
ISSN 0084-6198

Algol Bulletin no. 4 6
DECEMBER 1980

CONTENTS PAGE

AB46.0 Editor's Notes I

AB46.1
AB46.1.1
AB46.1.2
AB46.1.3
AB46.1.4
AB46.1.5

AB46.1.6
AB46.1.7

AB46.2
AB46.2.1
AB46.2.1

AB46.4
AB46.4.1
AB46.4.2
AB46.4.3

AB46.4.4

AB46.5
AB46.5,1

Announcements
Professor Klaus Samelson 2
Mathematisch Centrum - change of address 2
International Conference on ALGOL 68 2
Informal Introduction to ALGOL 68 3
International Symposium on Algorithmic Languages -

call for papers 3
Survey of Viable Implementations 4
Back numbers 5

Letters to the Editor
A Self-repllcating Program in ALGOL 68
ALGOL 68S Compiler

Contributed Papers
ALGOL 68 Implementations - The ICL 2900 Compiler 7
H.Ehlich and H.Wupper, More Remarks on ALGOL 68 Transput 9
A.J.Cowling, Comments on the Proposals for Modules

and Separate Compilation Facilities for ALGOL 68 12
C.H.Lindsey, An ALGOL 68 Indenter 27

Supplements
ALGOL 68 Syntax Chart on microfiche

LIBRARIANS please take note.

There is a microfiche enclosed with this issue. Please file it away
wherever you keep microfiches, and write your catalogue number for it
here :

AB 46p. I

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of
IFIP:

"The opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that might arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published }~re. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIP".

Facilities for the reproduction of the Bulletin have been provided by
courtesy of the John Rylands Library, University of Manchester.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $10 per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any ourreney (a list of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency is absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $4 each. However, it is
regretted that only AB32, AB34, AB35, AB36, AB38, AB39, AB40, AB41, AB42,
AB43 and AB45 are currently available. The Editor would be willing to
arrange for a Xerox copy of any individual paper to be made for anyone who
undertook to pay for the cost of Xeroxing.

AB46.0 EDITOR'S NOTES.

Now, as you will see, we have become just like any manufacturer of
Cornflakes for, enclosed with this issue, wou will find your Free Plastic
Giveaway. It takes the form of a Microfiche containing a full set of ALGOL
68 Syntax Charts. In future issues we hope to bring you the full ALGOL 68
Report, and other related doeuments - all on microfiche.

Do not be put off by the IFIP copyright notices on the Fiche. These same
diagrams also appear in the latest reprint of the Informal Introduction (see
AB46.1.4 below), and we had to protect North Holland's rights in the matter.
If you want to blow them up so as to produce Students' Handouts, Projector
Slides, or e@en Wall Charts, please feel free to do so - hut not for profit,
please.

At this point, I usually make my plea for material for t h e next issue.
Please consider it made. If you get the impression that too much of this

AB 46p.2

issue is the Editor's personal contribution, then you know just how to
prevent it from happening again.

AB46.1 Announcements.

AB46.1.1 Professor Klaus Samelson.

Klaus Samelson died on May 25, 1980 after suffering from pancreas cancer.
He was one of the four members of the GAMM delegation to the Zurich 1958
ALGOL conference and has now followed Rutishauser who died in 1970.

Klaus Samelson was born on Dec~aber 21, 1918 at Strasbourg. Under the
Nazi regime he was subjected to severe discrimination. After the war, he
studied mathematics, physics and astronomy at Munich University and received
his Ph.D. in 1951. In the 50's he worked with the Munich computer pioneers
Hans Piloty and Robert Sauer. He became professor of mathematics at Mainz
University in 1959, at Munich Technical University in 1963, where he changed
to a chair of mathematics and computer science in 1974.

Among his many contributions to computer science and especially to ALGOL
the introduction of the block concept, for example, has found wide
recognition; others have been submerged in committee work, patent
applications and group research. All his life he was admired by friends,
colleagues and students for his outstanding analytical talent. His friendly
and honest personality impressed also his adversaries. We mourn the loss of
an eminent mathematician and computer scientist.

F.L.Bauer.

AB46.1.2 Mathematisch Centrum - ChanGe of address.

The Mathematisch Centrum, Amsterdam has moved. Its new address is:

Mathematisch Centrum,
Kruislaan 413,
1098 SJ AMSTERDAM,
The Netherlands.

Tel. (020)5929333
Telex 12571

AB46.1.3 International Conference on ALGOL 68.

This Conference is to be held on March 30-31, 1981, at the
Ruhr-University, Bochum, under the sponsorship of the IFIP WG2.1
Subcommittee on ALGOL 68 Support and the Computing Centre of the University.
The Call for Papers was recently circulated to all AB subscribers.

The Topics of the Conference are to include all aspects of ALGOL 68; its
implementation and use, future developments and, especially, its use for
teaching purposes.

AB 46p.3

Full details may be obtained from:

Pro f. Dr. H. Ehlich, _
Rechenzentrum der Ruhr Universltaet
Postfach 10 21 48
D-4630 BOCHUM 1
Federal German Republic.

AB46.1.4 Informal Introduction t~ALGOL 68.

T.his book (authors C.H.Lindsey and S.G.van der Meulen.) has recently been
reprznted, both in hardback and paperback. The new prlntlng corrects various
mznor errors in the previous (Revised) edition, and also includes a set of
Syntax Charts in a new Appendix.

The Publzsher is North-Holland Publishing Company.

The Hardback edit1?n is ISBN 0-7204-0504~1 p r i c e BF1 75
The Paperback e d i t z o n i s ISBN 0-7204-0726 5 p r i c e HF1 40

In the U.S.A and Canada, the distributors are Elsevier/North-Holland Inc.,
52 Vanderbilt Avenue, New York, NY 10017, and the prices are US $36.50 and $19.50.

AB46.1.5 International S m slum on A1 orlthmic Lan ua es - Call for Pa ers

CALL FOR PAPERS

international Symposlum on

ALGORITHMIC LANGUAGES

Organized by the Mathematical Centre, under the auspices of Technical
Committee 2 of the International Federatzon for Information Processlng.

OCTOBER 26-29, 1981 AMSTERDAM, THE NETHERLANDS.

The Algo.rithmic Languages Symposzum is organized as a tribute to Professor
A.van Wzjngaarden on the occasion of his retirement as director of the
Mathematical Centre. Professor van Wijngaarden has played an important role
in the history of IFIP and, too.re specifically, in that of TC2. He is well
known for his contributzons zn the area of programming language design
(ALGOL 60, ALGOL 68, two-level grammars).

The followlng list of possible topzcs illustrates the intended scope:

Programmzng languages (design, formal definition, zmplementation, use,
environment, importance of style and notation, language features),
programmlng methodology (deszgn methods, modularity, systematic program
development tools),
program co.rrectness (specification, val idation, correctness preserving
transformatlons).

AB 46p.4

CHAIRMAN PROGRAM COMMITTEE
Prof. dr. M. Paul
Technische Onlversita.t Munchen
Institut fur informatlk
Arcisstrasse 21
D-8000 MUNCHEN 2
Federal Republic of Germany

CHAIRMAN ORGANIZING COMMITTEE
Prof. dr. J.W. de Bakker
Mathematical Centre
Krulslaan 413
1098 SJ AMSTERDAM
The Netherlands

TO SUBMIT YOUR PAPER:

1. Send five copies of double-spaced manuscrzpts, not exceeding 5000 words,
by FEBRUARY I, 1981, to the secretary of the Program Committee:

Dr.J.C.van Vliet
Mathematical Centre, Kruzslaan 413
1098 SJ AMSTERDAM, The Netherlands

2 Authors will be notified of acceptance/rejectlon by JUNE i, 1981
3~ After acceptance of his/her paper the author will be requested "to sign

the IFIP copyrlght transfer form, in connection with .his/her
contribution.

4 The deadllne for submi.ssion of the final paper is A.~UST I, 1981
51 The proceedings, publzs.hed by North-Holland Publlshzng Company, will be

available at the symposzum.

PROGRAM COMMITTEE MEMBERS

A. Colmerauer (France)
O. J. Dahl (Norway)
R. B.K. Dewer (USA)
E.W.Dijkstra (The Netherlands)
A. P. Er shov (USSR)
C.A.R.Hoare (UK)
G.Kahn (France)
C.H.A.Koster (The Netherlands)
B. Listov (USA)
M. Paul (FRG)

J.E.L.Peck (Canada)
W.L.van der Poel (The Netherlands)
S. A. Schuman (USA)
M.Sintzoff (Belgium)
T. B. Steel, Jr. (USA)
W.M. Turski (Poland)
J. C. v an Vliet (The Netherland s)
N.Wirth (Switzerland)
N.Yoneda (Japan)

FURTHER INFORMATION

The symposzum will be held at the Free University, De Boelelaan, Amsterdam.
Details about lodging and further items about the symposium (including the
final p.rogram) will become available zn Spring 1981. For further
informatzon, write to :

ALGORITHMIC LANGUAGES 1981
Mathematical Centre, Kruislaan 413
1098 SJ AMSTERDAM, The Netherlands.

AB46.1.6 Surve of Viable Im lementatzons.

I hope to publish, as a regular de.partment in future issues, a survey in
t, tabular form of "viable zmplementatzons of ALGOL 68. I define a viable

implementation to be one which

1) i s avaz lab le (f o r money or o the rw i se) to anyone who wants i t
2) zs a l r e a d y zn use on a t l e a s t two s i t e s

AB 46p.5

3) has some identifiable person who will provide at least minimal
maintainance and/or periodic upgrades.

I am writing to all the implementors I know of who have offerings in this
category, but this note is to invite all whom I may have missed to make
their submissions. The information I need for each system includes

The hardware it runs on
The operating systems it runs under
Its principal sublanguage features
Its principal superlanguage features
Whether it contains any deviations
Whether a report is available detailing its performance under the MC
Test Set (see ABq4.1.2)
Whether i t c o s t s money, i . e . f o r nominal charges (<=$200) or i s f r e e
Who to get it from
Other useful inform.ation (e.g. separate compilation facilities,
suitability for teachlng, run-time efflciency, etc.).

I define a System to "deviate" if it is possible to write some program,
valid and with defined meaning both in that System and according to the
Revised Report, which will provide results different from those defined by
the Revised Report. (A deviation which only occurs if some non-standard
progmat is first invoked would, however, be di.sregarded.). For the tabular
presentation, this information must be very brief (the Edltor rese.rves the
rlght to compress it as required). However, more extended artzcles on

time in particular implementations will also be accepted from time to (as
AB45.q. I, ABq5.4.2, and AB46.4. I in this issue).

AB461.7 Back number S.

We can supply back numbers of most issues of the ALGOL Bulletin (see p.1
for list). We recently managed to lay our hands on some spare copies of AB36
and AB40, .which had been out of stock for some time. If anyone needs either
of these issues to complete his set, they are available from the Editor at
the usual back number price $4 or #I .80 each.

AB46.2 Letters to the Editor.

ABq6.2.1 A Self-re licatin ro ram in ALGOL 68.

South West Universities Regional Computer Centre
University of Bath

Claverton Down
Bath BA2 7AY

United Kingdom

Dear Dr Lindsey,

In response to a recent challenge in the SWURCC newletter to produce a
self-replzcating program in Algol 68, I have received the following
program :

(STRINGa=" (STRINGa:"" ;print((21a[: 10] ,2Wa[I0:]))) ";print((2ha[: 10] ,2Wa[10 :])))

I hope you will agree that a solution this elegant deserves a wide audience.
The program was written by Richard Wendland, who is one of the beam
currently implementing Algol 68 on Honeywell's Multics.

AB 46p.6

As you will see, the program depends on its layout to the extent that it
must .be a sing.le line, and. the explicit character position in the print must
identzfy the znner quote wzthin the string.

Yours sincerel y ,

Martyn Thomas
Deputy Director

ABq6.2.2 ALGOL 68S Compiler.

Dept. of Computer Science,
University of Manchester,
MANCHESTER M13 PPL,
United Kingdom.

Dear Editor,

I announce the avail.abil.ity .of an ALGOL 68S compiler for CDC. Cyber.and
7600 machines. It is prlmarlly zntended .for teaching, Insofar as tt compzles
fast and runs slow, has good diagnostics and chec.ks everything that is
checkable (except overf.low of cour.se., CDC machines belng what they are). The
language implemented zs the offlctal ALGOL 68 Sublanguage (see SIGPLAN
Notlc.es 12 5 May '77, or Appendix 4 of the Informal Introduction), with the
addltton of hen ~ generators.

To obtain the next Release (due about January), se.nd me a 7.-track
magnetic tape. There is no charge at present, although thzs may not always
remain so. This r.elease will be more or less co.mplete., the principal likely
omlsstons being bznary transport and complex arlthmetlc.

The compiler is based on t.he PDP11 compiler written by P.G.Hibbard at
Carnegze-Mellon. Although it zs written in PASCAL, it is not yet in a
~x)rtable .state- so please do not ask for it on other machines at the
present time.

C. H. Li nd se y.

AB46.4 Contributed Papers

AB 46p. 7

AB46.4.1 ALGOL 68 I lementations - The ICL 2900 Co i l e r

The ICL 2900 Series Algol 68 compiler is the ~esult of a collaborative
project involving the South West Universities Regional Computer Centre,

O x f o r d U n i v e r s i t y C o m p u t i n g S e r v i e e , a n d t h e R o y a l S i g n a l s a n d R a d a r
E s t a b l i s h m e n t , a n d i s b a s e d o n t h e p o r t a b l e RS c o m p i l e r f r o n t e n d p r o d u c e d
b y ~ q w ~ (d e s c r i b e d i n RSRE T e c h n i c a l N o t e 8 0 2) .

The compiler is released by ICL as a standard 2900 Series product~ and has

been written to use the same compile-tlme environment and run-time
diagnostic system as other 2900 compilers. It requires a main store quota

of 3 5 n Kb.

The language implemented is based on the Algol 68 Revised Report with

extensions and restrictions.

The principal language extensions are:

- a powerful modular compilatlon system which provides full compile-
time and run-tlme checking of the interfaces between different

modules.

- ' v e c t o r s ' , s p e c i a l r o w s w h i c h a l w a y s h a v e a l o w e r b o u n d o f 1 a n d
a r e r e s t r i c t e d t o o n e d i m e n s i o n (e g . VECTOR InS INT ~) . As w e l l a s
p r o v i d i n g m o r e e f f i c i e n t a c c e s s t h a n n o r m a l r o w s ~ t h i s a l l o w s
c o m m u n i c a t i o n w i t h p r o g r a m s w r i t t e n i n o t h e r 2 9 0 0 l a n g u a g e s .

- 'Indexable structures' are a generallsatlon of mode BYTES and

group together a fixed number of objects of any specified mode,
allowing the facility of indexing without the usual array overheads.

(eg. STRUCT 7 REAL s; s[4J :=2.0) indexable structures may be

coerced to vectors, and vectors to rows.

- a FORALL facility allows easy and efficient access to all the

elements of an array in turn.

- by default, boolean AND and OR are optimised so that the right

operand is only evaluated when necessary. Full evaluation may be

requested by a user oarameter to the compiler.

- there are no restrictions on the use of transient names.

- priority declarations may be omitted in which case a priority

of I is assumed.

The principal language restrictions are:

- identifiers must be declared before they are used, except for

labels and simply recursive nrocedures.

- semaphores and parallellty are not implemented.

A

.~r

"f 'I

!

i

.J

"4
i,. •

J..."

..~j"

AB 46p. 8

- n o m o r e t h a n t w o LONGs o r o n e SHORT i s a l l o w e d o n REAL, I N T ,
B I T S a n d : C O M P L .

- scope checking is not Implemented.

- t o s i m p l i f y d e b u g g i n g , S K I P c a u s e s a r u n - t i m e f a u l t i f r e q u i r e d
t o y i e l d a n o n - V O I D v a l u e .

- for efficiency reasons, the elements of arrays are never copied

in identity declarations or equivalent positions.

- BYTES is defined as STRUCT 4 CHAR (see language extensions).
LONG and SHORT BYTES are not available.

The comoiler has been successfully validated on a subset of the MC

(Amsterdam) test set, taking into account the language restrictions
described a b o v e . ~'

Commercial details such as the terms and conditions of distribution may

be obtained through normal ICL channels. It should be noted that special
concesslonary arrangements apply to all establishments funded by the
Comnuter Board for Universlties and Research Councils if they order the
compiler soon.

Technical enquiries may be addressed to

t4r Gavln Finnie,

SWURCC,

University of Bath,
Claverton Down,

B a t h BA2 7AY.

AB 46p. 9

AB46.4.2

More Remarks on Algol 68 Transput

by H. Ehlich and H. Wupper, Ruhr-Universitaet Bochum

The last issue of Algol Bulletin contained some critical remarks

on Algol 68 transput written by Hanno Wupper in 1978 (AB 44.4. I).

In the same issue readers can find the announcement of a new

transput model (AB 44. i. i).

An early version of that same model has in fact been the basis

of a transput system implemented by the authors, which is now

in use at 16 TR440 installations. Other implementors might be

interested in our experiences.

The TR440 is a big scientific machine in use at several scien-

tific institutions in Germany. Its operating system supports in

a completely orthogonal way several kinds of files - most common

those being mentioned in the second paragraph of RR 10.3. I .6.

(sic.').

All files can easily be handled by command language and by all

programming languages provided by the manufacturer. The main

disadvantage of the operating system is that internal inter-

faces are accessible by assembly language only; therefore all

transput systems are vast assembly programs (except, of course,

for BCPL where the situation is similar to the one described

in this article, only much simpler).

To make Algol 68 available on this machine, we wrote a code

generator and run-time system for the portable Algol 68 C system

developed and maintained at the University of Cambridge. Algol 68 C

is by now, if you carefully avoid some "extensions", a very fine

subset of Algol 68 , the most important restrictions being: no

FLEX, LONG, SHORT, PAR, FORMAT; STRING a primitive MODE (in

several senses).

4

• ,." .
• " r.,

~: .,i

• ~ .-.

%.. •

.v ,,.

AB 46p. I0

The Algol 68 C bootstrap-kit provides the machine independent

parts of a restricted transput system which is useful for a
%.

quick bootstrap but would make Algol 68 a second class language

on our machine.

When we intended to provide a more complete transput, we were

faced with three questions (cf. AB 44.4.1) :

A: How to find out the intended meaning of Algol 68 transput

from the Report?

B: What to do with the features more orthogonal in our operating

system than in the Report?

C: How to arrive at a both correct and efficient implementation

easily?

Just in time H. Wupper met J.C. van Vliet who, at that time, had

finished a first version of his model now described in AB 44. I. i.

Now Questions A und C could be answered:

Answer A: Not necessary, if the model is used as the basis of

an implementation.

Answer C: Use the model. If efficiency is insufficient, replace

some small parts by assembly programs.

A fruitful cooperation started: From Hans van Vliet we got two

boxes of punched cards, constituting the machine-lndependent part

of Algol 68 transput, written in Algol 68. (During the journey

from Amsterdam to Bochum the second box poured its contents all

over the car. Luckily only formatted transput, not being supported

by the Algol 68 C compiler anyhow, was afflicted.)

The program could be compiled after a few simple changes mainly

of lexical nature (the compiler could not handle blanks in deno-

tations). The lack of FLEX and proper STRING was no problem as

the model does not make use of them.

AB 46p. ii

We now had not to find out the intended meaning of complete

Algol 68 transput (e.g. when to call which event routine during

transput of values of a certain mode) but only of a few routines,

the "buffer primitives", to be provided by us.

With these, in the beginning we had some difficulties. In the course

of time, however, and after some feedback, Hans van Vliet could

simplify this interface a good deal and provide a clear definition.

C,

"~.,..

In the model, a channel more or less corresponds to a certain access

method and consists of a set of primitive routines. For each file- ••i/•

type, physical device etc. it is easy (probably in all operating ~•i~••~ •••

systems), to provide the appropriate routines. If, later, a new ~•

class of physical or logical devices has to be made accessible by ••

Algol 68, simply another channel is added. •~r•••

In our case, a considerable part of these primitives could even be

written in Algol 68 , though, of course, not machine-independently

and with inclusion of several "code segments".

I "

I "

On the other hand it seemed useful to rewrite a small portion of

the really time-critical routines in assembly language. Here also

the model proved extremely helpful: the logically complex "conversion

routines" whole, fixed, float and some others could be hand-transla-

ted without much thinking.

During the last years the model has been discussed at lenght in the

Subcommittee on Algol 68 Support, also with respect to our Question

B. The final version now is less restrictive than the Report and

gives hints where the implementor might take greater freedom. As the

official language was not to be changed essentially by the model,

some of the. critic s Part. II "Algol 68 however, i ms of of AB 44.4.1,

transput considered insufflclent", remaln valid.

~Apart from that it has been proved that everybody who can make use

of an Algol 68 compiler has a good chance to provide the full official

transput without great effort.

AB46.4.5 AB 46p. 12

Comments u on the ro osals for Modules and Se arate C ilation Facilities

A.J. Cowling (Department of Computer Science, University of Sheffield,
Sheffield SI0 2TN).

A specification [I] has recently been released for facilities to be

added to Algol 68 to provide for the definition and use of modules, and to

provide for the separate compilation of segments of program. The object

of these facilities is to simplify the construction of large programs by

breaking them down into segments (called packets), which can be produced,

one at a time, using any appropriate combination of the top-down and bottom

up methods of working. The purpose of this paper is to suggest that there is

an aspect of these specifications which, measured against this objective, is

unsatisfactory, and a way of improving this aspect will be suggested.

The changes which would be required will then be developed into the outline

of an alternative approach to the provision of the required facilities. Most

of the discussion in the paper will centre round the examples provided in

the "Informal Description" section of the specification [l].

The starting point is provided by the example given to illustrate the

statement that "ACCESS is to be regarded primarily as a mechanism for permitting

PUBlicised indicators to be made visible:". This example, taken exactly as

it stands, is a rather unrealistic piece of code, and the situation which it

illustrates is perhaps better represented by the following, which will be

called example I :

ACCESS STACK
(push (I) ; push (2) ;

C etc., followed by several pages of code C
(PROC push ffi C somethlng else C, pop = C somethlng else C;

C several more pages of code C
ACCESS STACK (push(3) ; print (pop) ;

C and more code C);
C and more code C

); C and st£11 more C
pop; pop
)

AB 46p. 13

The unpleasant feature of this is that the two occurrences of the

symbol ACCESS are physically separated by a large amount of program, and

yet the effect of the second, or inner, one is critically dependent on the

presence of the first, or outer, one; that is, it would have a different

effect if the outer one were not there. Thus a programmer, (possibly

modifying a program originally written by someone else) might suppose that

the effect of inserting the inner ACCESS clause (assuming that it had not

been there originally) would be to obtain a stack, as defined by the module being

ACCESSed. In the absence of the outer ACCESS clause this would be correct,

but what is actually obtained, as a consequence of its presence, is that

remainder of the original stack which has been left unused by the intervening

pages of code - unfortunate if they happen to have already filled it.

In defence against the above, it may be argued that the example

exaggerates the number of pages of code that would normally appear in one

packet. However, the alternative to this could well be that the inner

ACCESS clause is contained within an actual-hole which is then to be stuffed

into a formal-hole that is contained within the outer ACCESS clause. Then

the two occurrences of ACCESS would be in different packets, even though the

significance of one was critically dependent on the presence or absence of

the other, which would appear to be an even more undesirable situation.

An alternative argument might well be that, because this sort of situation

can arise, the module STACK is therefore badly constructed, and it is interesting

to observe that it could not happen with the module STACKS which is presented as

the next example in the specification [I]. However, while this may indicate

that in some way STACKS is a 'better' module than STACK, it does not alter

the fact that modules such as STACK can be written, and in some circumstances
i

may have to be written, and so the problem described above is likely to arise.

It would appear that the solution to this problem is to enable the progranlner,
J

writing an ACCESS clause, to specify explicitly whether the corresponding

module is to be invoked (and then revoked again), or whether it is sufficient

for indicators (which must have been PUBlicized in outer ACCESS clause for

this module) to be made visible again. That is, the distinction between a module,

AB 46p. 14

and the set of indicators that it PUBlicizes (hereafter called the layer which

it reveals, although the term locale might be more accurate) is made much

more strongly, and the ~two stages of firstly invoking the module to reveal

the layer, and secondly accessing the layer, are treated as being separate.

In a sense this is analagous with the distinction that is already made

between the deproceduring of a procedure and the subsequent use of the value

that is returned by it, and this analogy is taken further by suggesting

that it be possible to name the layer revealed by the invocation of a module,

in the same way that values returned by procedures can be named within

defini-tions. (This analogy must not be pressed too far, since layers have to

be nested one within another; thus there cannot be a "collateral invocation"

to be analagous to the collateral elaboration of a joined set of definitions,

useful though such a concept might be).

Given such an approach, there will then be two alternative versions of

example l; in one the module will be explicitly re-invoked, and i~ the other

it will (equally exp~citly) not be reinvoked, and the fact that the programmer

has a choice between these two means that the undesirable situation described

above can be avoided. Precisely how these two versions are to be written

down could be a source of much argument over trivia; one possibility (based

on the analogy between a module revealing a layer, and a procedure returning

a value) is used below to illustrate the two possible versions of the original

example from the specification [I]. First we have the version in which the

module is only invoked once, which forms example 2:

ACCESS LAYER OLDSTACK = stack
(push (I) ; push (2) ;

(PROC push = C something else C, pop = C something else C;
push; pop;
ACCESS OLDSTACK (print(push(pop)) ~ prints 2 ~=)
) ; pop; pop

)

(it will be noted that the analogy with procedures suggests that module

indications should be represented by TAGs rather than TABs). Example 3 is

then the version in which the module is invoked twice:

AB 46p. 15

ACCESS stack ~ since there is no need to name the layer ~=
(push (1) ; push (2) ;

(PROC push = C something e l s e C, pop = C something e l s e C;
push ; pop;
ACCESS s t a c k ~ t h i s one does n o t need to be named e i t h e r ~=

(p r i n t (push(pop)) ~ f a i l s under f low ~)
) ; pop; pop

)

While this effect could be obtained within the module scheme as specified A

in [l I, by turning the code containing the inner ACCESS clause into a procedure

which is defined outside the outer ACCESS clause (a technique illustrated

in[l] by the "carefully chosen confusing example"), the fundamental problem

still remains that it may be necessary to examine a great deal of code in order

to determine the precise effect which an ACCESS clause has.

In particular it does not make life any easier for the maintainer cf code,

if what should be the simple insertion of an inner ACCESS clause into a piece

of code will actually mean converting part of it into a procedure in this way

in order to force the reinvocation of the accessed module. Furthermore, if the

point where the inner ACCESS clause is to be inserted is part of an actual-hole,

while the outer ACCESS clause is in the packet containing the corresponding

formal hole, then the adoption of this technique would mean that a change which

should have been confined to the actual-hole packet will also involve changing

the formal-hole packet, which makes this technique seem distinctly unsatisfactory.

It is therefore claimed that there is a definite need for the change being

suggested.

However, this change does have other effects, and in particular it removes

the calculated ambiguity" of the ACCESS construction, whereby it is possible

to write an ACCESS clause for one module within the body of a second module,

i
and then have two different invocations of the second module, of which one will

cause the first to be reinvoked, while the other will not. Instead, the result

of the change being proposed is that a given ACCESS clause would either be

written so that it always caused a fresh invocation, or it would be written so

that it never did. (This would then make possible another change, in that
O

modules could be allowed to have parameters, since it would always be known

AB 46p.16

whether or not invocation of the module, and therefore specification of the

corresponding actual parameters, was required. It hardly seems necessary

to claim that this consequence would be a good thing, but anyone who is not

convinced is invited to formulate a good reason why a stack should always have

to have size |00.)

Unfortunately, there are situations where this "calculated ambiguity"

of meaning~ the ACCESS clause is extremely useful. One of the examples in

the specification [I] is a library of modules which can be summarised as in

example 4:

MODULE MATMODE DEF C something C FED;
MODULE MATRICES ~ ACCESS PUB MATMODE DEF C something C FED;
MODULE VIBRATIONS ACCESS MATRICES, PUB MATMODE DEF C something C FED;
MODULE STRESSES ~ ACCESS MATRICES, PUB MATMODE DEF C somethlng C FED;

An example of a particular program using these is also given, and can
be sunmmrised as example 5:

/

ACCESS ViBRATI?NS, STRESSES
BEGIN C......C,

ACCESS MATRICES (C......C) ;
C......C

END

If such a library was to be reexpressed in the forms so far suggested,

then ~ would be necessary to decide for each ACCESS clause whether the modules

to be ACCESSed are to be exp~citly invoked, or whether it can be assumed

that this has already beendone, so that the ACCESS will simply be a use of

a previously defined layer. In so far as it is possible, the latter is

obviously preferable, since it will avoid unnecessary invocations; however,

this does mean that the particular program must then arrange for the expl~cit

invocations not only of VIBRATIONS and STRESSES, but also of MATMODE and

MATRICES, and furthermore it must ensure that the name given to the LAYERs

defined by MATMODE and MATRICES are those names by which VIBRATIONS and STRESSES

actually refer to them. Thus the particular-program would have to be concerned

with a great deal of messy detail concerning the internal workings of the library

(or set of librarie~s) which really should not affect the interface between

particular-program and libraries at all.

AB 46p.17 AB 46p.18

Clearly, in this sort of situation the "ambiguity" of the ACCESS

clause, whereby invocations are constructed where they are needed, is

extremely useful, although the fact that invocations may sometimes not

be constructed when they are wanted can equally be dangerous in other

situations. At first sight it might appear that there is actually a need

for two different constructions, one for each of these two situations;

in fact it will be demonstrated that they can both be regarded as special

cases of one concept whlch encompasses not only modules and ACCESS chances,

but also the construction of holes and nests as well.

This unifying concept is the concept of specifying explicitly the

interface between two clauses which are to be nested one within the other.

The interface in this context consists of the set of properties which the outer

clause makes available for identification to the inner one, and in Algol 68

as originally defined [2] is always specified implicitly, in that the interface

"seen" by the inner clause is the same as that defined by the outer clause.

What is now being proposed is that a clause can specify, either wholly or in part,

the interface which must be provided by any clause into which it is to be nested,

(which will hereafter be called the outward interface) and all the indicators

specified in that outward interface will then be visible within that clause.

Correspondingly, a clause will be able to specify one or more points into which

other clauses may be nested, and will then also specify the interface which

those clauses will see (hereafter referred to as the inward interface). It can

be seen that the function of the present ACCESS clause is effectively to specify

an outward interface for the enclosed-clause, and much the same is true of the

EGG definition. What is now being proposed is that these two should be expressed

by a single construction, namely the outward interface specification; corresponding

to this will be a second construction, viz. the inward interface specification,

and the compilation system will then be expected to match inward and outward

l
j

n

interfaces (constructing module invocations where necessary) when a number

of clauses (possibly compiled separately) are to be assembled into a single

particular program (by nesting them, one inside the other, in an appropriate

fashion).

An interface will thus be constructed from two types of element: one
a

will be/named layer, and the other will be a complete named nest. For the

inward interface, there will then be two cases: one will be tha t a clause

will define a single point whereln other clauses may be nested, and that at

this point it makes available to the nested clause a single named layer (in

addition to the other properties which would be available to that clause

anyway) ; this case corresponds to the definition of a module, and indeed

such clauses will continue to be described as modules. The other case is

that a clause may define any number of points wherein other clauses may be

nested, and at each of these points the nested clause has available to it a

named nest; thus each of these points will correspond to a formal-hole. Such

a clause will hereafter be referred to as a segment, and this term is to be

understood as including those clauses which do not specify an inward inter-

face at all; thus all EGGs which are not modules will be segments (indeed, it

seems not unreasonable to regard modules as a special case of segments, so

that all EGGs will be segments). Furthermore, a particular program will be a

segment; it will be converted into a program (using the term in the sense in

which it is defined by the syntax of the language) by being "assembled" with

a suitable collection of segments which are to be nested into it, and into

which it is to be nested (the latter including, of course, an appropriate

particular prelude and particular postlude). These other segments will have

been constructed in the form of segment definitions (of which module definitions

are a special case), although (with the exception of modules) the names that

AB 46p.19

they are given in these definitions will be irrelevant, since the way in

which segments are to be nested together is determined purely by the matching

of the interfaces. Thus it is envisaged that a minimum packet for presentation

to the compiler will beeither a segment or module definition, or a segment

(i.e. particular program); in the latter case it is implied that successful

compilation is to be followed by assembly of a complete program (effectively

link editing). This will presumably require for practical purposes some way

of specifying where these other segments (in their compiled form) are to come

from, but the mechanism for doing this will obviously depend on the requirements

of local Berating systems, etc. However this mechanism will not form part of
no

the program text as such, and so/suggestions for its specification (or even a

suggestion that it be specified in a standard fashion) will be made.

Clearly the practical operation of this concept depends on the way in

which specified inward and outward interfaces are to be matched together

when clauses are nested one within another. The simplest case of this interface

matching is a clause which has an outward interface specified as a single named

nest, and this clearly can only be nested into a voint in a clause where the

inward interface is specified as being a nest with the same name. A restriction

which follows from this is that, within a single program (i.e. collection of

segments), no two inward interfaces that are specified as nests may have the

same name. It may also be observed that a segment which specifies no outward

interface (such as a particular-program constructed according to the original

specification of the language ~2]) can be regarded as having an implicit

outward interface which will be a nest with the same name as that defined

by the inward interface of a segment containing an appropriate particular-

prelude and particular-postlude.

The next simplest case is that of a clause which has an outward interface

which is specified as being the name of a layer (i.e. a construction

AB 46p. 20

c o r r e s p o n d i n g t o the ACCESS c l a u s e a s p r o p o s e d i n [1]) . Such a c l a u s e can

o n l y be n e s t e d w i t h i n a p o i n t where the inward i n t e r f a c e c o n t a i n s t h i s

named l a y e r - u s u a l l y i m p l i c i t l y (i . e . the c l a u s e forms p a r t o f a n o t h e r

w h i c h has a r e v e l a t i o n o f t h i s named l a y e r i n i t s n e s t , and so o n) ; an

i l l u s t r a t i o n o f t h i s s i t u a t i o n i s t h e c l a u s e b e g i n n i n g ACCESS OLDSTACK i n

example 2. The r e v e l a t i o n o f t h i s l a y e r may h a v e a r i s e n i n one o f two w a y s ,

o f wh ich th e most o b v i o u s i s t h a t a module has been e x p l i c i t l y i n v o k e d i n

an o u t e r c l a u s e , and t h a t t h e l a y e r w h i c h t h e module r e v e a l s i n i t s inward

i n t e r f a c e has been g i v e n t h i s name; t h i s i s t he case i n example 2. The second

way i n which a r e v e l a t i o n o f a named l a y e r may a r i s e i s o n l y a p p l i c a b l e to

l a y e r s w h i c h a r e r e v e a l e d by modules t h a t do n o t have p a r a m e t e r s , and i t c o r r e s p o n d s

to t h e mechanism which i s r e q u i r e d f o r e x t r a c t i n g modules from l i b r a r i e s , as

i l l u s t r a t e d by e x a m p l e s 4 and 5; i t i s p r o p o s e d t h a t in such a c a s e an

" a u t o m a t i c " i n v o c a t i o n o f t h e module s h o u l d be c o n s t r u c t e d (by a mechanism

a n a l a g o u s to c o e r c i o n) around t h e o u t e r m o s t c l a u s e w h i c h e x p l i c i t l y r e q u i r e s

t h a t l a y e r , and o f c o u r s e t h e l a y e r so r e v e a l e d i s g i v e n the name d e f i n e d

in th e m o d u l e ' s inward i n t e r f a c e . Thus , i n example 5 t h e c l a u s e BEGIN. . . .

END would be su r rounded by a u t o m a t i c i n v o c a t i o n s of the modules d e f i n i n g

the two l a y e r s VIBRATIONS and STRESSES (which would a c t u a l l y be n e s t e d one i n s i d e

the o t h e r , bu t i n an u n d e f i n e d o r d e r) . These would i n t u r n be n e s t e d i n s i d e

an a u t o m a t i c i n v o c a t i o n of t he module r e v e a l i n g t he l a y e r MATRICES (and

a r e v e l a t i o n of t h i s l a y e r would t h e r e f o r e be i n t he n e s t seen by the p a r t i c u l a r

p rogram, and so would be i m p l i c i t l y i n the inward i n t e r f a c e a t the p o i n t

where the c l a u s e (. . , .) s p e c i f i e s i t i n i t s outward i n t e r f a c e) . L a s t l y , t h i s

automatic invocation would be nested within an automatic invocation of the

module revealing the layer MATMODE.

It is of course possible for an outward interface to specify both a nest

and one or more layers; if revelations of any of the named layers exist

within the named nest then those items can be considered as satisfactdrilymatched.

AB 46p. 21

If not, then (with the proviso that definitions of the appropriate modules

exist - either within the named nest, or as other segments which have the

same named nest specified in their outward interfaces) automatic invocations

of the modules will be constructed around the clause in question. As an

example of what happens, it may be observed that all the segments defined

in examples 4 and 5 have included in their outward interfaces an implicit

reference to a nest defined by a segment containing an appropriate

particular-prelude and particular-postlude (which is assumed to be the same

nest for each segment). It should also be added that, for the automatic

invocation mechanism to be able to operate, a restriction must be imposed

that no two modules may define layers with the same name if the definition

of one module is accessible from the point where the other is defined.

Finally a notation for expressing interfaces will be needed. One will

be suggested here, in order that some examples can be presented, but it is

not intended to be regarded as definitive. One immediate comment is that the

special brackets DEF....FED are unnecessary, and will be abandoned. It is

suggested that the outward interface specification be written before the

clause to which it applies, preceded by the symbol ACCESS; the items which

may appear in them ~hich would normally be separated by commas) would

obviously be layer and nest names (which will be represented by TABs), or

explicit module invocations (in the form module name and actual parameters,

if any), and any of these items could, if desired, be renamed by preceding

them with either LAYER name -- or NESTname = , as appropriate (not that any

use can be envisaged for the latter: it is included purely for the sake of

uniformity). Since it is proposed that segment and module names be

represented by TABs, then it can be seen that examples 2 and 3 are in fact

expressed in this notation already. This choice of notation gives rise to

one restriction, namely that no program may contain a module defining a

AB 46p. 22

a layer which has the same name as any of the nests which may be defined

as inward interfaces, and it is also necessary to extend the zestrictions

on layer names revealed by modules to cover layer names defined in outward

interface specifications. These restrictions are not burdensome, although

the first of them could be removed by insisting that every item in an

outward interface specification be prefaced with either NEST or LAYER as

appropriate. It would also seem reasonable to allow items to be separated

by semicolons rather than commas if it is required to express the order of

nesting of module invocations, where this would otherwise be undefined.

The inward interface specification involves rather more obvious changes

from the formats proposed in [l], since there it appears in two radically

different forms. It may be observed that the specification actually has

to fulfill a number of functions, viz. to indicate that this clause will

have an inward interface; to specify whether the interface(s) consist(s)

of a layer, or one or more nests; to name the layer or nests; and to

indicate the point(s) where the interface(s) occur(s). To achieve the

first requires a construction similar to that used for the outward interface

specification, and it would seem appropriate to use the symbol DEF to

introduce it; this form of construction will also encompass the second and

third functions if the specification is restricted to a single item of the

form LAYER name or NEST list of names. It is then proposed that the actual

point where - an interface occurs should be treated as a unit, consisting

essentially of the name of the nest or layer. It may then be necessary to

= -

either preface this with a suitable symbol, or surround it by special brackets;

the latter will be suggested, consisting of ENC (short for enclose), with

CNE as the corresponding right bracket.

Additionally, within a module it is necessary to specify which of the

indicators are to be included in the revealed layer, and for this the PUB

AB 46p. 25

notation will be used, as before. It could also be useful to extend this

n o t a t i o n to a c l a u s e which i s d e f i n i n g a n e s t (o r n e s t s) as i t s inward

interface, although this could get tedious if only a few indicators were

to be e x c l u d e d from the i n t e r f a c e - p e r h a p s a symbol PRI (f o r p r i v a t e)

could be introduced to cover this case, and it might also be necessary to

allow PUB and PRI to be qualified by the names of the nests to which they

applied, as well as allowing an entire nest to be specified as PUB or PRI.

S i m i l a r r emarks a l s o a p p l y to modules p u b l i c i s i n g the i n d i c a t o r s from

other modules which they require; it seems desirable to allow this to be

done selectively, by means of a PUB unit within the clause itself, and so

the case where all the indicators are to be made visible will be treated

the same way, by requiring a unit in the body of the clause, rather than

prefacing items in the outward interface specification with PUB. Thus

example 4 could be written in the notation being suggested as follows

(example 6) :

MODULE m~ tmode

MODULE matrices

MODULE vib rat ions

= DEF LAYER MATMODE BEGIN
C something C;
ENC MATMODE CNE;
C and a postlude C

END;

= ACCESS MATMODE DEF LAYER MATRICES BEGIN
PUB MATMODE ;
C some thing C;
ENC MATRICES CNE;
C and a postlude C

END;

= ACCE S S MATRICE S , MATMODE
DEF LAYER VIBRATIONS BEGIN

PUB MATMODE ;
C something C;
ENC VIBRATIONS CNE ;
C and a postlude C

END;

AB 46p.-24

MODULE stresses ACCESS MATRICES, MATMODE
DEF LAYER STRESSES BEGIN

PUB MATMODE ;
C something C;
ENC STRESSES CNE;
C and a p o s t l u d e C

END;

and example 5 (using the above) could remain unchanged. AI ternat ively,

example 5 could be split into two parts, to be compiled separately, as

either example 7:

SEGMENT outerbit = ACCESS VIBRATIONS, STRESSES
DEF NEST MIDDLE
BEGIN C......C;

ENC MIDDLE CNE;
C......C

END

ACCESS MIDDLE, MATRICES (.)

or as example 8

ACCESS VIBRATIONS, STRESSES
DEF NEST MIDDLE
BEGIN C...... C;

ENC MIDDLE CNE;
C......C

END

SEGMENT middlebit = ACCESS MIDDLE, MATRICES (......)

A number of observations should be made on these examples: firstly

that the use of bold rather than brief brackets is not being suggested as

an integral part of the notation; secondly that there is no suggestion

that modules must have postludes if these are unnecessary; thirdly that

a PUB unit may come anywhere within the serial clause (but presumably

before the interface unit). There are also a number of restrictions which

would be needed, as in the original proposals [l]. For instance, allowing

PUB to be used with individual indicators would require that no operator or

mode revealed within a layer could have the same name as the layer, nor the

AB 46p. 2 5

same name as any other layer which appeared in any outward interface

specification along with that layer. (In practice it is probably simpler

to insist that no nest or layer name used within a program could be the

same as any other nest, layer, operator or mode name used anywhere else

in that program but in some situations this might prove over-restrictive).

There would also need to be a restriction prohibiting two layers in the

same outward interface specification from revealing the same indicator,

unless this indicator was actually defined in a third layer which Ehey

both required, so that they were only PUBllcising but not defining it (i.e.

in the way that vibrations, stresses and matrices in example 6 all PUBlicise

the indicators from matmode); or unless the order of the invocations of the

relevant modules was defined, so that it was known which definition of the

indicator was hidden by the other.

It might also be thought necessary to restrict the points at which an

inward.interface_ which is defined as a layer may occur, so as to prohibit

somethzng llke example 9.

NODULE m = DEF LAYER M BEGIN
PUB PROC p ffi VOID: (ENC M CNE)

END

although there could be advantages to permitting a construction llke example

10:

MODULE m = DEF LAYER M BEGIN
C a lot of setting up of definitions, etc. C;
IF all set up ok
THEN ENC M CNE; C normal postlude C
ELSE C print error messages, and clear up the debris C

FI
END

and possibly even one like example II:

MODULE repeat = (INT n times): DEF LAYER REPETITIONS BEGIN
FOR i TO n tlmes DO

PUB INT rcount = i
ENC REPETITIONS CNE

OD
END

AB 46p. 26

However, no attempt will be made here to go into detail as to how

t h e s e r e s t r i c t i o n s (o r the o t h e r f e a t u r e s which have been proposed) might

be d e f i n e d w i t h i n the s y n t a x o f A l g o l 68 , or an e x t e n s i o n to i t . The

r e a s o n f o r t h i s i s t h a t the purpose o f t h i s paper has been to p r e s e n t

c o n c e p t s r a t h e r t h a n d e t a i l , and the a u t h o r i s n o t y e t c o n v i n c e d t h a t the

r e q u i r e d c o n c e p t s have been e s t a b l i s h e d s u f f i c i e n t l y c l e a r l y to j u s t i f y

s p e n d i n g t ime on the d e t a i l . As an i l l u s t r a t i o n o f t h i s p o i n t , i t may be

o b s e r v e d t h a t n e i t h e r the o r i g i n a l s p e c i f i c a t i o n o f [l 3, nor the p r o p o s a l s

t h a t have been made above , are adequate f o r cop ing w i t h the f o l l o u i n g

example 12 (e x p r e s s e d i n the n o t a t i o n o f E l] :

HODULE A = ACCESS B DEF
PUB NODE ANODE = C s o m e t h i n g u s i n g BNODE C;
C d e f i n e p r o c e d u r e s and o p e r a t o r s upon AHODEs, soNe o f

which Nay need the p r o c e d u r e s and o p e r a t o r s upon BNODEs,
and P U S l i c i s e some o f t h e s e d e f i n i t i o n s C

FED;

NODULE B -~ ACCESS A DEF . .
PUB MO.DE BNODE = C s o m e t h l n g u s l n g ANODE C;
C de f z n e p r o c e d u r e s and o p e r a t o r s upon BNODEs, some o f

whlch may need the p r o c e d u r e s and o p e r a t o r s upon ANODEs,
and P U B l i c i s e some o f t h e s e d e f i n i t i o n s C

FED;

This i s n o t to say t h a t the r e q u i r e d e f f e c t cannot be a c h i e v e d , but

i t cannot be done i n a f a s h i o n t h a t r e f l e c t s the " n a t u r a l " m o d u l a r i s a t i o n o f

the problem. Of c o u r s e , i t may w e l l be t h a t to p r o v i d e even the i n t e r f a c e

m~chanism t h a t has a l r e a d y been proposed (t o say n o t h i n g o f a mechanism

capable o f cop ing w i t h the above example 12) would i n v o l v e do ing so much

v i o l e n c e to the o r i g i n a l d e f i n i t i o n o f A l g o l 68 t h a t , w h a t e v e r the r e s u l t

might b e , i t would n o t be an e x t e n s i o n o f A l g o l 68. In which c a s e , i t

s h o u l d perhaps be acknowledged t h a t c o n s i d e r a b l e t ime has pas sed s i n c e 1968,

and t h a t a need i s b e g i n n i n g to emerge f o r A l g o l e i g h t y - s o t a e t h i n g , which would

have m o d u l a r i s a t i o u f a c i l i t i e s d e s i g n e d i n from the s t a r t .

REFERENCES

I . A Nodules and S e p a r a t e C o m p i l a t i o n F a c i l i t y f o r ALGOL 68, C.H. L i n d s e y

& H.A. BooN, A l g o l B u l l e t i n 43, (December 1978) pp] 9 - 5 3 .

2. R e v i s e d Report on the A l g o r i t h m i c language A l g o l 68, ed . A. van Wijngaarden

AB 4 6 p . 2 7

ABe6. q. q

An ALGOL 68 Indenter.

. by. C. H.Lindsey
Unxversxty of Manchester

First let it be said that this program is an Indenter, not a
Prettyprinter. What, you may ask is the difference? Well, a Prettyprinter
is a program which performs virtually a complete syntax check of a program
source text, and determlnes its entire layout: It may insist that exactly
one blank occurs, at certain points (e.g. on elther side of a ":="). It is
very likely to insist on putting each state.ment on a fresh llne, and to
start the if, then and else parts of a condltlonal-clause on separate lines.
If it tries to be clever and to keep these things on one line in suitable
cases, it has to make some sort of value judgement as to what is "suitable",
and it can only do this on the basis of the length, of.the Items concerned.
These are all areas in whlch the User's judgement is llke.ly to be superior.
If he chooses to put several statements on one line, it will be because they
have some logical connection with. each other, not because they happen to
fit..By keeping small snappy condltional-clauses (especia.lly where they are
conditlonal expressions) on one llne, the User can use hls main indentation
structure to emphasise his global program stategy, thus conveying to hls
human reader the way in which .he wants his program to be vmzualized. When it
comes to comments, the conventlonal Prettyprinter Is in a real quandary. How
can it know that some comments are short remarks to amplify the proceeding
statement (and should therefore fol.low it on the same line) and that some
are long essays explaining what is about to happe.n next (which should
clearly start on a line of their own)? Also, a consclentxous User may well
wish to leave blank lines at important divxsions in his program, but what
Prettyprinter can manage that?

Therefore .this program .is a pure Indenter. It leaves the User's llne
divisions str.lctly alone. With a few minor exceptions, it does not alter his
spacing w~thln lines. All it does is to adJUSt the number of blanks at the
beginning of each line.

Clearl. y, i t endeavours to ~llgn ~S under thelr matching i fs, but many
prettyprlnters (and textbooks seem to think the then Should be indented
more than the i f :

if condition if condition
then unit; then unlt ;

unit ; unlt;
unit as opposed to un.xt

else else unlt;
unit; unlt;
un.lt; unit
unlt

fi fi

I cannot see the sense in this. It will run out of page width much sooner
and, to my taste, the condition, the then-part and the else-part are all
just one level of refinement deeper than their surroundings, and hence on a
par with each other. Therefore my indenter alms to achieve the second style
(which we also used in the standard-prelude and the example~ of the Revised
Report).

AB .q6p.28

Students, especially, seem to find difficulties in not putting semicolons
after the last unit of a serial-clause. You know that a semicolon is a
separator, I know that a semicolon is a separator, and the students should
know that a semmcolon is a separator (because you, and I, have told them so
repeatedly). But still they get it wrong. Also, those of us who still input
programs on cards, or who are affected with editors designed only to modify
FORTRAN or Basic programs on a llne-at-a-time basis, have often been
frustrated at havlng to punch two lines when adding an extra statement at
the end of a serial-clause (a quite common requirement, apparently). There
is a .slmple answer to both these problems -- put the semicolon at the
beglnnlng of the next line (if any). Actuall.y, programs are very readable
this way (see the examples below) as the semlcolons help to delineate the
various indentation levels. I have taught students to program in this way,
with benefit. It helps to emphaslse that they are really called
"go-on-symbols" and, when de.veloplng a program in front of a.cl.ass, to say
"go-on" as each semicolon is written. It is also a good dlsclpline when
writing, programs not to write a go-on-symbol until you are ready to write
the unlt to be gone-on .~. Then when you have run out of units to write, you
are ready .for your closlng symbol immedlately. The system works best if you
always wrlte closed-clauses (i.e. in general the complete program or the
body of.a procedure) in the brief style, with the "(", the ";"s and the ")"
in vertlcal allgnment.

This Indenter is designe.d to facilitate this. st.yle. I.t cannot fo rce you
to put your go-on-symbols f i r s t , bu t i f you do i t w i l l a l i g n them nic.ely (i f
you d o n ' t , i t w i l l s t i l l produce an accep t ab l e i n d e n t a t i o n) . I t i s a l s o
p leased i f you put a n d - a l s o - s y m b o l s (commas) a t the s t a r t o f l i n e s in
displays, data lists, etc. Here is an example program written in both
styles, and indented by the program.

..LOC INT N
READ(N)
PRINT THE PASCAL TRIANGLE

UP TO LAYER N #
.LOC [0 :N%2] . INT LINE
.STRING.GAP = 3 I" "
LINE[O] := ;
.FOR I TO N
.DO [] .INT OLDLINE = LINE[:(I-i)~2 O]

.FOR J .FROM I .TO (I-1)%2

.DO LINE[J] := OLDLINE[J-;]+OLDLINE[J] .OD
LINE[I%2] ".= LINE[(I-;)$2]

; FOR J :FROM I-N(~
TO 2W(l -
IX) PRINT

(J<O . OR . ODD J
! GAP
! WHOLE (LINE[

(J<i
! J%2
! I I-J%2
)]

, - 3)
)

))

)

.OD
" PRINT (NEWLINE)

.o;

• ~B 46p ..29

. BEGIN
.LOC . I N T N;
READ(N) ;
.COMMENT PRINT THE PASCAL TRIANGLE

UP TO LAYER N
. COHMENT
.LOC [0:N%2] .INT LINE;
.STRING GAP = 3*" ";
LINE[d2 := 1
FOR I . TO N
[DO [] .INT OLDLINE ~oLINE[,(I-11~2 0];

.FOR J .FROM I .. (I-I)%2

.DO LINE[J] := OLDLINE[J-I]+OLDLINE[J] .OD;
LINE[IS2] := LINE[(I-I);2];
. FOR J
.FROM I-X
.TO 2 " (I - I)
~DO PRINT(#

~IF J<0 .OR .ODD J
. THEN GAP
. ELSE WHOLE (LINE[

(J< I
! J%2
! I , - 1 -J / , 2
)]

-3)
.FI

)1
.OD;
PRINT(NEWLINE)

.OD
. END

The Indenter zs written xn PASCAL (for my own convenience - it needs to
run ¢£ficienbly on our machine since we put lo~s of students' proKrams
~hrough zb). It is easily Lr~nsl~tcable znco ALGOL 68. Our op.:r~t~n~ system
Izkes to.put izne .n~nb~rs ut ~l~e st~r~ of program izn~ T ~C.~h~ sourc~ t~xt
starts w lt!l a dight,, it therefore as~aes t!;e program ~s li~le-numbcreo. It
as~c~nes pozn. stropping ~ .~EG±,;). Three .onsv~nts ~r. defined, sm~llzn~en~
is best l e f t at 2, but. you mlght l ike to experiment with 'midindent' (bu~ 2
see-ms abou5 rigi~t) anu 'lar&ein.Jent' (4 s~ms"~o work ~e~l). Each "op~,n~r"
((, ~., case, ~tc. ~nd starts of comments) increases ~:,he i nJentation by

, 1 . . ~1 " . . ~ , ~. ! , ~ ' .~ ,. ~" r . - .~ . ~ . . m,~l~zndent (for brxel openers) or by l~ro~znJ~n~ (for bol~-opcn~rs) and
each "tidier" (), f~, esac, etc. and ends of torments) de.creeses it ~,ga~o.
" M i d d l e r ~ " (, , ~hen, e l s e , ~n, ou t e t c . -- and a l so __exzt' semico lon and

% " ~ @" " comma) leave th~ indcnLa.zon alone, but ali,~n Lhemselvcs beneath thulr
openers (ass~ing they are at ~he start of a llne, of course). A pnrose that
ex1~en~s over a line boundary acquires an extra 'midlnaent' , whlch is
maintained until Dh~ next middler or closer. At leas5 one space is insisted

f ~ " I , "b upon (strictly, sm~l,znden~-1 spaces) after each semicolon or comma
(mainly ~o ensure ~ood vertical alzg~ent, at ~he start of ~n~s, but it is

I f f l t t ! 91 Vf ~ .. gOod d~sciplznu anyway), and also ~fter any "(, . or # when ot the
start of a line. The "sLrin~ break" convention for string-denotations
ex tend zn~ over a line boundary is accepted, but str zngs-denot~tions
over[lowing a line without i~ strlnE ~ceak are left strlctly alone. If a
brackets mismatch ~s found, makes a crude attempt to repazr it.

PROGRAI4 INDENT(INP, OUT, OUTPUT) ;
CONST

SMALLINDENT=2; MIDINDENT=2 ; LAEGEINDENT=4;
TYPE

STATETYPE - -

AB q6p .30

(OPENER, MIDDLER, CLOSER, PRAGMENT, DOER, QUOTE, COLON, GO, OTHER) ;
CLAUSETYPE =

(BRIEF, CONDCL, CASECL, CLOSEDCL, LOOPCL, INDEXER, ROUTINE,
JUMP EXIT SEMICOMMA STRING

: COMMENT ' PRAGMAT " HASH CO, , PR, , ANY) ,
TREEP=~'TREE; 2
TREE=RECORD
(eTREE TO HOLD RESERVED WORD DICTIONARY|)

C: CHAR;
LEFT, RIGHT, NEXT: TREEP;
TIP: BOOLEAN;
ST: STATETYPE ; CL: CLAUSETYPE;
END;

STACKP = TSTACK;
STACK=PACKED RECORD

C: CLAUSETYPE; G: BOOLEAN;
NEXT: STACKP
END;

.m) ('ALFA=PACKED ARRAY [I..10] OF CHAR,
VAR

INP, OUT: TEXT;
ROOT: TREEP;
TOS: STACKP;
VETTEDCHARACTER: RECORD

WORD: ARRAY [I..80] OF CHAR; ('THE LONGEST CONCEIVABLE BOLDWORDI')
INDEX: 0..80;
END;

STARTOFLINE
LINENUMBERS: BOOLEAN; ('TRUE THE SOURCE TEXT INCLUDES LINE UMBERS')
I'. iNTEGER;
INDENT, ('EXPECTED INDENT FOR SUBSEQUENT LINES*)
TEMPINDENT: INTEGER; (*INDENT FOR CURRENT LINE')
INSTRAGMENT: BOOLEAN ;
GONEON.- BOOLEAN; (*TRUE IFF THE LAST TOKEN WAS AN OPENER R A HIDDLER')

(' *) , " , ,,

(, ,) , , , ,

PROCEDURE SETUPTREE; "
(*TO CREATE THE DICTIONARY') -
PROCEDURE INSERT(WORD: ALFA; S: STATETYPE; B: CLAUSETYPE)

VAR TREEPTR: TREEP; INDEX: INTEGER ; FOUND: BOOLEAN;
BEGIN TREEPTR := ROOT; iNDEX := I"
WHILE WORD[INDEX]<>' ' DO

BEGIN
WITH TREEPTRT DO

BEGIN
IF TREEPTRT.NEXT=NIL THEN

BEGIN NEW(NEXT); WITH NEXTT DO
BEGIN=C:= WORD[INDE. X]~ A
LEFT : NIL; RIGHT .= IL; TIP := F LSE; NEXT := NIL
END

END"
TREEPTR := NEXT
END;

FOUND := FALSE;
WHILE NOT FOUND DO WITH TREEPTRT DO

IF WORD[INDEX]<C THEN
BEGIN
IF LEFT=NIL THEN

BEGIN NEW(LEFT); WITH LEFTT DO
BEGIN C := WORD[INDEX] ;
LEFT := NIL; RIGHT := NIL; TIP := FALSE; NEXT := NIL
END;

AB q6P.31

FOUND .-'- TRUE
END;

TREEPTR := LEFT
END

ELSE IF WORD[INDEX]>C THEN
BEGIN
IF RIGHT=NIL THEN

BEGIN NEW_CRIGHT); WITH RIGHT~ DO
BEGIN~C .= WORD[INDEX];
LEFT := NIL; RISdT" := 31L; TIP := FALSE; NEXT := NIL
END;

FOUND := TRUE
END;

TREEPTR := RIGHT
END

ELSE FOUND := TRUE;
INDEX := INDEX+I
END~

WITH TREEPTRT DO
o. CL := B END BEGIN TIP : TRUE; s'r := o,

END (*INSERT ~ ;
(**)

BEGIN (*SETUPTREE*)
NEW(ROOT); ROOTT.NEXT := NIL

OPENER l

OPENER
OPENER I

OPENER
OPENER
HIDDLER
MIDDLER
MIDDLER
MIDDLER
HIDDLER
MIDDLER
HIDDLER
MIDDLER
MIDDLER
MiDDLER
CLOSER
CLOoER
CLOSER
CLOSER
CLOSER
PRAGMENT
PRAGMENT
PRAGMENT
PRAGHENT
PRAGHENT
DOER
DOER
DOER
DOEK
DOER
DOER
 LosER
uO
QUOTE
COLON

INSERT(' (
INSERT(' . IF
INSERT (' . CASE I
INSERT ('. BEGIN
INSERT (' [
INSERT(' ! ,
INSERT,(' .THEN
IHSERT(' .IN
INSERT (' . ELIF
INSERT (' . ELSE
iNSERT(l" ' .OUSE i
INSERT(' . OUT I

iNSERT(' EXIT I

INoERT° (' : I INSERT(' !
INSERT('
INSERT(' FI
INSERT(' ESAC
INSERT(' : END I1
INoERT (' .~
iNSERT (' #
INSERT ('. CO
iNSERT ('. COMMENT

INSER'r((' iPR
INSERT ' PRAGMA2
iNSERT(' FOR
INSERT (' . FROM
INSERT (' . BY
INSERT((' .TO
iNSERT '.WHILE
INSERT (' . DO
iNSERT ('.OD

' ;Go
INSERT '

(*' : ' AFTER BOLD
END;

(**)
(**)

BRIEF I
CONDCL

CASECL I
CLOSEDCL

iNDEXER I
BRIEF

CAoECL

CONDCL I;
CONDCL ;
CASECL);
CA~ECL)"

EXIT)i
SE:IiCOMHA,

SE:iiCOMHAI IBRIEF

CASEuL

CLOSEDCL !i
INDEXER

HASH I ;
CO
COMMENT);
PR)!
PRAGMAT I
LOOPCL
LOOPCL)!
LOOPCL),
LOOPCL);
LOOPCL);

LOOPCL I! LO~PCL ,
JUIiP I ;
STRING
ROUTINE); *)

AB ~6p.32

PROCEDURE PUSH(CL: CLAUSETYPE);
VAR TEHP: STACKP;

BEGIN TEMP := TOS; NEW(TOS); WITH TOST DO
BEGIN C := CL; G := GONEON; NEXT := TENP END

END;
(**)
(**)

PROCEDURE POP;
VAR TEMP: STACKP;

BEGi~N
IF NOT GONEON AND NOT INSTRAGMENT THEN INDENT := INDENT-MIDINDENT;
T~4P := TOS; GONEON := TOST.G; TOS := TOST.NEXT; DISPOSE(TEMP)
END;

(** I (,m

PROCEDURE VET;
(*HOVES NEXT INTERESTING TOKEN TO VETTED CHARACTER,

AND SETS INDENT AND TEMPINDENT ACCORDINGLY m)
VAR TEMP: STACKP;

TREEPTR: TREEP;
CH: CHAR;
STATE: STATETYPE;
CLAUSE: CLAUSETYPE;
~.LD, FOUND: BOOLEAN;

(s,) I. INTEGER;

PROCEDURE GAP;
(*ENSURE THAT AT LEAST (SMALLINDENT-I) BLANKS ARE PRESENT IN OUT m)
VAR I.- INTEGER;

BEGIN 1

I := SMALLINDENT-I;
WHILE NOT EOLN(INP) AND (INP,-) AND (I O) DO

BEGIN GET(INP); I := I-i END;
IF NOT EOLN(INP) THEN

FOR I := 2 TO SMALLINDENT DO WITH VETTEDCHARACTER DO
BEGIN WORD[I] := v v; INDEX := I END

END; (**)
PROCEDURE CHECK(CLAUSE: CLAUSETYPE);

BEGIN WITH TOST DO
IF C<>CLAUSE THEN (*ATTEMPT TO FIX BRACKETS MISMATCH*)

IF NEXT~.C=CLAUSE THEN (*ASSUME CLOSER WAS OMITTED*)
BEGIN
IF C IN [BRIEF, INDEXER] THEN INDENT := INDENT-SMALLINDENT
ELSE INDENT := INDENT-LARGEINDENT;
POP;
IF GONEON THEN

BEGIN GONEON := FALSE; INDENT := INDENT+MiDINDENT END
END l l

ELSE (ASSUME OPENER WAS OMITTED)
BEGIN
IF CLAUSE IN [BRIEF, INDEXER] THEN INDENT := INDENT+SMALLINDENT
ELSE INDENT := INDENT+LARGEINDENT;
IF NOT GONEON THEN

BEGIN GONEON := TRUE; INDENT := INDENT-MIDINDENT END;
PUSH(CLAUSE)
END

END;
Cm*)

AB 46p.33

BEGIN (WVETW)
(mASSERT: INPT IN [(!)[],.#.;]m)
CH := INP~;
TEMPINDENT := INDENT;
VETTEDCHARACTER.INDEX := O;
BOLD := CH=~.I;
TREEPTR := ROOT~.NEXT; FOUND := FALSE;
WHILE (TREEPTR<>NIL) AND NOT FOUND DO WITH TREEPTRT DO

IF C=CH THEN WITH VETTEDCHARACTER DO
BEGIN
INDEX := INDEX+I; WORD[INDEX] := CH;
GET(INP); CH := INP~;
IF NOT(CH IN [tAW..°Z']) OR NOT BOLD THEN FOUND := TIP;
IF NOT FOUND THEN TREEPTR := NEXT
END

ELSE IF CH<C THEN TREEPTR := LEFT
ELSE TREEPTR := RIGHT;

IF FOUND THEN WITH TREEPTRT DO
BEGIN STATE := ST; CLAUSE := CL END

ELSE
BEGIN
WHILE (CH IN [tAt..tZt]) DO WITH VETTEDCHARACTER DO

(mABSORB REMAINDER OF UNRECOGNIZED BOLDWORD i)
BEGIN INDEX:=INDEX+I; WORD[INDEX]:=CH; GET(INP); CH:=INP~ END;

IF (CH=~: t) AND NOT INSTRAGMENT THEN WITH VETTEDCHARACTER DO
(ISTART OF ROUTINE-TEXT m)
BEGIN STATE := COLON; CLAUSE := ROUTINE;
INDEX := INDEX+I; WORD[INDEX] := CH; GET(INP)
END

ELSE BEGIN STATE := OTHER; CLAUSE := ANY END
END;

IF INSTRAGMENT AND (CLAUSE=TOST.C) THEN
(mMATCHING CLOSE-STRAGMENT-TOKEN FOUND m)
BEGIN
POP;
INSTRAGMENT := FALSE;
IF CLAUSE=HASH THEN INDENT := INDENT-SMALLINDENT
ELSE IF CLAUSE<>STRING THEN INDENT := INDENT-LARGEINDENT;
TEMPINDENT := INDENT
END

ELSE IF NOT INSTRAGMENT THEN
BEGIN
IF STATE IN [HIDDLER, CLOSER] THEN (WMAYBE END OF ROUTINE-TEXT m)

WHILE TOST.C=ROUTINE DO
BEGIN
POP; INDENT := INDENT-SMALLINDENT;
IF GONEON THEN

BEGIN GONEON := FALSE; INDENT := INDENT+MIDINDENT END
END;

IF STATE=GO THEN (m.GO OF .GO .TO m)
BEGIN PUSH(JUMP); STATE := OTHER END

ELSE IF STATE=DOER THEN (WCHANGE IT TO HIDDLER OR OPENER n)
IF TOST.C=JUMP THEN (m.TO OF .GO .TO w)

BEGIN POP; STATE := OTHER END
ELSE IF (TOST.C=LOOPCL) AND NOT GONEON THEN STATE := HIDDLER
ELSE STATE := OPENER;

(mm)

: ,.:AB 46p.34

IF STATE=COLON THEN (°START OF ROUTINE-TEXT m)
BEGIN
IF NOT GONEON,THEN

BEGIN GONEON := TRUE; INDENT ~= INDENT-MIDINDENTEND;'
PUSH(CLAUSE);
INDENT := INDENT÷SMALLINDENT
END

ELSE IF STATE,OPENER THEN (*START OF A NEW iNDENT*) L
BEGIN
PUSH(CLAUSE);
IF CLAUSE iN [BRIEF, INDEXER] THEN

BEGIN INDENT := INDENT+SMALLINDENT; IF STARTOFLINE THEN GAP END
ELSE INDENT ~z INDENT+LARGEINDENT;
GONEON := TRUE
END

ELSE IF STATE:MIDDLER THEN
BEGIN
IF NOT (CLAUSE IN [EXIT, SEMICOMMA]) THEN CHECK(CLAUSE);
IF NOT GONEON THEN

BEGIN GONEON := TRUE; INDENT :: INDENT-MIDINDENT END;
IF CLAUBE=SEMICOMMA THEN

BEGIN TEMPINDENT := INDENT-SMALLINDENT; GAP END
ELSE IF TOST.C:BRIEF THEN

(* I OR !: OR .EXIT AFTER (*)
BEGIN TEMPINDENT := INDENT-SMALLINDENT;
IF STARTOFLINE AND (INP~<>':') THEN GAP
END

ELSE TEHPINDENT := INDENT-LARGEINDENT
END

ELSE IF STATE=CLOSER THEN (*END OF INDENT*)
BEGIN
CHECK(CLAUSE); POP;
IF CLAUSE IN [BRIEF, INDEXER] THEN INDENT :: INDENT-SMALLINDENT
ELSE INDENT := INDENT-LARGEINDENT;
TEMPINDENT :: INDENT;
IF GONEON THEN

BEGIN GONEON :: FALSE; INDENT := INDENT+NIDINDENT END
END

ELSE IF STATE=PRAGMENT THEN
BEGIN

TEHPINDENT := INDENT;
PUSH(CLAUSE);
INSTRAGMENT := TRUE;
IF CLAUSE:HASH THEN

BEGIN INDENT := INDENT+SMALLINDENT; IF STARTOFLINE THEN GAP END
ELSE INDENT :: INDENT+LARGEINDENT
END

ELSE IF STATE=QUOTE THEN
BEGIN
IF GONEON THEN

BEGIN GONEON := FALSE; INDENT :: INDENT+MIDINDENT END;
PUSH(STRING);
INSTRAGMENT := TRUE
END

AB 46p.35

ELSE (mSTATE=OTHERW)
IF GONEON THEN

BEGIN GONEON := FALSE; INDENT := INDENT+MIDINDENT END
END

END (mOF VETm);
(,m)

BEGIN (mINDENTU)
INDENT := 0; INSTRAGMENT := FALSE;
GONEON := TRUE;
SETUPTREE;
RESET(INP); REWRITE(OUT);
LINENUMBERS := INP~ IN ['0'..'9t];
TOS := NIL; PUsH(ANY); PUSH(ANY);
WHILE NOT EOF(INP) DO

IF EOLN(INP) THEN BEGIN GET(INP); WRITELN(OUT) END
ELSE

BEGIN
STARTOFLINE := TRUE;
IF LINENUMBERS THEN

BEGIN
WHILE INP~ IN [tO'..'9'] DO

BEGIN WRITE(OUT, INP~); GET(INP) END;
IF INP~= m , THEN (mFIRST BLANK AFTER LINE NUMBER IS OBLIGATORY e)

BEGIN WRITE(OUT, , t); GET(INP) END
END;

IF TOST.C=STRING THEN
(aDO NOT TINKER WITH BLANKS INSIDE STRING-DENOTATIONS t)
BEGIN
WHILE INP~= B , DO

BEGIN WRITE(OUT, , t); GET(INP) END;
STARTOFLINE := FALSE
END

ELSE WHILE INP~= w t DO GET(INP); (WGET RID OF EXISTING INDENTATION m)
WHILE NOT EOLN(INP) DO

BEGIN
IF (INP~ IN it(,,,1,. ,1)t,'Ct,']v,',1,~.1.'#',1"']) OR (INP~=I; w) THEN

(WCHARACTER WHICH MIGHT AFFECT INDENTATION m)
(eN.B. w;, CANNOT BE A SET ELEMENT IN CDC PASCAL w)

BEGIN
VET;
IF STARTOFLINE THEN FOR I := I TO TEMPINDENT DO WRITE(OUT," I I);
WITH VETTEDCHARACTER DO

FOR I := I TO INDEX DO WRITE(OUT, WORD[I])
END

ELSE
BEGIN
IF STARTOFLINE THEN FOR I := I TO INDENT DO WRITE(OUT, ' ');
IF (INP~<>' ') AND NOT INSTRAGMENT AND GONEON THEN

(UPREPARE TO INDENT ANY CONTINUATION LINE r)
BEGIN GONEON := FALSE; INDENT := INDENT+MIDINDENT END;

WRITE(OUT, INP~); GET(INP);
END;

STARTOFLINE := FALSE
END;

GET(IMP); WRITELN(OUT)
END;

END.

