc ience
U n i v e r s i t y o f Man ch es t e r
MANCHESTER M13 9PL
U n i t e d Kingdom

ICL l o c a l s a l e s o f f i c e

Dan ie l Taupin
L a b o r a t o i r e de Phys ique

des S o l i d e s
U n i v e r s i t e de P a r i s gI
91405 Orsay
FRANCE

47p.19

AB47.4.1

S e l f - R e p l t c a t i n ~ Programs and n - C y c l e P r o s r a m s .

Chris Thomson
Chlon Corporation
Box 4942
Edmonton, Alberta, Canada T6E 5G8

After meeting Martyn Thomas at a Working Group meeting, I posed his
problem of a short self-repllcatlng program to my partner, Colin
Broughton (fellow author of FLACC). I could remember only that the
program Martyn told me about used print and two times a string.

Independently, Colin came up with the same program as appeared in
AB46.2.1. However, he used the plus operator and only single
parentheses in the print call, so hls solution ls four characters
shorter than Wendland's. He then developed the following version,
which works in all three of the standard stropping regimes (POINT,
RES and uPPER):

(.STRING a-"(.STRING a-'"';prlnt(2*a[:12]+2*a[12:])) " ;
pr lnt (2*a [: 12] +2*a [12 :]))

Of course, it too must be input a~ a single line.

Never content with a special cases Colin then went on to pose the more
general problem of writing a cycle of programs, each of which produces
the next (as in A produces B which produces A). He came up with the
following pair of 2-cycle programs, which also work with any stropping
regime, and must be input as single lines (the only spaces are those

following STRING):

A: (.STRING a="(.STRING a=""; 2*b [64: 75]+b [75:]+b [: 19]+2"b [19:63])))
(print ((• STRING bffi"" ;print (2*a [52: 70] +a [70:] +a [: 12] +2*a [12 : 5 I]))" ;
prlnt (2*a [52: 70] +a [70:] +a [: 12]+2"a [12:5 I]))

B: (print ((• STRING b-" (print ((. STRING b="" ;print (2*a [52: 70] +s [70:] +
a [: 12] +2*a [12 : 51])) (.STRING a-"" ; 2*b [64: 75] +b [75:] +b [: 19] +
2*b [19:63])))" ; 2*b [64: 75] +b [75:] +b [: 19] +2*b [19:63])))

Note that program A is of the form (STRING a-"...";print(...)), while
B is of the form (print((STRING b-"...";...))).

Later, I posed the general problem of an easily modified program which
would cycle after an arbitrary n to Danny Boulet, a friend at the
University of Alberta computer centre. Be came up with the 3-cycle
program which follows:

(-INT i=(0+I)%*3;.STRING a="(.INT i=(O+I)%*3;.STRING a="";
print (2*(a [:9]+whole(i, 0)+a [Ii :28])+2*a [28:]))" ;
prlnt (2. (a [: 9] ÷whole (i, 0)+a [II : 28])+2*a [28:]))

As always, this must be a single llne of input. It can be made into
a 9-cycle program by changing the two %*Ys to %*9"s. Each program
in the cycle has a different value of i (the 0+I changes to I+I, etc.).

AB 47p.20

C a r r y i n g t h e s p i r i t of oueupmanshlp a s t e p f u r t h e r , he wro te t h e
f o l l o w i n g program:

(. INT m= 1;.STRING a= " (. INT m= I;.STB/NG a= " " ;
p r i n t (2* (a [: 8] +whole (.ENTIER(l÷m* 997*random) %* 1 0 0 0 , - 3) +
a [12:23])+2*a [23:]))" ;print (2*(a [: 8] +whole(.ENTIER (I+m'997"
random) %* I000 ,-3)+a [12:23])+2*a [23:]))

which is intended to reproduce itself after a random-length cycle
of expected length 1000. Note that the two spaces following the m-
are necessary.

Unfortunately, If (as RR requires) last random is always initialized
to ROUND(maxlnt/2), then the cycle length will not be random. If the
program were to use 3+m'997 rather than 1+m'997, then the cycle might
always be 1000 (see Knuth Volume 2, page 15, Theorem A), depending
on the starting value of random. Using FLACC, thls program completes
a cycle for only 96 initial values, and the longest cycle is 39.

I took it upon myself to resolve thls problem, and developed the
following program:

(.INT s:- 0,e:=I23;.STRING a-"(.INT s:- 0,e:-123;
-STRING a="" ; s : -(s'9+7) %* 100000;prlnt (2* (a [: 9] +whole (
(s%lOO-e 101 s) ,-5)+a [15:33])+2*a [33:]))" ;s :-(s*9+7)%* 100000;
print (2* (a [: 9] +whole((s%100-e 10 ~ s) ,-5)+a [15 : 33])+2*a [33:]))

The basic idea is that the se~u of a flve-diglt eongruentlal
pseudo-random-number generato~ is passed from one program to the
next, and the high order dlgl;ts are compared with an expected value.
When the test succeeds, then the seed is reset, thus ending the
cycle. The cycles are of varying length, with an average of I000.
For e-0,123,127,187, the cycles are 1,1564,20,5634 long.

AB 47p. 21

AB47.4.2 A lgo l 68 as a L i v i n g Language

C.M. Thomson
Chion Corpo ra t i on

Box 4942, Edmonton, Canada

A lgo l 68 has the p o t e n t i a l to become a
w ide l y -used , popu lar language. To date, i t has
not reached i t s p o t e n t i a l . Th is paper examines
some reasons fo r t h i s , and suggests some f u t u r e
ac t i ons which would r e s u l t i n wider usage. The
two th ings most needed are q u a l i t y implementa-
t i o n s , and a w i l l i n g n e s s to a l l ow e v o l u t i o n a r y
change in the language.

1. Some H i s t o r y

A lgo l 68 (or A lgo l X, as i t was c a l l e d at the t ime) got o f f
to a good s t a r t . I t was w i d e l y recognized tha t there should
be a successor to A lgo l 60, wh ich had proven to be ve ry
popu la r in Europe, and moderate ly so in North America.
Consequent ly , IFIP Working Group 2.1 began development o f
new language w i t h the e x p e c t a t i o n tha t i t would be w e l l
rece ived .

However, as the d e f i n i t i o n proceeded, i t became c l ea r tha t
the Working Group was d i v i d e d on the issue o f how r a d i c a l a
depar tu re A lgo l X should be from A lgo l 60. U l t i m a t e l y , a
p o l i t i c a l d e c i s i o n was made, and many members o f WG2.1
res igned over the d e c i s i o n . Those who remained e v e n t u a l l y
went on to produce A lgo l 68, w h i l e those who departed
produced Algol-W, and l a t e r Pascal .

As might be expected, because Algol-W was the s impler
language, i t had work ing compi le rs very e a r l y . A lgo l 68,
because i t r e q u i r e d some i n v e n t i o n o f new implementa t ion
techn iques, took much longer to be implemented. In f a c t ,
the exact language de f i ned in 1968 was never implemented:
al1 compi le rs were fo r (o f t en very) d i f f e r e n t languages.

The exper ience o f the e a r l y implementat ions (p a r t i c u l a r l y
Algo168-R) i n d i c a t e d tha t a r e v i s i o n o f the language was
necessary. The t ranspu t subsystem was in e s p e c i a l l y bad
shape, but o ther areas (such as c a l l semant ics) had not been
accepted by implementors. To a id the r e v i s i o n process,
WG2.1 set up a se r i es o f conferences c a l l e d the In fo rmal
Implementors' In te rchange. I t was at these conferences tha t
much o f the work was .done which led to the Revised Report i n
1974.

The rev i sed language proved to be ra the r l a rge r than the
o r i g i n a l one, but was much b e t t e r de f i ned . I t was around

AB 47p.22

t h i s t ime tha t both o f the a v a i l a b l e f u l l - l a n g u a g e implemen-
t a t i o n s (CDC's A lgo l 68, and Ch ion 's FLACC) were be ing
a c t i v e l y developed. Having a s t a b l e t a rge t a ided these
e f f o r t s g r e a t l y .

Dur ing t h i s pe r iod o f r e v i s i o n , however, much o f the
o r i g i n a l advantage o f A lgo l 68 was l o s t . A lgol -W had been
in the f i e l d f o r some years , and Pascal was beg inn i ng to
a t t r a c t i n t e r e s t . A lso , i n i t s commendable obsess ion w i t h
exact s p e c i f i c a t i o n o f the language, WG2.1 devoted
i n s u f f i c i e n t e f f o r t to promot ion o f the language to the end
user . The r e s u l t (i n North America at l eas t) was tha t most
programmers who had heard o f A lgo l 68 at a l l regarded i t as
an academic toy . Th is a t t i t u d e was r e i n f o r c e d by the la rge
number o f never -completed imp lementa t ions , and by the
i n s c r u t i b i l i t y o f the a v a i l a b l e documenta t ion .

2. The Present S i t u a t i o n

In many respec ts , the c u r r e n t s i t u a t i o n i s much b e t t e r .
There are two f u l l - l a n g u a g e , commerc ia l l y - suppor ted imple-
men ta t ions , and severa l l a rge -subse t imp lementa t ions .
Algo168-R i s ve ry popu la r i n the U.K. There i s a growing
s e l e c t i o n o f tex tbooks on the language. In s p i t e o f the s i x
years s ince i t s d e f i n i t i o n , A lgo l 68 i s t e c h n i c a l l y supe r i o r
to i t s compe t i t o r s .

I t i s the o n l y gene ra l -pu rpose language which i s f u l l y
s p e c i f i e d . Those who can unders tand the Revised Report can
always dec ide what a p a r t i c u l a r program i s supposed to do.
(Wel l , a lmost a lways: t r anspu t p rov ides some c o n f u s i o n .)
Because the d e f i n i t i o n leaves so l i t t l e room fo r
i n t e r p r e t a t i o n , compi le r v a l i d a t i o n i s much eas ie r than i t
o t he rw i se would be, and there i s a r e s u l t i n g p ressure on
implementors to conform e x a c t l y wherever p o s s i b l e .

A l though the years have been k ind to most o f the language,
there are some aspects wh ich have become dated. Newer
languages have appeared, w i t h many new ideas. Ada i n
p a r t i c u l a r has many f a c i l i t i e s wh ich would make welcome
a d d i t i o n s to A lgo l 68.

3. Language E v o l u t i o n and Growth

I t i s i n s t r u c t i v e to look at how the most success fu l
languages evo lve . Both For t ran and Cobol go through
p e r i o d i c r e v i s i o n s on a f i v e to ten year c y c l e . Th is
s i m i l a r i t y i s no acc iden t : any language which remains
i n f l e x i b l e over a long pe r i od w i l l e v e n t u a l l y lose
adherents . P e r i o d i c upda t i ng o f i t s s tandard g i ves a
language needed v i t a l i t y . New programmers w i t h modern ideas
do not become d isenchanted i f they can see tha t a language

AB 47p.23

i s a s s i m i l a t i n g these ideas.

As computer systems grow more complex, new demands are
p laced on languages to suppor t f a c i l i t i e s wh ich may not have
e x i s t e d at the t ime the languages were des igned. Examples
from the past i n c l u d e i n t e r a c t i v e I /O, database access, and
network communicat ion. (I t shou ld be noted tha t A lgo l 68
addresses none o f these .)

The e v o l u t i o n o f o the r languages has been d r i v e n by a
ba lance o f these two fo rces : "academic" change caused by new"
people e n t e r i n g the user community w i t h recent t r a i n i n g in
modern techn iques , and "p ragmat ic " change caused by
i n c a p a b i l i t y o f the language to per fo rm f u n c t i o n s be ing
demanded o f i t . I n t e r e s t i n g l y , many pragmat ic changes are
implemented long before they are standardized, while
academic changes are often proposed and standardized before
they are implemented.

The suppor t i n f r a s t r u c t u r e o f a language is at l eas t as
impor tan t as the language i t s e l f . To compete e f f e c t i v e l y
w i t h o the r languages (n o t a b l y F o r t r a n) , A lgo l 68 must have
o p t i m i z i n g and i n t e r a c t i v e debugging comp i le rs . C u r r e n t l y
the re are no o p t i m i z i n g comp i le rs , a l t hough there i s a batch
debugging one.

There is a chicken and egg problem here: qua l i ty compilers
are expensive, and so there must be an assurance of heavy
usage to j u s t i f y their development, yet heavy usage can be
assured only i f there are good compilers. This problem can
be overcome quickly by a massive infusion of money (as with
Ada), or else.by the gradual appearance of better compilers
with i ts concommitant growth in language use. Algol 68
appears to be fol lowing the second route.

4. Some Proposa ls

In order for Algol 68 to grow and prosper, we bel ieve that
several things must happen.

Perhaps most impor tan t , A lgo l 68 must be taught at
u n i v e r s i t i e s and t rade schoo ls . H i s t o r i c a l l y , the languages
taught to s t u d e n t s h a v e been the languages they have had the
most i n c l i n a t i o n to use in the work fo rce .

There is a need fo r more q u a l i t y imp lementa t ions , p a r t i c u -
l a r l y o p t i m i z i n g comp i le rs . A f requen t o b j e c t i o n to A lgo l
68 is tha t i t s comp i le rs cos t more to run than For t ran
comp i le rs do. Whi le t h i s i s p robab l y not a f a i r
condemnat ion, i t i s a rea l one which must be met be fo re
the re w i l l be wide acceptance o f the language.

AB47p.24

There are severa l f a c i l i t i e s wh ich A lgo l 68 lacks . These
i n c l u d e excep t i on h a n d l i n g , separate c o m p i l a t i o n , data
a b s t r a c t i o n , database i n t e r f a c i n g , and o p e r a t i n g system
i n t e r f a c i n g . There are p roposa ls a v a i l a b l e f o r some o f
these, but none have been implemented.

There i s always a f i n e ba lance between s t a b i l i t y and change
in a language. P r i o r to 1974, A lgo l 68 was h i g h l y
changeable. Since then, i t has been h i g h l y s t a b l e . As more
t ime passes, the pressures w i l l i nc rease to a l l o w change
aga in .

Our proposal i s t ha t A lgo l 68 be s tanda rd i zed a f t e r the
model o f Fo r t ran and Cobol. That i s , a w i d e l y recogn ized
body such as ANSI, ISO, o r , indeed, WG2.1 p u b l i s h p e r i o d i c
s tandards on the language, and a l l o w f o r changes between
s tandards . The o r i g i n a l r e p o r t , and the r e v i s e d r epo r t
represent the f i r s t two documents i n such a s e r i e s . Perhaps
the 1983 t imeframe would be a p p r o p r i a t e f o r a t h i r d s tandard
on A lgo l 68.

E f f o r t s are a l r eady underway to have A lgo l 68 s tanda rd i zed
by ISO. We s t r o n g l y suppor t t h i s v e n t u r e .

AB 47p.25.

A~47.4.3 An ALGOL 6B Imolementation Comnanion.

by M.R.Levinson
(C~al AS USSR)

I. In 1975-1977 the author elaborated an ALGOL 68 implementation draft
project as a system consisting of:

- a computer independent translator,
- a concrete generator and
- a concrete operating'environment.

The computer independent macroprogram serves as the translator output and
the only linkage between the computer independent and concrete parts.

The translator itself is originally recorded in ALGOL 68 and then with
the help of another ALGOL 68 compiler is "put through itseif" and thus
transferred to the macroprogram level.

2. In ;978 the Central Economic and Mathematical Institute of the USSR
Academy of Sciences started work on the translator. In 198; the work should
be completed.

At the same time a formalized description of the concrete part of the
project [I] as a monograph approximated as much as possible to the text of
the official "Revised Report on the Algorithmic Language ALGOL 68" [2] was
prepared and deposited with the All-Union Institute of Scientific and
Technological Information (VINITI). It follows the text of the official
Revised Report, replacing the description of the hypothetical computer and
syntax and the semantics of the source language, correspondingly, by the
description of the operating computer and syntax and semantics of the
macroprogram. The syntax part is written in English, the semantics in
Russian.

The description of the operating computer determines in a general way the
composition and functioning of the operating environment, whereas the
description of the macroprogram determines the tasks of the generator.

3, The operating computer is described twice. First its objects and
actions are described; then it is described how these objects and actions
"represent" the objects and actions of the original hypothetical computer.

The objects are given in terms of fragments in ALGOL 68 whereas the
actions are described verbally.

4. Any operating program is the result of a consecutive translation of
the source program into the macroprogram and of the macroprogram into the
operating program.

The macroprogram is endowed with the property that, when being still in
one to one correspondence wlth the source program, it completely determines
the order of the (linear) generation of the operating program.

It (the macroprogram) represents a sequence of macros described by means
of syntax and semantics. The syntax determines which sequences of macros
constitute the macro image of the source program, whereas the semantics
determines which actions of the computer are set by each macro.

5. The syntax of the macroprogram is a certain extension of the syntax of
the source language, consisting of a number of byper-rules and
metaproduction rules from which the production rules are derived.

Each hyper-rule of the macroprogram is
hyper-rules of the Revised Report by means of

(Without the omission of symbols the
simultaneously describes the source and
metaproduction rules new ones are added.

AB 47p.26

derived from one of the

its possible deployment, i.e. the application of one or more steps of
the consistent substitution;
the inclusion of metanotions;
the inclusion of additional predicates;
the inclusion of macros and
the omission of symbols.

syntax of the macroprogram
macro programs.) To the "old"

6. The terminal productions are no longer sequences of symbols, but
sequences o f m a c r o s .

Each such macro consists of the number of the macro, preceded by a
semicolon and possibly accompanied by one or more parameters separated by
commas .

7 . The s e m a n t i c s a t t r i b u t e s t o e a c h m a c r o a c e r t a i n m e a n i n g d e t e r m i n e d
t h r o u g h t h e " e l a b o r a t i o n " o f t h i s m a c r o b y t h e g e n e r a t o r . T h i s e l a b o r a t i o n
i s a c c o u n t e d f o r i n t e r m s o f t h e e x e c u t i n g o f t h e o p e r a t i n g p r o g r a m
instructions obtained from this macro.

It is not determined in the semantics either which instructions are
obtained from each macro, or the order of their processing by the generator
(however the pragmatic remarks contain some indications).

[I] M.R.L~vinson, ALGOL 68 implementation (draft project). Deposited with
the VINITI 14.01.80 N 190-80 Dep., 200 pp., (obtainable through the
British Library (lending division) or through other similar National
Libraries).

[2] Revised Report on the Algorithmic Language ALGOL 68, Acta Informatica,
V 5, f 1-3, 1975.

