
ISSN 0084-6198

Algol Bullet in no. 4 4

MAY 1979

AB44.0

AB44. I
AB44. I. I
AB44. I. 2
AB44. I. 3
AB44. I. 4
AB44. I. 5
AB44. I. 6

AB44.3
AB44.3. I

AB44.4
AB44.4. I
AB44.4.2

AB44.4.3

AB44.4.4

AB44.4.5

Editorts Notes

Announcements
An Implementation Model of the ALGOL 68 Transput
The Revised MC Test Set
TORRIX
The Revised Report in German
An Axiomatic Semantic Definition of ALGOL 68
Other reports available

Working Papers
Commentaries on the Revised Report

Contributed Papers
Hanno Wupper, Experiences with ALGOL 68 Transput
C. J. Cheney, C. H. Lindsey, L. G. L. T. Meertens and

H. Wupper, Changing Line Lengths in Random Files
H. B. M. Jonkers, A Finite State Lexical Analyzer for

the Standard Hardware Representation of ALGOL 68
V. J. Rayward-Smith, The Use of ALGOL 68 Pattern

Matching to Describe a Formal Logic System
Vera AJueva, A. N. Maslov and V. B. Yakovlev

A Schema for reading data in Formatless Input

2

2
3
4
4
4
5

8

15

16

52

63

AB 44p. 1

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of
IFIP:

"The opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that might arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIP".

Facilities for the reproduction and distribution of the Bulletin have
been provided by Professor Dr. Ir. W. L. van der Poel, Technische
Hogeschool, Delft, The Netherlands. Mailing in N. America is handled by the
AFIPS office in New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $? per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any currency (a list of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency is absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M13 9PL,
United Kingdom.

Back numbers, when available, will be sent at $3 each. However, it is
regretted that only AB32, AB34, AB35, AB38, AB39, AB41, AB42 and AB43 are
currently available. The Editor would be willing to arrange for a Xerox copy
of any individual paper to be made for anyone who undertook to pay for the
cost of Xeroxing.

The WG, and a l s o its ALGOL 68 Suppor t Subcommittee and its Transpu t Task
Force , met i n Summit, New J e r s e y , a t t h e beg inn ing o f A p r i l .

On t h e Algol 68 f r o n t , t h e major e v e n t was t h e a c c e p t a n c e o f t h e
Implementat ion Model o f t h e ALGOL 68 Transpu t (see AB44.1.1 i n t h i s i s s u e) .
T h i s is i n t e n d e d t o make i t easier f o r a l l implementors o f t h e l anguage t o
i n c o r p o r a t e a c o r r e c t , compat ib le and e f f i c i e n t t r a n s p u t system i n t o t h e i r
c o m p i l e r s . Hans van Vliet worked f o r one and a h a l f y e a r s i n modeling and
remodel ing t h e t r a n s p u t s e c t i o n o f t h e Revised Report i n such a way t h a t i t
can now be implemented e f f i c i e n t l y , still p r e s e r v i n g v i r t u a l l y a l l o f t h e
e x t e r n a l s p e c i f i c a t i o n s o f t h e Revised Report . Moreover, h i s d e s c r i p t i o n h a s
t h e v i r t u e s o f a good tex tbook f o r implementors : i t is c l e a r , u n d e r s t a n d a b l e
and p r e c i s e . The model is based on a b u f f e r concep t which p r o v i d e s t h e
p roper i n t e r f a c e wi th a r b i t r a r y o p e r a t i n g sys tems as t h e y e x i s t nowadays. I n
r e c o g n i t i o n o f h i s g r e a t achievement , t h e Model is now always i n f o r m a l l y
r e f e r r e d t o as t h e "Hansput".

Another document accep ted a t t h e meet ing was t h e Revised HC T e s t S e t , by
D.Grune (s e e AB44.1.2 i n t h i s i s s u e) . O r i g i n a l l y , t h i s T e s t S e t was prepared
a s an a c c e p t a n c e t e s t f o r t h e CDC ALGOL 68 compi le r . It h a s now been
e x t e n s i v e l y r e v i s e d , w i t h many new programs added. It is now up t o a l l u s e r s
who a r e con templa t ing purchas ing ALGOL 68 c o m p i l e r s t o i n s i s t t h a t t h e T e s t
Set be r u n and a n agreed s t a n d a r d f o r conformance o b t a i n e d . Only i n t h i s way
w i l l we g r a d u a l l y f o r c e implementors t o move towards c o r r e c t implementa t ions
o f t h e l anguage .

F i n a l l y , two more Commentaries on t h e Revised Report were r e l e a s e d (s e e
AB44.3.1 i n t h i s i s s u e) . Now, a t l a s t , t h i n g s seem t o have become f a i r l y
q u i e t s o f a r a s t h e appearance o f f r e s h bugs i n t h e Report i s concerned.

I n s p i t e o f a l l t h i s ALGOL 68 a c t i v i t y , t h e main p a r t o f t h e meet ing was
t a k e n up w i t h p a p e r s on programming methodology - p a r t o f t h e c o n t i n u i n g
s e a r c h f o r t h a t e l u s i v e language "ABSTRACTOn. It was dec ided t h a t t h e n e x t
s t e p should be t o p r e p a r e an agreed set o f example problems a g a i n s t which
each proposed ltABSTRACTO1l language shou ld be t e s t e d . I n f a c t , what we need
is l o t s o f c o n c r e t e ABSTRACT0 examples t o l o o k a t .

A t t h i s p o i n t , I must make my u s u a l p l e a f o r m a t e r i a l f o r t h e n e x t i s s u e .
T h i s i s s u e c o n t a i n s two p a p e r s which are more o r less i n t h e c a t e g o r y o f
l l a l g o r i t h m s n , such as I asked f o r i n AB41. More m a t e r i a l o f t h e same s o r t
would be p a r t i c u l a r l y welcome.

T h i s r e p o r t h a s been w r i t t e n by J . C . van V l i e t on t h e r e q u e s t o f t h e Task
Force on T r a n s p u t , which was set up by t h e Subcommittee on ALGOL 68 Suppor t
o f I F I P WG2.1. It aims a t a p r e c i s e d e s c r i p t i o n o f t h e t r a n s p u t o f ALGOL 68,
conforming w i t h s e c t i o n 10.3 o f t h e Revised Report . Whereas s e c t i o n 10.3 o f
t h e Revised Report d e s c r i b e s t h e intention o f t r a n s p u t , t h e emphasis i n t h i s
r e p o r t is on i m p l e m e n t a b i l i t y .

A v a r i e t y o f ALGOL 68 implementa t ions e x i s t o r are n e a r complet ion. They
a l l s u p p o r t some kind o f t r a n s p u t , a l t h o u g h t h e y a l l d i f f e r s l i g h t l y from
each o t h e r and from t h e Revised Report . T h i s d i v e r s i t y r e n d e r s t h e t r a n s f e r
o f programs from one implementat ion t o t h e o t h e r v e r y d i f f i c u l t , i f n o t
v i r t u a l l y i m p o s s i b l e .

The e x i s t e n c e o f s o many d i f f e r e n t t r a n s p u t sys tems may t o some e x t e n t be
due t o t h e f a c t t h a t t h e d e f i n i t i o n as g i v e n i n t h e Revised Report d o e s n o t
r e a l l y f a c i l i t a t e implementat ion o f t h e t r a n s p u t . Each implementor a g a i n has
t o s t r u g g l e h i s way th rough t h e t r a n s p u t s e c t i o n and l o c a t e t h e problems
w i t h t h e p a r t i c u l a r o p e r a t i n g system.

The approach t a k e n is similar t o t h e one i n t h e Revised Report : t h e
t r a n s p u t is d e s c r i b e d i n pseudo-ALGOL 68. The pseudo-ALGOL 68 p a r t can be
c o n s i d e r e d as a l anguage e x t e n s i o n which is r e a s o n a b l y implementable. The
p r i m i t i v e s u n d e r l y i n g t h e model a r e n o t d e f i n e d i n ALGOL 68. I n s t e a d , t h e i r
s e m a n t i c s are g i v e n i n some kind o f fo rmal ized E n g l i s h , r esembl ing t h e way
i n which t h e s e m a n t i c s o f t h e Revised Report are d e f i n e d . One advan tage of a
d e s c r i p t i o n i n pseudo-ALGOL 68 is t h a t i t can l a r g e l y be t e s t e d
mechan ica l ly . It h a s been t h e i n t e n t i o n t h a t t h e ALGOL 68 t e x t , a f t e r
s u i t a b l e s u b s t i t u t i o n o f t h e pseudo comments, cou ld be compiled, t h e r e b y
a u t o m a t i c a l l y c r e a t i n g p a r t o f t h e run t ime environment .

T h i s r e p o r t was accep ted a t t h e r e c e n t meet ing o f WG2.1 h e l d i n Summit,
N e w J e r s e y , and t h e WG r e s o l v e d t o ask i ts p a r e n t commit tee , IFIP TC2, t o
a u t h o r i z e t h e f o l l o w i n g s t a t e m e n t f o r r e l e a s e w i t h i t .

T h i s implementat ion model o f t h e ALGOL 68 t r a n s p u t h a s been
reviewed by I F I P Working Group 2.1. It h a s been s c r u t i n i z e d t o
e n s u r e t h a t it c o r r e c t l y i n t e r p r e t s t h e t r a n s p u t a s d e f i n e d i n
s e c t i o n 10.3 o f t h e Revised Report . T h i s model is recommended a s
t h e b a s i s f o r a c t u a l implementa t ions o f t h e t r a n s p u t .

Copies o f t h e Report can be o b t a i n e d from t h e Mathematisch Centrum, 2e
B o e r h a a v e s t r a a t 49, 1109 AL Amsterdam a t a p r i c e o f HF1 27 (p l u s p o s t a g e) .
Its f u l l t i t l e is

Mathematical C e n t r e T r a c t s No. 111
ALGOL 68 Transpu t P a r t I1 - An Implementat ion Model.

by J . C . van V l i e t .
(P a r t I , t o be pub l i shed l a t e r , w i l l c o n t a i n some o f t h e background t o and
m o t i v a t i o n s f o r t h e model. The two p a r t s t a k e n t o g e t h e r w i l l c o n s t i t u t e Hans
van V l i e t l s d o c t o r a l t h e s i s .) The t e x t o f t h e model is a l s o a v a i l a b l e i n
machine-readable form.

AB44.1.2 ,The Revised MC T e s t S e t

The Revised MC T e s t S e t compr i ses 190 ALGOL 68 programs, i n p a r t c o r r e c t
o n e s , i n p a r t i n t e n t i o n a l l y i n c o r r e c t ones . They a r e des igned t o e x p l o r e t h e
f u l l r ange o f ALGOL 68 language f e a t u r e s , and i n c l u d e many a t t e m p t s t o t r i p
t h e compi le r up o r t o uncover i n c o r r e c t s h o r t - c u t s .

Many o f t h e programs are p a t h o l o g i c a l and shou ld n o t be c o n s i d e r e d a s
r e p r e s e n t a t i v e o f ALGOL 68 programming s t y l e . With t h i s i n mind, a lmos t a l l
t h e programs a r e worth w h i l e r e a d i n g , some a s p u z z l e s , some f o r t h e good
programming f e a t u r e s t h e y c o n t a i n , some f o r t h e i r n o t wide ly known
programming t e c h n i q u e s and a few f o r t h e i r good s t y l e .

The t e s t s e t is n o t comple te , f i r s t l y because such a p r o d u c t i s never
comple te : t h e r e is no e x h a u s t i v e t e s t i n g and one cannot c a t e r f o r every
con t ingency . Secondly, a few a s p e c t s o f t h e l anguage a r e under - represen ted
(e . g . SHORT and LONG v a l u e s and bu lk 1/01. However, i f a compi le r p r o c e s s e s
t h e test set w e l l and a l s o works well on t h e d a i l y s t r e a m o f average
programs, it may be regarded as a v e r y good compi le r . C e r t a i n l y , a l l
implementors should be encouraged t o use it a n d , e s p e c i a l l y , t o r e p o r t i n
t h e i r accompanying documentat ion how it behaved.

The T e s t Set was a c c e p t e d a t t h e r e c e n t mee t ing o f WG2.1 h e l d i n Summit,
New J e r s e y , and t h e WG r e s o l v e d t o ask its p a r e n t committee, I F I P TC2, t o

AB 44p.4

authorize the following statement for release with it.
This ALGOL 68 Test Set has been reviewd by IFIP Working Group
2.1, which wishes to recommend it as a valuable means of testing
implementations of ALGOL 68.

Copies of the Test Set will shortly be available from the Mathematisch
Centrum, 2e Boerhaavestraat 49, 1109 AL Amsterdam. It will also be available
in machine-readable form on most reasonable formats of magnetic tape.

AB44.1.3 TORRIX.

At its meeting in Jablonna, Poland, in August 1978, IFIP WG2.1 authorized
the release of the following statement.

The library package TORRIX comprising definitions for
handling vectors and matrices in ALGOL 68, as published in the
Mathematical Centre Tracts series, has been scrutinized to
ensure that:

a) It strictly conforms to the definition of ALGOL 68.
b) It is consistent with the philosophy and orthogonal
framework of that language.
c) It addresses a significant application area in a
comprehensive and appropriate manner.

In releasing this statement the intention is to encourage the
incorporation of this library package in library preludes of
ALGOL 68 implementations.

TORRIX is published as Mathematical Centre Tracts No. 86. Volume I is
currently available. Volume 2 will be available later in the year. See
AB42.1.5 for further information.

• AB44.1.4 The RevisedRenort in German.

The Revised Report on the Algorithmic Language ALGOL 68 has now been
translated into German by Prof. Immo O. Kerner of the Paedagogische
Hochschule Dresden. It is published by Akademie-Verlag, 108 Berlin,
Leipziger Str. 3-4 (list number 202. 100/401/78), under the title
"Revidierter Bericht uber die Algorithmische Sprache ALGOL 68".

Although the text is in German, all hyper-rules and paranotions are given
in English, as is the standard-prelude (except for comments).

AB44.1.5 An Axiomatic Semantic Defini~Qn Qf ALGOL 68.

This doctoral thesis, by Richard Schwarz, is obtainable from the Computer
Science Department, School of Engineering and Applied Science, University of
California, Los Angeles, CA 90024, so long as stocks last (after that, it
should be obtainable in microfiche from NTIS, Springfield, Virginia 22151).

The report gives a formal axiomatic definition of a major subset of ALGOL
68. The definition, roughly the same length as the axiomatic definition of
EUCLID, handles many features generally considered to be serious impediments
to program verification. The small set of very general rules governing the
semantics of ALGOL 68 leads to a very clean axiomatic definition, defining
an extraordinarily expressive language.

It should be required reading for anyone who still believes that side

AB 44p.5

parameters and unrestricted aliasing of names are absolute bars to program
verification. They are not. All necessary axioms are given here and, because
of the orthogonal structure of the language, the axiomatic definition is
surprisingly short.

AB44.1.6. Other reports available,

The following reports are available from the Mathematisch Centrun, 2e
Boerhaavestraat 49, 1109 AL Amsterdam.

AFLINK - A new ALGOL 68 - FORTRAN interface, by H.J.Bos and D~T.Winter
(Report No. NN 17)

(a tool for use with the CDC ALGOL 68 compiler permitting, especially,
ALGOL 68 procedures to be passed as parameters to FORTRAN
subroutines).

A Modules and Separate Compilation Facility for ALGOL 68 by C.H~Lindsey and
H.J.Boom (Report No. IW 105/78 - HFi 6 plus postage)

(as already published in AB43.3.2).

AB44.3.1
Commentaries on t h e Revised H e ~ o r t

The f o l l o w i n g commentaries a r e i s s u e d by t h e Sub-committee-on ALGOL 68
S u p p o r t , a s t a n d i n g sub-committee o f I F I P WG 2.1. They d e a l w i t h problems
which have been r a i s e d i n c o n n e c t i o n wi th t h e Revised Report on t h e
Algor i thmic Language ALGOL 68, and m o s t l y t a k e t h e form o f a d v i c e t o
implementers as t o what a c t i o n t h e y shou ld t a k e i n connec t ion w i t h t h o s e
problems. These commentaries are n o t t o be c o n s t r u e d as m o d i f i c a t i o n s t o t h e
t e x t o f t h e Revised Report .

Note t h a t commentaries a r e n o t being pub l i shed on t r i v i a l m i s p r i n t s .
Those concerned abou t such m i s p r i n t s (and e s p e c i a l l y t h o s e p r e p a r i n g new
p r i n t i n g s o f t h e Report) shou ld a p p l y t o t h e E d i t o r o f t h e ALGOL B u l l e t i n
f o r t h e l a t e s t l ist o f agreed E r r a t a .

{{Commentaries 1 th rough 30 have a l r e a d y been pub l i shed (s e e AB42.3.1 and
AB 43.3 .1) . The two new commentaries pub l i shed h e r e were accep ted by t h e
Suppor t Sub-committee a t i ts meet ing i n A p r i l 1979.11

31) Overwr i t ing o f e x i s t i n g books and c o n t r o l o f t h e write mood.

The Report p r o v i d e s t h a t , where bo th "put" and "getI1 a r e " p o s s i b l e " , an
e x i s t i n g book wi th s e q u e n t i a l a c c e s s may be r e a d up t o some a r b i t r a r y p o i n t
and o v e r w r i t t e n w i t h new i n f o r m a t i o n from t h e r e onwards. I f a g i v e n
implementat ion can o n l y o v e r w r i t e from t h e beg inn ing o f a l i n e , o r even from
t h e s t a r t o f t h e book, it should be a r ranged t h a t "pu t p o s s i b l e " (which is s
procedure) o n l y r e t u r n s TRUE when t h e c u r r e n t p o s i t i o n is a t a p l a c e from
which o v e r w r i t i n g may commence.

However, even if " g e t w is n o t I tposs iblef1 (b u t I1putt1 i s) , t h e Report
p e r m i t s such an a r b i t r a r y p o i n t t o be reached by s u i t a b l e c a l l s o f "spacet1 ,
l lnewlinell and "newpagen. However, t h e s e ca l l s can o n l y be implemented by
r e a d i n g t h e book from t h e b e g i n n i n g , c o u n t i n g c h a r a c t e r s and l i n e and page
t e r m i n a t o r s , and t h i s is i m p o s s i b l e by h y p o t h e s i s . It is indeed s t r a n g e t h a t
even " p u t (f , newl ine)" c a u s e s t h e book t o be r e a d i n o r d e r t o s k i p a l i n e .
It is even s t r a n g e r t h a t t h e r e is no way i n which t h e first l i n e o f an
e x i s t i n g book can be o v e r w r i t t e n w i t h an empty l i n e . These d i f f i c u l t i e s a l l
s tem from t h e f a c t t h a t i t is t h e p u t t i n g o f a n a c t u a l c h a r a c t e r which
c a u s e s t h e l o g i c a l end o f t h e f i l e t o be r e t r a c t e d t o t h e c u r r e n t p o s i t i o n
(1 0 . 3 . 3 . l . b) . Implementers a r e t h e r e f o r e adv i sed t o t e s t i n " s e t w r i t e moodl1
(10.3 .1 .4 . j) f o r t h e c a s e where t h e l o g i c a l f i l e end is beyond t h e c u r r e n t
l i n e i n a s e q u e n t i a l a c c e s s book, and t o r e t r a c t t h e l o g i c a l f i l e end t h e r e
r a t h e r than i n " p u t chart1. Moreover, i t should now be t h e c a s e t h a t a l l
c a l l s o f "putl1 and " p u t f n , even "pu t (f , ()) " , shou ld set t h e w r i t e mood and
b r i n g abou t t h i s e f f e c t . To t h i s end, implementors shou ld always c a l l l l s e t
write mood" a t t h e s ta r t o f "putt1 (10 .3 .3 . l . a) and o f t lputfl ' (10.3.5.1.a)
{ j u s t a f t e r t h e t e s t s f o r llopenedM which a r e c u r r e n t l y p rov ided) . Very few
programs w i l l be changed i n meaning a s a r e s u l t o f t h i s and , moreover, t h e
p r e c i s e e f f e c t d e f i n e d by t h e Report can always be o b t a i n e d by w r i t i n g
" g e t (f , newl ine)" (i n s i t u a t i o n s where " g e t n is l l p o s s i b l e n , o f c o u r s e) .

32) On t h e scope o f t h e pa r t i cu la r -p rogram.

According t o t h e l e t t e r o f t h e Revised Report t h e first e n v i r o n c r e a t e d
d u r i n g t h e e l a b o r a t i o n o f t h e ENCLOSED-clause o f t h e pa r t i cu la r -p rogram is
newer i n scope than t h e e n v i r o n o f t h e u s e r - t a s k i n which i t is c o n t a i n e d .
T h i s would imply t h 3 t t h e heap scope (s e e a l s o Commentary 3) i s newer t h a n
t h e scope o f t h e v a r i a b l e s (i n p a r t i c u l a r " s t a n d i n w , n s t a n d o u t w and " s t a n d
back1') d e c l a r e d i n t h e p a r t i c u l a r - p r e l u d e . A s a consequence, t h e e l a b o r a t i o n

AB 44p.7

of, e.g., the call "open(stand in, "", stand in channel)" in the
particular-prelude would result in scope violation and thus be undefined.
This is, however, not the intention. In effect, the environ in question
should be considered nonlocal, so that the scopes concerned are the same.
Also, the meaning of the following particular-program should be well
defined :

BEGIN on logical file end(stand in, (REF FILE f)BOOL: GOTO ife);
DO STRING s; read((s, newllne)); print((s, newline)) OD;

Ire: print("***eof***")
END

AB44.4.1

EXPERIENCES WITH ALGOL 68 TRANSPUT

AB 44p.8

PARTS ~ II :

Critical remarks on Revised Report's transput section

by Hanno Wupper ~ July 1978

Preliminary remark

If, from the following pages, readers not familiar with Algol 68 might
get the impression that part 10.3 of the Revised Report is a most useless
and confusing document written by complete ignorants, the author must
apologize and stress that this was not at all his intention. A useful and
comfortable transput system has been defined there. The definition consists
of a set of Algol 68 programs describing transput activities down to the
handling of single characters in the file (or book, as it is called there),
thus making clear" beyond doubt what has to happen in any particular
situation. Algol 68 transput, as well as its method of definition, is in a
much better state than the definitions of I/O systems of various other
languages and cannot be ignored by anyone working on operating systems or
higher level languages.

Not before we actually started an implementation we noticed several
disadvantages. The offensive tone of this paper is a result of
disappointment due to expectations too optimistic. If some of the
statements in this papers can be proved wrong, all the better. The author
wishes to express his thanks to J.C. van Vliet from the Mathematical Centre,
Amsterdam and to his colleages G.Baszenski, J.Krieger, M.Peuser, N. Voelker,
C.-G.Warlich and, above all, Prof. H. Ehlich, who all found time for long
discussions of transput. Source of experiences was the work on an
implementation for the TR 440, which would have been impossible without the
fine Algol 68C bootstrap-kit from Cambridge University and J.C.van Vliet's
machine independent transput system.

Address: Rechenzentrum der Ruhr-Universitaet Bochum,
Postfach 102148. D-4630 Bochum. W. Germany

Part I

AB 44p.9

UNDERSTANDING ALGOL 68 TRANSPUT

General considerations

1. Algol 68, defined by programs written in three different languages

In his remarks "On the Revised Algol 68 Report" [Algol Bulletin
AB36.4.3] M. Sintzoff says that rewriting the old Report had been organized
as a programming project. Indeed the Revised Report can be considered as a
program defining the Algol 68 machine. It consists of three part~ each
written in a different language:

- Syntax, i.e. the set of program texts accepted by the Algol 68
machine is defined by the rules of a two-level van Wijngaarden grammar.
Such grammars in principle are powerful enough to simulate any Turing
machine, thus allowing the occurrence of several indecidabilities; but in
the Revised Report they have been used with care: Some "general
hyper-rules" [RR 1.33 provide useful structured programming tools, and
most of the syntax part certainly forms an elegant high level program with
well chosen "identifiers" (i.e. paranotions).

- Semantics of the Algol 68 machine is defined by programs "expressed
in natural language, but making use of some Carefully and precisely
defined terms and concepts" [RR 0.1.1] (cf. Sintzoff [AB36.4.3 p31]). The
structure of the semantics parts is composed from serial, conditional, and
case constructs and is closely related to the structure of the
corresponding syntax rules.

- Only a nucleus of the Algol 68 machin~ consisting of comparatively
few "basic constructs" is defined by these means. The machine then is
extended by a program written in Algol 68 itself: The important chapters
on the standard prelude [RR 10,2] and transput [RR 10.3] mainly consist of
operator- and procedure-declarations.

To implement Algol 68 on an arbitrary machine one should have to do
nothing but provide translators for two-level grammars and for the special
subset of natural languag~ and then simply "run" the Report.

Unfortunately this is a bit difficult.

Arbitrary two-level grammars cannot be automatically converted to a
deterministic recognizer, and the special grammar in the Report seems not
to be of a type for which parser constructors have been developed (cf.
Deussen).

At least, howeve~ it does not seem too difficult to hand-translate the
rules to e.g. an equivalent affix grammar. (Affix grammars luckily may be
automatically converted to an executable program, cf. Koste~ Watt.)

Though as we see the definition of syntax and semantics as given in the
Report is not suitable for automatic translation, it is clear and precise
and ~el,s the implementor exactly what to do - though of couse, "it may be
difficult to understand to the 'uninitiated' reader".

The standard pre lude as g i v e n i n p a r t IV o f the Report CRR 10.21 i n form
of several A lgo l 68 r o u t i n e t e x t s serves as a use fu l implementation model:
The method of d e f i n i t i o n here presents no d i f f i c u l t i e s ; some o f the
operat ions might even be implemented by t r a n s l a t i n g p a r t s o f the Report.

The t ransput section, however, C R N 10.31 presents a somewhat d i f f e r e n t
s i t ua t i on . I t again cons i s t s o f A lgo l 68 dec la ra t i ons and again t h e method
o f d e s c r i p t i o n i s understood easi ly ; but then the iaplerrentor i s l e f t with
Long programs the intention o f which tends t o remain obscure. The
a d d i t i o n a l pragmatic remarks sometimes a r e more confusing than
enl ightening. Moreover, some o f the procedures even seem t o con ta in bugs.
In the fo l low ing chapter we w i l l have a c loser took a t why t h i s sec t i on may
be o f l i t t l e help t o the implementor.

2. I n i t i a l problems: F inding out what t o implement

When an implementor who has n o t been fami l i a r w i t h A lgo l 68 t ransput fo r
years, s tud ies sec t i on 10.3 o f the Revised Report he f i n d s h imse l f
completely los t .

A t f i r s t he does not understand what books, channele, and f i l e s r e a l l y
are and what i s t he d i f f e r e n c e between them. He probably knows a l l about
h i s own opera t ing system and about the t ransput systems f o r several o ther
proyranminy languages; b u t the pragmatics o f the Report g i v e l i t t l e he lp t o
match uhat he knows u i t h what he i s t o impiemeht f o r h i s A lgo l 68 system.
Probably he sooner o r l a t e r ge ts some idea t h a t a "book" i s more o r l ess
uhat i s c a l l e d f i l e i n most opera t ing systems, and he sure ty w i l l f i n d out
t h a t t h a t a " f i l e " i s no more than a k i n d o f s t a t u s vector, aesc r ib ing the
momentary s i t u a t i o n o f t ransput f o r an open book. But he ge ts q u i t e mixed
up when he wants t o know what a "channel" r e a l l y is. The pragmatics CRR
10.3.1.21 say something about phys i ca l devices, poss ib l y use fu l i n nuclear
physics and t h a t "a channel i s a s t r u c t u r e d value whose f i e l d s are r o u t i n e s
r e t u r n i n g t r u t h values which determine the a v a i l a b l e methods o f access t o a
book l i n k e d v i a t h a t channel" which t a t t e r knowledge may as w e l l be
ex t rac ted from the d e f i n i t i o n of mode .CHANNEl, where i t i s expressed more
c l e a r l y CRR 10.3.1.2.al. One a lso learhs t h a t a channeL has some "channel
number", which s l i g h t l y reminds the reader o f For t ran 's unit nunbers. (The
pragmatics say no th ing about it, nor seems i t t o be used anywhere i n t he
Report.)

A channel "corresponds t o one o r more phys i ca l devices" CRR 10.3.1.23 -
bu t i n modern opera t ing systems the user does no t need t o know about
phys i ca l devices. Maybe a channel r e a l l y i s a u n i t nunber p l u s some u s e f u l
enqu i ry rou t ines? But then one learns t h a t several f i l e s may be open a t one
and the same channel a time. Perhaps i t i s sa fes t t o have j u s t one channel
and code every th ing i n the f i l e idf, o r t o p rov ide one channel f o r each
For t ran l o g i c a l u n i t nunber and a t low the i d f t o be the empty s t r i n g only?
The purpose o f channels remains i n t h e dark.

When a f t e r a l l one f e e l s sure what t o do u i t h them one can s t a r t t o
implement a t ransput system. I t w i l l , o f course, have t o behave exac t l y as .
described by the Report. But i t tu rns out t o be more than a chal lenging
puzzle t o f i n d out what r e a l l y i s described there. What one f i n a l l y has
found out o f t e n i s ra the r astonishing and not what programmers might
expect .

Of courqe t h i s i s a general programming problem. As soon as a language
conta ins as powerfu l cons t ruc ts as a r i t hme t i c operations, Loops, and
cond i t i ona l expressions i t may become indec idab le what a program r e a l l y
does and whether i t computes a c e r t a i n g iven funct ion.

Therefore, care should be taken f i r s t t o spec i f y the problem, then t o
w r i t e a w e l l s t ruc tu red program con ta in ing asser t ions t o prove i t s
correctness. Most programs a r e w r i t t e n the o ther way round: The
programmer's vague idea o f what the code should look L ike i s punched in;
du r ing the " t e s t i n g phase" several cond i t i ona l statements a re added, and
f i n a l l y the problem i s adjusted t o the behaviour o f the program.

Several important languages are known t o be def ined as "what the
compiler accepts", and some unexpected unorthogonal r e s t r i c t i o n s i n t he
Fo r t ran standard may have resu l ted from the same technique.

Sadly enough, t he t ransput sec t i on o f the Revised Report g i ves a s i m i l a r
impression - i t even seems t o conta in ser ious bugs. severa l presumed e r r o r s
and o ther problems a re l i s t e d i n an i n t e r e s t i n g paper compiled by van U l i e t
CDiA 11/13. We w i l l mention o n l y a f e u of them:

- The .BEYOND operator used i n e s t a b l i s h C10.3.1.4.bl does no t t e s t
whether a g iven p o s i t i o n i s "beyond" another one.

- Even though a spec ia l "pr imal environUi has been int roduced some
t ransput c a l l s w i 11 v i o l a t e scope r e s t r i c t ions.

- By d e f i n i t i o n of mode .INTY$E C10.3.2.2.d3 i t i s no t poss ib le t o
i n p u t values o f e.g. mode .STRUCT(.BOOL b, .STRING s).

- Input and output a re incompat ib le i n severat cases.

Hopefully, the programming e r r o r s and m i s p r i n t s w i 11 be cor rec ted by
some o f f i c i a l document; more dangerous are the cases where the behaviour of
the rou t i nes i s obscure, o r unexpected, o r no t r e a l i s t i c : hp lementors w i l i
be l i k e l y t o dev ia te s l i g h t l y o r less s l i g h t l y from the Report. There are
a l ready several implementations o f d i f f e r e n t t ransput systems, n o t a1 1 of
them being super- o r sublanguages.

But even i f one wants t o s t i c k t o the Report abso lu te l y and implement
the t ransput rou t i nes e x a c t l y as they are p r i n t e d the re one i s i n a mess:

Most p a r t s o f t ransput a c t i v i t i e s a re performed by the opera t ing system.
What remaines t o be done b y languaye dependent routines, besides conversion
o f values, i s the t e s t i n g o f cond i t ions (o r "events"), c a t l i n g event
routines, p rov id ing d e f a u l t act ions, etc. I n A l g o l 68 these act ions are
s t r o n y l y connected w i t h rou t i nes prov ided by the user. They a re q u i t e
complicated l oy i ca l l y , bu t not c r i t i c a l i n the sense o f CPU time, so i t
would be sensib le t o copy them from the Report as they are. However, i t
tu rns ou t t o be impossible t o draw a l i n e d i v i d i n g chapter 10.3 of t he
Report i n t o two appropr iate par ts :

Espec ia l l y the layout rou t i nes a re a conglomerate o f ac t ions belonging
t o a l l t he d i f f e r e n t layers i n an opera t ing system, from user l e v e l r i g h t
down t o the phys i ca l device.

One cannot copy the rou t i nes from the Report; so one has t o w r i t e a
completely new t ransput system; so one i s forced t o understand what i s
def ined by the Report, or, more precisely, what i s i n t e n d e d there.

Studying the Yransput sec t i on and f i n d i n g out i t s i n t e n t i o n tu rns ou t t o
be a source o f n o t " innocent merriment" b u t innumerable surpr ises.

Poss ib ly the authors had i n mind a special, l i m i t e d machine o r opera t ing
system w i th some very p a r t i c u l a r r e s t r i c t i o n s . The dec i s ion t o use the same
se t of layout rou t i nes f o r both reading and w r i t i n g causes a d d i t i o n a l
r e s t r i c t ions and problems.

PART I1

ALGOL 68 TRANSPUT CONSIDERED INSUFFICIENT

The f o l l o w i n g chapters t r y t o show t h a t even i f a l l implementation
problems a re solved one cannot f e e l t oo happy because the r e s u l t w i l l be
d isappo in t iny.

Whi le implementing A lgo l 68 t ranspy t on our TR440 we came along a number
o f problems f a r more ser ious than the above mentioned d i f f i c u l t i e s i n
connect ion w i t h the method of desc r ip t i on : transput, implemented e x a c t l y as
i t i s de f ined i n the Report conta ins a number o f unorthogonal r e s t r i c t i o n s
t h a t w i l l su rp r i se the user and poss ib l y g i v e him the impression t h a t A lgo l
68 possesses one o f t h e most old-fashioned t ransput systems he f i n d s on h i s
machine. Handling of random access w i 11 be i n e f f i c i e n t and undesirable,
even i n a " superlanguage" where some o f t he unnecessary r e s t r i c t i o n s have
been dropped.

4. Superfluous r e s t r i c t i o n s

The
b i n poss
c haTges
set poss
s ingu la r

a t t r i b u t e s set possible, ge t possible, put - possible, and
i b l e ought t o be mutua l ly indepen&nt. There i s no reason why
between char mood and b i n mood should be forb idden whenever .NOT

ible, o r why reading and wri'i-ing may no t be a l t e r n a t e d i n t h e
case o f a sequent ia l f i l e used f o r b i n a r y transput.

5. Important types o f books no t considered a t a l l

The t e x t s o f books f o r AlyoL 68 always have t o resemble a .REF .FLEX C3 . FLEX [I . FLEX [I .CHAR; each character being i d e n t i f i e d by a t r i p l e o f
integers, the page, line, and character numbers. p o s i t i o n s i n s i d e t h e
l o g i c a l f i l e run from .POS(l, 1,l) and never conta in gaps.

Modern opera t ing systems prov ide books o f a somewhat d i f f e r e n t s t r u c t u r e
(sometimes c a l Led "index sequent ia l " o r "sequenti a1 keyed") : There are
" record keys" ra the r than l i n e numbers, taken from an ordered se t of, i n
general, s t r i n g s o r sometimes integers. Arb i t r a r y gaps between keys i n s i d e
the l o g i c a l f i l e a re possible. Such books may be read sequen t ia l l y o r set
t o a c e r t a i n l i n e o r t o the f i r s t e x i s t i n g l i n e a f t e r a c e r t a i n key. L ines
may be of a r b i t r a r y length. Usua l ly t he re a re no pages, b u t the concept may
be general ized by a l low ing a r b i t r a r y t r e e s t r u c t u r e r a t h e r than adding j u s t
one more dimension f o r pages.

Books of t h a t k ind o r a t l e a s t use fu l spec ia l cases can be handled by
several programming languages and opera t ing systems. The spec ia l case w i t h
i n t e g r a l keys i s qui t e common, even t o c e r t a i n Basic implementations. Due
t c i t s l i m i t e d nature, standard For t ran 1 / O can be extended t o a l l ow
nandi ing of such ~ o o k s i n a s t ra igh t fo rward way. The more complicated A lgo l
58 transput, horever, suggests more than one way t o extend the e f f e c t s o f
cewline, space, o r set, and c e r t a i n l y t he re a re several p o s s i b i l i t i e s f o r
acdi t i o n a i Layout rou t i nes and events (on undef ined record, delete). Some
o f f i c i a l document w i t h appropr iate recommendat i zns i s needed urgently,
atnerd1 se there soon w i L L be a1 i kinds o f d i f f e r i n g implementations.

AB 44p.13

Another type of book not provided for is the good old magnetic tape:
Books on tape may be read backwards! (In most operating systems that is
extended to all sequential files on background storage. In Algol 68 the
routines space/backspace are not really symmetric and there are no reverse
versions of newline or newpage. The effect of Fortran's BACKSPACE can be
achieved by no means. Last not least there are no hints how to make use of
a dialogue terminal.

6. Random a c c e s s condemned to inefficiency

The main difference between sequential and random access is that in the
latter case the logical file end always is close to the character written
last, while with random ~cess--lines may be overwritten without destroying
the information on subsequent lines. The Report tries to make users benefit
from the advantages of random access as much as possible - with the result
that after each call of newline or set, the old contents of the new line
must be available. There are no means to express that one wants to
overwrite an entire line without reading it first, though that is the case
in most applications.

If the text of a book actually is a multiple value accessible to the
program this is, of course, no problem. In a real life operating system,
however, where records have to be read from background storage ("or even
from a set up in nuclear physics"), it can be too expensive. Perhaps pairs
of routines like set_to(p,l,c) vs. get from(p, l, c) might be what is needed
(with space writing blanks if a line was positioned by set to).

7. Unrealistic behaviour of compressible random access books

Except for the restrictions and inefficiencies mentioned above, all
incompressible and all sequential books behave sensibly. Now in
[RRlO. 3.1.6.aa] a most interesting pragmatic remark can be found:

"Although the effect of a channel whose books are both compressible
and of random access is well defined, it is not anticipated that such a
combination is likely to occur in actual implementations."

At first glance no harm seems to be in that statement, though, of
course, assumptions on what manufacturers might provide in an operating
system could be hazardous. Compressibility is orthogonal to and independent
of random accessibility. Users of our TR440 in fact have been declaring
nearly all their books compressible with random access for the last eight
years. Both properties are implemented efficiently, and when the price is
low one usually chooses the best available.

The shock occurred when, after starting an implementation of Algol 68
transput, we had a closer look at what actually is well defined there: Once
a line has been written to a random access book its length cannot be
changed any more (exept by scratch), even if the book is compressible. Just
look at the last example of [RR 10.3.1.3]: It will not work if set possible
(fl) .AND compressible(f1) and if the lines of the book hap--pen to be
shorter than int width.

This is a severe restriction and quite against the philosophy of random
a c c e s s .

AB 44p.14

CONCLUSION

If Algol 68 is meant to be a serious alternative to
languages, a revision and extension of transput is needed.

other existing

It should be stated here that C.H. Lindsey's recent article "Algol 68 and
your friendly Neighbourhood Operating System" [AB 42.4.4 p.22] probably
will be of great help to all implementors. Lindsey gives a comprehensive
overview of implementation problems and possible solutions. Indeed many of
the problems mentioned occurred to us during the last year. We found
similar solutions, but not without long discussions and a lot of thinking.
Most of the problems we felt unable to solv~ however, are not dealt with
by Lindsey.

Literature

P. Deussen: A decidability criterion for
van Wijngaarden Grammars,
Acta Informatica 5, 353-375 (1975)

C.H.A. Koster: Affix grammars, in:Algol68 Implementation,
North Holland, 1971

D.A. Watt: Analysis-oriented two-level grammars,
Ph.D. thesis, TU Berlin 1974

van Wijngaarden et al.: Revised Report on the Algorithmic
Language Algol6~
Acta Informatica ~ Fasc.l-~ 1975

AB 44p. 15

AB44.4.2
~han~in~ Line Lengths in Random Files.

C.J.Cheney (University of Cambridge).
C.H.Lindsey (University of Manchester).

L.G.L.T.Meertens (Mathematical Centre, Amsterdam).
H.Wupper (Ruhr University).

In a book that is both random access and compressible, the lines (and
pages) may become of any length up to the physical limit when it is first
written by sequential means (the only way to move the logical file end away
from the position (I,1,I) where it is left by "establish"). After that,
there is no way in which individual lines (or pages) can be shortened or
lengthened. Implementers whose operating system provides a~convenient system
for doing this may care to provide an environment enguiry ,'clip line
possible", and to implement the following"clipping" superlanguage feature.

In addition to the logical end of file pointer {I0.3.1.6.cc} maintained
by the implementer, let there be an additional "local logical end" pointer
which points to some position in the current line and which normally points
to the end of the line unless the logical end of file is in that line, in
which case the two pointers coincide.

Let a procedure "clip line", of mode PROC(REF FILE)VOID, be provided
whose effect, on books and channels where its use is permitted, is to set
"write mood" and then to expand the current line to some physical limit (as
in the pseudo comment in "put char" {I0.3.3.1.b+25}) and to set the logical
end to the current position. Subsequent calls of "put" within this llne push
the local end forward Just as is done with the logical end of file in "put
char" at present {I0.3.3.1.b+21}. The contents of the line between the local
logical end and the physical end are inaccessible (calls of the "on line
end" event would be made), and calls of "space" in this area write blanks.
Whenever the logical file end is within the current line, the two logical
file pointers are always moved together.

As soon as the line ceases to be current (due to a call of "newline" or
"set" or even "close"), the llne is compressed to wherever the local logical
end has now reached (or, if the book is not "compressible", it is filled
with blanks to its physical end). Thus, a user who wishes to rewrite a line
in the middle of his random-access file "set"s to the start of the line (or
to the middle of it if he only wishes to rewrite the last part of it) and
calls "clip line". He then "put"s new characters as required and in due
course when he calls "newline" or "set"s elsewhere, the line will be
rewritten with its new contents and (if "compressible") its new length.

Although it is not necessarily suggested that the "clip line" facility
should necessarily be possible on books and channels other than those for
which "compressible", "put" and "set" are all "possible", it may be observed
that its properties are in fact well defined in other cases (and useful
applications can even be imagined). Also, it is clear that "clip page" and
"clip file" facilities could also be defined (and even implemented) in an
entirely analagous manner.

AB44.4.3

AB 44p.16

A Finite State Lexical Analyzer for the Standard

Hardware Representation of ALGOL68.

by H.B.M. Jonkers

(Mathematisch Centrum, Amsterdam)

ABSTRACT

A finite state lexieal analyzer for ALGOL 68 programs written in the

standard hardware representation is described. The analyzer is written in

a very simple language, allowing semi-mechanical translation to an

arbitrary language. The whole language, including format-texts, is dealt

with.

KEY WORDS & PHRASES: ALGOL 68, lexical analysis, finite state machine,

semi-mechanical translation.

|. INTRODUCTION

For two reasons the lexical analysis of ALGOL 68 programs is not as
trivial as might be expected. First of all at some places (e.g., TAO-
symbols) the lexical structure of ALGOL 68 is rather awkward. Secondly
ALGOL 68 programs can be represented in different stropping regimes [|]. A
lexical analyzer for ALGOL 68 featuring all three stropping regimes has
already been published [2]. Apart from the deviations from [|] mentioned in
the next paragraph, the lexical analyzer described here differs from [2] in
the following points:

(I) It basically is a finite state machine. This allows a wide range
of implementation methods to be applied and adds to efficiency.

(2) It is described in a very simple language, allowing semi-
mechanical translation to an arbitrary language (e.g., machine
language). The lexlcal analyzer was in fact tested by translating
it into an ALEPH program using a text editor.

(3) All parts of programs are dealt with, including format-texts.
(4) The description is hopefully more accessible and more readable

than [2].

The lexical analyzer takes as its input program texts representing
ALGOL 68 partlcular-programs in the standard hardware representation [|],
allowing the following deviations from [I]:

(1) Besides worthy characters all characters occurring in section
9.4.1. of [3] are allowed; for a list of all characters accepted
by the lexical analyzer see appendix |. If only worthy characters
are to be accepted, this can be achieved by adding a preprocessor
to the lexical analyzer accepting worthy characters only.

(2) Besides the three stropping regimes defined in [I], a fourth
regime is provided, the STROP regime. In the STROP regime, tags
and bolds are represented as they are in POINT stropping, with the

AB 44p.17

addition of the following rule:
- A bold word may be written as a strop (,,t,,), followed, in

order, by the worthy letters or digits corresponding to the
bold-faced letters or digits in the word, followed by a
strop. If the bold word is followed by a disjunctor other
than a strop, the last strop may be omitted.

(3) In the RES regime the point may be omitted from a bold word if it
is preceded by a digit from an integral-, real- or bits-denotation
(cf. [4]).

The output of the lexical analyzer consists of "tokens", which we shall
call "words" (as in [2]) to prevent confusion, since there already is an
ALGOL 68 paranotion "token". The exact definition of a '~ord" is given in
section 3. Roughly speaking a "word" corresponds to an ALGOL 68 denotation,
comment or NOTION-symbol. Each time the lexical analyzer is activated, it
delivers a word. By repeated activation of the lexical analyzer the program
text will be transformed into a stream of words. If the program text
corresponds to an ALGOL 68 particular program in the standard hardware
representation (augmented as above), the stream of words will correspond to
this particular program in a way more fully described in section 2. If the
program text does not satisfy the specifications of the standard hardware
representation, the lexlcal analyzer will generate one or more error
messages. Otherwise the program text, and consequently the stream of words,
does not correspond to an ALGOL 68 program. If the lexical analyzer is part
of a compiler, this will lead to an error message at a higher level in the
compiler.

The lexlcal analyzer itself consists of four separate lexical
analyzers, one for each stropping regime. The first advantage of this is an
increase of efficiency: it is no longer necessary to inspect the
environment continually during lexical analysis to determine which
stropping regime we are in. Second, if we don't want to allow all of the
stropping regimes, we can simply omit the lexical analyzers for one or more
of the stropping regimes. In this way, we are not burdened with the details
of stropping regimes which are not allowed anyway, as would be the case
with a lexical analyzer in which all stropping regimes are integrated. A
disadvantage seems to be the size of such a lexical analyzer when allowing
more than one stropping regime. However, since the lexical analyzers for
the different stropping regimes differ from each other at only a limited
number of places, large parts of them can be combined. This combination of
the separate lexical analyzers is not difficult and is left to the
implementer (see also note I in section 7). The coordination of the
separate lexical analyzers during lexical analysis must be taken care of by
the global routine using them (e.g., a parser). We shall call this routine
the "supervisor".

As the lexical analyzer is composed of four lexical analyzers, one for
every stropping regime, so is in turn each lexical analyzer made up of two
analyzers: the "unit level lexical analyzer" and the "format level lexical
analyzer". The unit level lexical analyzer is designed to analyze program
text at the unit and pragmat level, assuming that the interior of pragmats
has a somewhat ALGOL 68-1ike structure. Comments are automatically skipped
by the unit level lexical analyzer. The format level lexical analyzer is
designed to analyze program text at the format-text level, comments also
being skipped automatically. A considerable part of the unit and format
level lexical analyzer coincides, so they can partially be combined. The
supervisor must coordinate the unit and format level lexical analyzer. We
shall often use "the lexical analyzer" to mean one of the separate (unit or
format level) lexical analyzers.

AB 44p.18

For reasons of efficiency, the model of a finite transducer ~asbeen
chosen for the lexical analyzer, i.e., the lexical analyzer can be viewed
as a program for a finite state machine. The description of this machine is
found in section 3. The machine is completely described in ALGOL 68 by a
number of data structures and a number of operations on these data
structures, which we shall call "instructions". Moreover, a number of
predicates on these data structures is given, which we shall call
"conditions". These "conditions" are used to enable conditional state
transitions. We point out here beforehand, that this method of description
has only been chosen for the sake of clarity and is not the best way to
implement the machine (see section 7). To describe the program which is to
run on this machine, we use a mini language called ALEX, defined in
sections 4 and 5. Programs in ALEX are closely related to right-linear
(transduction) grammars. The entire lexical analyzer was in fact
constructed by transforming context-free grammars for the different words
into right-linear grammars and subsequently combining these into an ALEX
program. The lexical analyzer program itself is listed in section 6.

2. WORDS

A word is a value with a structure (a "mode") described by the
following ALGOL 68 declaration:

mode word = struct (int mark, strin~ info);

The words generated by the lexical analyzer are described below. For each
value of the mark field the corresponding paranotlon(s) is (are) given. For
each value of the info field the corresponding representation of the
paranotion in the reference language is given, omitting typographical
display features (the Greek letter "~" is used to indicate a character).
Values of the mark field are indicated by names in upper case letters.
Values of the info field are indicated by strings (without embracing
quotes), "e" indicating the empty string.

Remarks:

(I) It is not always possible for a finite state machine to determine
whether an "=" at the end of a TAO-symbol belongs to this TAO-
symbol or not (see also [2]). In case of doubt the TAO-symbol and
the "=" are packed together into one word with mark = SHORTOP
EQUALSETY (in contrast with the algorithm in [2]). Words with mark
= SHORTOP EQUALSETY are the only words that may correspond to a
sequence of more than one symbols (see the second column in the
table below).

(2) For some applications the filling of the info field of some words
might have to be changed. For example, if comments should not be
discarded, the info field of a word with mark = COMMENT could be
filled with the comment text. In general, no fundamental changes
in the lexical analyzer are needed for this. In most cases the
insertion and/or deletion of a few "instructions" in the lexical
analyzer program will suffice.

(3) For the value "EOF" of the mark field no corresponding paranotion
is given since there is none. A word with mark = EOF is used to
indicate the end of the word stream.

AB 44p.19

mark paranotion info r ep re sen tation

TAG
BOLD

INT
REAL
BITS
SHORTOP

SHORTOP
EQUALSETY

STRING
CHAR
BECOMES
IS
ISNOT

STICKCOLON

EQUALS

TILDE

STICK

COLON

COMMA
SEMICOLON
OPEN

CLOSE

SUB
BUS

TAG-symbol.
bold-TAG-symbol.

e x c e p t :

bold-comment-symbol;
style-i-comment-symbol;
bold-pragmat-symbol;
style-i-pragmat-symbol.

integral-denotation.
real-denotation.
bits-denotation.
DOP-BECOMESETY-symbol.

e x c e p t :

equals-symbol;
tilde-symbol.

DYAD-cum-equals-symbol;
DYAD-symbol,

is-defined-as-symbol;
DYAD-cum-equals-cum-

becomes-symbol;
DYAD-cum-assigns-to-symbol,

is-defined-as-symbol.
string-denotation.
character-denotation.
becomes-symbol.
is-symbol.
is-not-symbol.

brief-else-if-symbol;
brie f-ouse-symbol.
equal s-symbol ;
is-defined-as-symbol.
tilde-symbol ;
skip-symbol •
brief- then-symbol ;
brief-el se-symbol ;
brief-in-symbol ;
brief-out-symbol.
label-symbol ;
colon-symbol ;
up- to- symbol ;
routine-symbol.
and-al so-symbol.
go-on- symbol.
brief-begin-symbol ;
brief-if-symbol ;
brief-case-symbol ;
style-i-sub-symbol •
brief-end-symbol;
brie f- fi-symbol ;
brief-esac-symbol ;
s t y le- i-bus- symbol.
b rie f- sub-symbol.
brief-bus-symbol.

1 • • " ~ n

l " " " ~ n

1 " " "gn
1 " " "~n
1 " " "~n
] " " "~n

• l " " " ~ n

c

c

E

l • • - ~ n

~ l ° " "~n

. 1 " " " ~ n

" ~ n

1 " ° " ~ n

~1 " " "~n =

, , ~] , - "~n"

I:

AB 44p.20

AT at-symbol.
NIL nil-symbol.
DOLLAR formatter-symbol.
COMMENT comment.

PRAGSYM

EOF

bold-pragmat-symbol;
style-i-pragmat-symbol.

c
o
$

~ l "" "~n ~
comment comment ~ l"" "~n c°mment
co --C°~ I "" "~n c°--

#~] •..~n#
pragmat pra~mat
pr p r
E

The following words can be generated by the format level lexical analyzer
exclusively:

CHARROW string-denotation; ~| " " "~n "~I " " "~n"
charac te r-deno tation.

FIXNUM fixed-point-numeral. ~ i " ""~n ~ I " ""~n
ASYM let ter-a-symbol. ~ a
BSYM letter-b-symbol, e b
CSYM letter-c-symbol, e c
DSYM letter-d-symbol. ~ d
ES YM let ter-e-symbol. ~ e
FSYM letter-f-symbol. ~ f
GSYM let ter-g- symbol. E g
ISYM letter-i-symbol. E i
KSYM letter-k-symbol. ¢ k
LSYM letter-l-symbol. ~ 1
N S YM let te r-n- symbol, e n
PSYM let ter-p-symbol, ~ p
QSYM let ter-q-symbol. ~ q
RSYM let ter-r-symbol. ~ r
SSYM letter-s-symbol. E s
XSYM let te r-x- symbol, e x
YSYM let ter-y-symbol, e y
Z SYM let ter-z-symbol. ~ z
POINT point-symbol, e .
PLUS plus-symbol. E +
MINDS minus-symbol. ~ -

AB 44p.21

3. MACHINE

The lexical analyzer programs are described in a language called ALEX
(see sections 4 and 5). ALEX programs describe a series of actions of a
"machine". This machine is described below by a set of ALGOL 68
declarations. The machine consists of a number of data structures, a number
of actions on the data structures, called "instructions", and a number of
predicates on the data structures, called "conditions". The "instructions"
are used in ALEX programs to denote primitive actions of the machine. The
"conditions" are used to make decisions dependent upon the value of the
machine data structures.

|. Data structures. #

struct (ink state, strin~ buffer) status;

The variable "status" represents the status of the machine.
The "state" field holds the current state of the machine.
The "buffer" field is used to cope with lookahead. #

§trin ~ input;
char head;

The variable "input '' represents the input file•
The variable "head" is used to temporarily save the first character of
"input" • 4#

struct (int mark, strin~ info) word;

The variable '~ord" is used to pass information on the token which has
been read to the outside world. #

int match index;
boo l match possible;

The variables "match index" and "match possible" are used for pattern
matching purposes inside comments, thus allowing an efficient skipping of
comments. #

2. Auxiliary definitions. #

char eof m ...;

"eof" is used as an end of file marker and must be some character that
cannot occur in the input. #

o~ norm = (char ch) char:
if chm "A" then "a"
elif ch = "B" then "b"

elif ch z "Z" then "z"

AB 44p. 22

else ch
f_.~;

We need the operator "norm" because of the fact that with a few
exceptions the two cases of a letter are equivalent. #

pr0c write = (string s) void: info of word +:= s;

o~ head = (string s) char: s[l];
o~ tail = (string s) string: s[2 : upb s] ;

proc reserved = (string s) b0ol:
(s = "at" or s = "begin" or ... or s = "while");

proc comment = (string s) bool:
(s = "co" or s = "comment");

proc pragmat = (string s) hoof:
(s = "pr" or s = "pragmat");

3. Instructions. #

proc put = void: write(norm head);
pro¢ putitem = void: write(head);
r~ save = v?id: buffer of status +:= nor m head;
proc clear = void: buffer of status := """
r~ append = void: begin write(buffer of status); clear end;
r~ reread = void: begin buffer of status +=: input; clear end;
proc read = void: head := if input = "" then eof else head input f i;
pro c next = void: input :m tail input;

r~ point = void: write(".");
r~ zero = void: write("0");
proc quote = void: write("""");
proc strop = void: write("''");
r~oc equals = void: write("=");
~roc tilde = void: write("~");
proc colon = void: write(":");
proc differs = void: write("@");
r~ divided = void: write("/");

prgc reset = void: begin match index := 0; match possible := true end;
proc match = void:

if match possible
then if match index < upb info of word

then match index +:= I;
match possible := norm head = info[match index]

else match possible := false

f__~;

proc error = (int n) void: ...;

What should be done when an error occurs is left to the implementer,
For error diagnostics, see appendix 2. #

4. Conditions. #

AB 44p.23

proc reservedinfo = bool: reserved(info o_~ word);
proc reservedbuffer = bool: reserved (buffer o_~ status);
proc commentinfo = boo!: comment(info o_~ word);
proc commentbuffer = bool: comment(buffer of status);
proc pragmatlnfo - hoof: pragmat(info of word);
proc pragmatbuffer - b ogl: pragmat(buffer of status);
r~ two = b0ol: Info of word = "2";
proc four ~ bool: info of word = "4";
proc eight = hoof: info of word = "8";
pro c sixteen = hoof: info of_ word = "|6";
proc slzeone = hoof: upb info of word = |;
proc slzetwo = bool: upb info of word = 2;
pro c slzethree - bool: upb Info of word = 3;

pro c matching = bool:
(match possible an d match index = .upb info o,f word);

AB 44p. 24

4. SYNTAX OF ALEX

ALEX programs syntactically resemble rlght-linear grammars. The only
difference is that to every production rule a (possibly empty) "action",
and to every "single production" rule a (possibly empty) "condition" is
associated. If we omit the "actions" and "conditions", what remains is a
pure right-linear grammar. In the case of the lexical analyzer described
here, this grammar generates an (infinite) stream of ALGOL 68 symbols in
the standard hardware representation. The syntax of ALEX is given by a van
Wijngaarden grammar. The van Wijngaarden grammar is used here only in its
most simple form, viz. as an abbreviation mechanism for a context free
grammar. The syntax introduces a terminology, which is used in the next
section to define the semantics of ALEX.

PRODUCTIVITY::
productive;
nonproductive.

program:
transductlon rule sequence.

transduction rule:
PRODUCTIVITY transduction rule.

PRODUCTIVITY transduction rule:
defined state, colon symbol, PRODUCTIVITY transduction rule body.

defined state:
state.

PRODUCTIVITY transductlon rule body:
PRODUCTIVITY alternative sequence option, out alternative.

PRODUCTIVITY alternative:
PRODUCTIVITY condition, transduction, go on symbol.

productive condition:
charset.

nonproductive condition:
sub symbol, condition, bus symbol.

transductlon:
curly open symbol, action, curly close symbol, applied state.

action:
empty;
mark;
instruction list;
instruction list, and also symbol, mark.

applied state:
state.

out alternative:
transduction.

Some notions are not defined in the syntax; we define them informally
below.

state : a state of the machine.
charset : a set of characters.
condition : a predicate on the machine data structures.
instruction: an operation on the machine data structures.
mark : a value of the mark field of a word.

In addition, an ALEX program must satisfy the following conditions:

AB 44p.25

(|) All charsets in a productive transduction rule are disjoint.
(2) All conditions in a nonproductive transduction rule are mutually

exclusive.
(3) All defined states are different.
(4) All applied states occur as a defined state.

Remarks:

(|) A termination condition for ALEX programs could be added without
great difficulty. However, since we only use ALEX for the
description of the lexical analyzer, we shall omit this.
Termination of the constituent programs of the lexical analyzer
(see section 6) can be verified rather easily.

(2) A transduction rule with a body consisting of an out alternative
only can be parsed as a productive as well as a nonproductive
transduction rule. Since in this case both kinds of transduction
rules are semantically equivalent, the ambiguity causes no harm.

AB 44p.26

5. SEMANTICS OF ALEX

We shall define the semantics of an ALEX program by translating it
into a pseudo ALGOL 68 procedure operating on the machine described in
section 3.

TRANSLATION OF A PROGRAM:

Let P be an ALEX program.
P - "Rl ... Rn",

where RI, ... , Rn are transduction rules.
The translation TRANS(P) of P is defined as:

TRANS(P) ffi " p r o c p ffi v o i d :
b e s i n word := (s k i p , " ") ;

goto state of status;
TRANS (R1) ;

TRANS (Rn) ;
exit:

end"

TRANSLATION OF A TRANSDUCTION RULE:

Let R be a transduction rule.

(1) R is a productive transduction rule•
R = "S: Cl Tl; ... ; Cn Tn; TO.",
where S is a state,

CI, ... , Cn are charsets,
TO, ... , Tn are transductions.

The translation TRANS(R) of R is defined as:

If n = 0 :

TRANS(R) - "s: TRANS(T0)"

If n> 0:

TRANS (R) = "S: read;
if head in CI then next; TRANS(TI)
elif head in_ C2 then next; TRANS(T2)

elif head in Cn then next; TRANS (Tn)
else TRANS (TO)
fi"

N•B•
The instruction "read" does not remove a character from the string

AB 44p.27

"input" ("next" does). It merely assigns the head of "input" to

"head" •

(2) R is a nonproductive transduction rule•
R- "S: [B]] TI; ... ; [Bn] Tn; TO.",
w h e r e S is a s t a t e ,

B i , . . . , Bn a r e c o n d i t i o n s ,
TO, . . . , Tn a r e t r a n s d u c t i o n s .

T h e t r a n s l a t i o n TRANS(R) o f R i s d e f i n e d a s :

If n - 0 :

TRANS (R) - "S: TRANS (T0)"

I f n > 0 :

TRANS(R) - ' "S: i~ B! t h e n . T R A N S (T i)
elif B2 t h e n TRANS (T2)

elif Bn t h e n TBANS(Tn)
e l s e TRANS (TO)

fi"

TRANSLATION OF A TRANSDUCTION:

L e t T b e a t r a n s d u c t i o n ,

(I) T = " { I i , • . . , I n } S " ,
where II, .•• , In are instructions,

S is a state.
The translation TRANS(T) of T is defined as:

TRANS(T) = "II; ... ; In;
state of status := S;
goto SI'

(2) T = " { I 1 , . . . , I n , M} S " ,
where II, ... , In are instructions,

M is a mark,
S is a state.

The translation TRANS(T) of T is defined as:

TRANS(T) = "II; ... ; In;
mark of word := M;
state of status :- S;
8oto exit"

AB 44p.28

6. PROGRAMS

There are eight ALEX programs constituting the lexical analyzer, one
for each pair (level, regime), where level is UNIT or FORMAT and regime is
POINT, UPPER, RES or STROP. Large parts of these programs are textually
equal. Rather than listing them all in their full length, we shall combine
them in a single listing and use two variables "level" and "regime" inside
the text to indicate what part of the text belongs to what program. So the
program for level = i and regime = r can be constructed by simply erasing
all text with level ~ i or regime ~ r.

Remarks :

(|) The names of the states have been chosen so as to indicate the
string of characters that has been read so far.

(2) All charsets occurring in the transduction rules are listed in
appendix I, except for the charset "other". The latter is not a
fixed charset but, if it occurs in a transduction rule T, it is
equal to the set of all characters (except "eof") that are not
element of a charset of T (other than "other").

(3) The state "STRINGESCAPE" has been provided to enable the use of
the strop character as an escape character inside character and
string denotations. If the strop character is to be used this way,
the transduction rule for this state must be modified.

(4) Before the first activation of a program the machine must be
initialized properly. This initialization should be done by the
supervisor and should read:

status := (EMPTY, "");

LISTING OF THE PROGRAMS

AB 44p.29

level = UNIT

Ke~ime - POINT

EM PTX :
letter {put} TAG;
point { } POINT;
digit {put} FIX;
quote { } QUOTE STRING;
e q u a l s { } EQUALS ;
tilde { } TILDE;
dyad {put } DYAD;
stick { } STICK;
colon { } COLON ;
comma {COHI'L~.} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub { SUB } EMPTY;
bus {BUS) EMPTY;
at {AT } EMPTY;
nil {NIL} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT ;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(1)} EMPTY;
{EOF} EMPTY.

r e a l m 9 = UPPER

EMPTY :
lowerletter {put} TAG;
upperletter {put} POINTETY UPPERBOLD;
point { } POINT;
digit {put} FIX;
quote (} QUOTE STRING;
equals { } EQUALS ;
tilde { } TILDE;
dyad { put } DYAD;
stick { } STICK;
colon { } COLON;
comma {COMMA} EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub { SUB } EMPTY;
bus {BUS} EMPTY;
at {AT} EMPTY;
nil {NIL } EMPTY ;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(|)} EMPTY;
{EOF} EMPTY.

AB 44p. 30

l
I
I
I
I
I
I

feB!me = RE S

EMPTY:
letter {put} TAGBOLD ;
point { } POINT;
digit {put} FIX;
quote {} QUOTE STRING;
equals { } EQUALS ;
tilde { } TILDE;
dyad { put } DYAD;
stick { } STICK;
colon { } COLON;
comma { COMMA } EMPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub { SUB } EMPTY ;
bus {BUS} EMPTY;
at {AT) EMPTY;
nil {NIL} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {) EMPTY;
other {error(1)} EMPTY;
{EOF} ~ipTY.

r e g i m e - STROP

EMPTY :
letter {put} TAG;
point { } POINT;
strop { } STROP;
digit {put} FIX;
quote { } QUOTE STRING;
equal s { } EQUALS ;
tilde { } TILDE;
dyad {put} DYAD;
stick {} STICK;
colon { } COLON;
comma {COMMA} ~IPTY;
semicolon {SEMICOLON} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
sub { SUB) EMPTY ;
bus {BUS} EMPTY;
at {AT} EMPTY;
nil {NIL} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT ;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other (error(1)} EMPTY;
{EOF} ~4PTY.

AB 44p.31

regime = POINT, STROP

TAG:
letgit (put> TAG;
typoscore (> TAG TYPOSCORE;
(TAG> mPTY.

TAG TYPOSCORE:
letglt {put} TAG;
typo () TAG TYPOSCORE;
<TAt> EMPTY.

r e g i m e - UPPER

TAG:
lowerlet8it <put) TAG;
underscore () TAG UNDERSCORE;
typo () TAG TYPO;
{TAG) EMPTY.

TAG UNDERSCORE:
lowerletgit {put) TAG;
upperletter (save, error(5), TAG) POINTETY UPPERLETTER;
typo () TAG TYPO;
{TAG) mPTY.

TAG TYPO:
lowerletgit (put) TAG;
typo () TAG TYPO;
(TAG) EMPTY.

regime = RES

TAGBOLD:
letgit {put) TAGBOLD;
underscore () TAG UNDERSCORE;
typo () TAGBOLD TYPO;
() TAGBOLD END.

TAGBOLD TYPO:
[reservedinfo] () BOLD;
() TAG TYPO.

TAGBOLD END:
[reservedinfo] {) BOLD;
,(TAG) mPTYo

TAG:
letgit <put) TAG;
underscore () TAG UNDERSCORE;
typo () TAG TYPO;
(TAG) EMPTY.

AB 44p.32

TAG UNDERSCORE:
letgit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG TYPO:
letter {save} TAG BOLDETY;
digit {put} TAG;
typo {} TAG TYPO;
{TAG} EMPTY.

TAG BOLDETY:
letgit {save} TAG BOLDETY;
underscore {append} TAG UNDERSCORE;
typo {} TAG BOLDETY TYPO;
{} TAG BOLDETY END.

TAG BOLDETY TYPO:
[reservedbuffer] {TAG} SAVEDBOLD;
{append} TAG TYPO.

TAG BOLDETY END:
[resarvedbuffer] {TAG} SAVEDBOLD;
{append, TAG} ~4PTY.

SAVEDBOLD:
{append} BOLD.

regime = POINT, RES ~ STROP

POINT :
letter {put} POINT BOLD;
digit {point, put} VAR;
typo {) POINT TYPO;
{ error (3) } EMPTY.

POINT TYPO:
digit {point, put} VAR;
typo { } POINT TYPO;
{error (3) } EMPTY.

POINT BOLD:
letgit {put} POINT BOLD;
underscore {error(6)} BOLD;
{} BOLD.

regime = UPPER

POINT :
lowerletter {put} POINT LOWERBOLD;
upperletter {put} POINTETY UPPERBOLD;
digit {point, put} VAR;
typo { } POINT TYPO;
{ error (3) } EMPTY.

AB 44p.33

POINT TYPO:
digit <point, put} VAR;
typo { } POINT TYPO;
{ error (3) } EMPTY.

POINT LOWERBOLD:
lowerletgit {put} POINT LOWERBOLD;
underscore {error(6)} BOLD;
{ } BOLD.

POINTETY UPPERBOLD:
upperletgit {put} POINTETY UPPERBOLD;
underscore {error(6)} BOLD;
{ } BOLD.

regime = STROP

STROP :
letter {put} STROP BOLD;
{error(4)} EMPTY.

STROP BOLD:
letgit {put} STROP BOLD;
strop {} BOLD;
underscore {error(6)} BOLD;
{} BOLD.

regim e = POINT i UPPER i RES i STROP
I
I B O L D :

[[commentlnfo] { } BOLDCOMMENT ;
i [pragmatinfo] {PRAGSYM} EMPTY;
I <BOLD } EMPTY.

regime = POINT i RES, STROP

FIX:
digit {put} FIX;
point { } FIX POINT;
ten {put} STAG POWER;
letter e <save} FIX E;
letter r <save} FIX R;
typo { } FIX;
{INT } EMPTY.

FIX POINT :
digit <point, put} VAR;
letter <save, INT} POINT LETTER;
typo <point} FIX POINT TYPO;
<point, zero, error(8)} VAR.

AB 44p.34

regime = , U P P E R

FIX:
digit {put} FIX;
point { } FIX POINT;
ten { put } STAG POWER;
lowerletter e {save} FIX E;
lowerletter r {save} FIX R;
typo { } FIX;
{INT} I~PTY.

FIX POINT :
digit {point, put} VAR;
lowerletter {save, INT} POINT LOWERLETTER;
upperletter {save, INT} POINTETY UPPERLETTER;
typo {point} FIX POINT TYPO;
{point, zero, error(8)} VAR.

regime = POINT, UPPER , RES, STROP

FIX POINT TYPO:
digit {put} VAR;
typo {} FIX POINT TYPO;
{zero, error(8)} VAR.

FIX E:
digit {append, put} FLO;
sign {append, put} STAG POWER SIGN;
typo {append} STAG POWER;
{INT} LEGGLE.

regime = POINT, UPPER, STROP

FIX R:
[two] {} RADIX R(1);
[four] {} RADIX R(2);
[eight] {} RADIX R(3);
[sixteen] {} RADIX R(4);
{ INT } LEGGLE.

regime = RES

FIX R:
[two] {} RADIX R(!);
[four] {} RADIX R(2);
[eight] {} RADIX R(3);
[sixteen] {} HE, ITS LEGGLE;
{ INT } LEGGLE.

AB 44p.35

realm e = POINTs RES, STROP

VAR:
digit (put} VAR;
ten {put } STAG POWER;
letter e (save} VAR E;
typo {} VAR;
(REAL} EMPTY.

regime = UPPER

VAR:
digit (put} VAR;
ten (put } STAG POWER;
lowerletter e (save} VAR E;
typo {} VAR;
(REAL } EMPTY.

K e~ime = PQINTr UPPERr REST STROP

VAR E:
digit (append, put} FLO;
sign (append, put} STAG POWER SIGN;
typo (append} STAG POWER~
(REAL} LEGGLE.

I STAG POWER:
digit (put} FLO;
sign {put} STAG POWER SIGN;
typo { } STAG POWER;
(zero, error(9), REAL} EMPTY.

STAG POWER SIGN:
digit (put} FLO;
typo { } STAG POWER SIGN;
(zero, error(9), REAL} EMPTY.

FLO:
digit (put} FLO;
typo {} FLO;
{REAL } EMPTY.

regime = POINT, RES, STROP

RADIX R(n) :
radigit(n) (append, put} BITS (n);
noradletgit (n) { save, INT } LEGGLE ;
typo (append} RADIX R TYPO(n);
(append, zero, error(|0), BITS} EMPTY.

RADIX R TYPO (n) :
radigit(n) (put} BITS(n);
typo {} RADIX R TYPO(n);
(zero, error(lO), BITS} EMPTY.

AB 44p.36

I BITS (n) :
I radigit(n) <put) BITS(n);
I typo (} BITS(n);
I <BITS) ~IPTY.

reg ime = UPPER

RADIX R (n) :
lowerradigit (n) < append, put } BITS (n) ;
lowernoradletgit~n) {save, INT) LEGGLE ;
typo <append) RADIX R TYPO(n);
<append, zero, error(lO), BITS) EMPTY.

RADIX R TYPO (n) :
lowerradigit(n) <put) BITS(n) ;
typo {) RADIX R TYPO(n);
<zero, error(10), BITS) EMPTY.

BITS (n) :
lowerradigit(n) <put) BITS (n);
typo {) BITS(n);
<BITS) ~PTY.

regime = RES

HEXBITS:
digit <put) HEXBITS;
hexletter <save) HEXBITS LEGGLE;
nohexletter <save} HEXBITS LEGGLE END;
typo <) HEXBITS;
() HEXBITS END.

I HEXBITS END:
I [sizethree] <zero, error(10), BITS) I~IPTY;

<B ITS) m P T Y .

HEXBITS LEGGLE:
digit {append, put} HEXBITS;
hexletter (save) HEXBITS LEGGLE;
nohexletter <save) HEXBITS LEGGLE END;
typo <append) HE~031TS;
<append) HEXBITS END.

HEXBITS LEGGLE END:
[sizetwo] (INT) LEGGLE;
(sizethree] <zero, error(10), BITS) LEGGLE;
<BITS) LEGGLE.

regime ~ POINTs UPPER l STROP
I
I LEGGLE:
I <append) TAG.

regime - REs
l
[LEGGLE :
[{ append } TAGBOLD.

regime - POINT, RES, STROP
l
] POINT LETTER:

{append} POINT BOLD.

regime = UPPER

POINT LOWERLETTER:
{append} POINT LOWERBOLD.

PO INTETY U PPERLETTER:
{append} POINTETY UPPERBOLD.

regime - POINTs UPPERt RES z STROP

STRINGRETURN:
[sizeone] {CHAR} EMPTY;
{STRING} EMPTY.

EQUALS:
equals {equals, equals} DYAD EQUALS;
nomad {equals, put} DYAD NOMAD;
colon { } EQUALS COLON;
{EQUALS } EMPTY.

EQUALS COLON:
equals {equals, colon, equals, SHORTOP} EMPTY;
{EQUALS) COLON.

TILDE :
equals {tilde, equals} DYAD EQUALS;
nomad {tilde, put} DYAD NOMAD;
colon { tilde} DYAD NOMADETY COLON ;
{TILDE} EMPTY.

DYAD:
equals {equals} DYAD EQUALS;
nomad {put} DYAD NOMAD;
colon { } DYAD NOMADETY COLON ;
{ SHORTOP } EMPTY.

DYAD EQUALS :
equals { } DYAD NOMAD EQUALS ;
colon {colon} DYAD EQUALS COLON;
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY} EMPTY.

DYAD EQUALS COLON:
equals {equals} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP} EMPTY.

AB 44p.37

AB 44p.38

DYAD NOMAD:
equals {} DYAD NOMAD EQUALS;
colon {}DYAD NOMADETY COLON;
{SHORTOP} EMPTY.

DYAD NOMAD EQUALS:
colon {equals, colon, SHORTOP} EMPTY;
{SHORTOP} EQUALS.

DYAD NOMADETY COLON:
equals {colon, equals, SRORTOP} EMPTY;
{SHORTOP} COLON.

SHORTOF EQUALSETY TYPOSETY:
equals {SHORTOP} EQUALS;
typo {} SHORTOP EQUALSETY TYPOSETY;
{SHORTOP EQUALSETY} EMPTY.

STICK:
colon {STICKCOLON} EMPTY;
{STICK} EMPTY.

COLON:
equals {} COLON EQUALS;
differs { } COLON DIFFERS;
divided { } COLON DIVIDED;
{COLON} EMPTY.

COLON EQUALS:
colon {IS} EMPTY;
{BECOMES} EMPTY.

COLON DIFFERS:
colon { } COLON DIFFERS COLON;
{COLON } DIFFERS.

COLON DIFFERS COLON:
equals {COLON} DIFFERS COLON EQUALS;
{ISNOT} EMPTY.

COLON DIVIDED:
equals {} COLON DIVIDED EQUALS;
{COLON} DIVIDED.

COLON DIVIDED EQUALS:
colon {ISNOT} EMPTY;
{COLON} DIVIDED EQUALS.

DIFFERS:
{differs} DYAD.

DIFFERS COLON EQUALS:
{differs, colon, equals, SHORTOP} EMPTY.

AB 44p.39

{ [DIVIDED:
] ~ {divided} DYAD.
II
I [DIVIDED EQUALS:
I ~ {divided, equals} DYAD EQUALS.

level = FORMAT

r e g i m e = PO, INT

EMPTY :
letter {save, reread} LETGITS;
point { } POINT;
digit {put} FIX;
quote { } QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF) EMPTY.

regime = UPPER

EMPTY :
lowerletter {save, reread} LETGITS ;
upperletter {save} POINTETY UPPERTAGGLE;
point {) POINT;
digit {put} FIX;
quote { } QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
c o m m a {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF} ~tPTY.

AB 44p.40

I regime = RES

EMPTY:
letter {save} TAGGLE;
point {} POINT;
digit {put} FIX;
quote {} QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put} STYLEIICOMMENT;
typo {} EMPTY;
other {error(2)} EMPTY;
{EOF} EMPTY.

regime = STROP

EMPTY :
letter {save, reread} LETGITS;
point {} POINT;
strop {} STROP;
digit {put} FIX;
quote { } QUOTE STRING;
plus {PLUS} EMPTY;
minus {MINUS} EMPTY;
comma {COMMA} EMPTY;
open {OPEN} EMPTY;
close {CLOSE} EMPTY;
dollar {DOLLAR} EMPTY;
cent {put} BRIEFCOMMENT;
cross {put } STYLEIICOMMENT ;
typo {} ~iPTY;
other {error(2)} EMPTY;
{EOF} EMPTY.

regime = RES

TAGGLE:
letglt {save} TAGGLE;
{ } TAGGLE END.

TAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{reread} LETGITS.

AB 44p.41

regime = P01NTt RES e STROP

LETGITS :

letter a {ASYM) LETGITS;
letter b {BSYM} LETGITS;
letter c {CSYM} LETGITS;
letter d {DSYM} LETGITS;
letter e {ESYM} LETGITS;
letter f {FSYM} LETGITS ;
letter g {GSYM} LETGITS ;
letter i {ISYM) LETGITS;
letter k {KSYM) LETGITS ;
letter I {LSYM} LETGITS;
letter n {NSYM} LETGITS ;
letter p {PSYM) LETGITS;
letter q {QSYM} LETGITS;
letter r {RSYM} LETGITS;
letter s {SSYM} LETGITS;
letter x {XSYM) LETGITS;
letter y {YSYM) LETGITS ;
letter z {ESYM)LETGITS;
hjmotuvw {error(2)) LETGITS;
digit {put) FIX;
{ } EMPTY.

resime = UPPER

LETGITS:
lowerletter a {ASYM} LETGITS;
lowerletter b {BSYM} LETGITS;
lowerletter c {CSYM} LETGITS;
lowerletter d {DSYM} LETGITS;
lowerletter e {ESYM} LETGITS;
lowerletter f {FSYM} LETGITS;
lowerletter g {GSYM} LETGITS;
lowerletter i {ISYM} LETGITS;
lowerletter k {KSYM} LETGITS;
lowerletter 1 {LSXM} LETGITS;
lowerletter n {NSYM} LETGITS;
lowerletter p {PSYM} LETGITS;
lowerletter q {QSYM} LETGITS;
lowerletter r {RSYM} LETGITS;
lowerletter s {SSYM} LETGITS;
lowerletter x {XSYM} LETGITS;
lowerletter y {YSYM} LETGITS;
lowerletter z {ESYM} LETGITS;
lowerhjmotuvw {error(2) } LETGITS ;
digit {put) FIX;
{ } EMPTY.

regime ~ POINTs REST STROP

I
I POINT:
I letter (save} POINT TAGGLE;
{ (POINT } m P T Y .

I

AB 44p.42

POINT TAGGLE:
letglt {save} POINT TAGGLE;
{ } POINT TAGGLE END.

POINT TAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{reread, POINT} LETGITS.

regime = UPPE R

POINT :
lowerletter {save} POINT LOWERTAGGLE;
upperletter {save} POINTETY UPPERTAGGLE;
{POINT} EMPTY.

POINT LOWERTAGGLE:
lowerletglt {save} POINT LOWERTAGGLE;
{ } POINT LOWERTAGGLE END.

POINT LOWERTAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{reread, POINT} LETGITS.

PO INTETY U PPERTAGGLE:
upperletgit {save} POINTETY UPPERTAGGLE;
{ } POINTETY UPPERTAGGLE END.

POINTETY UPPERTAGGLE END:
[commentbuffer] {append} POINTETY COMMENT;
[pragmatbuffer] {append} POINTETY PRAGMAT;
{clear, error(7)} EMPTY.

regime = POINT~ UPPERt RESt STROP

POINTETY COMMENT :
underscore {error(6) } BOLDCOMMENT ;
{ } BOLDCOMMENT.

PO INTETY PRAGMAT:
underscore {error(6), PRAGSYM} EMPTY;
{PRAGSYM} EMPTY.

regime = STROP

STROP:
letter {save} STROP TAGGLE;
{error (4) } EMPTY.

STROP TAGGLE:
letgit {save} STROP TAGGLE;
{} STROP TAGGLE END.

AB 44p.43

STROP TAGGLE END:
[commentbuffer] (append) STROP COMMENT;
[pragmatbuffer] <append} STROP PRAGMAT;
<reread, error(4)} LETGITS.

STROP COMMENT:
strop {} BOLDCOMMENT;
underscore <error(6)} BOLDCOMMENT;
{} BOLDCOMMENT.

STROP PRAGMAT:
strop {PRAGSYM} EMPTY;
underscore {error(6), PRAGSYM} EMPTY;
<PRAGSYM} EMILY.

resime = POINT a UPPER~ RESr STROP

FIX:
digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} LETGITS.

FIX TYPO:
digit {put} FIX;
typo {} FIX TYPO;
{FIXNUM} EMPTY.

STRINGRETURN:
{ CRARROW } EMPTY.

level = UNITs FORMAT

regime = POINTz UPPER~ RESt STROP

QUOTE STRING :
quote (} QUOTE STRING QUOTE;
strop (} QUOTE STRING STROP;
item <putitem} QUOTE STRING;
control < } QUOTE STRING;
other <error(ll)} QUOTE STRING;
{ error (| 3) } STRINGRETURN.

QUOTE STRING QUOTE:
quote {quote} QUOTE STRING;
typo { } QUOTE STRING QUOTE TYPO;
{ } STRINGRETURN.

QUOTE STRING QUOTE TYPO:
quote { } QUOTE STRING;
typo (} QUOTE STRING QUOTE TYPO;
{ } STRINGRETURN.

QUOTE STRING STROP:
strop <strop} QUOTE STRING;
{ } STRINGESCAPE.

AB 44p.44

STRINGESCAPE:
{strop, error(12)} QUOTE STRING.

BRIEFCOMMENT:
cent {COMMENT} EMPTY;
other {} BRIEFCOMMENT;
{error(14), COMMENT} EMPTY.

STYLEI ICOMMENT :
cross {COMMENT} EMPTY;
other { } STYLEIICOMMENT;
{error(l 4), CO~ENT} EMPTY.

regime ~ POINT

BOLDCOMMENT :
point {} BOLDCOMMENT POINT;
other { } BOLDCOMMENT ;
{ error (| 4), COMMENT } EMPTY.

BOLDCOMMENT POINT :
letter {reset, match} BOLDCOMMENT POINT TAGGLE;
point {} BOLDCOMMENT POINT;
other { } BOLDCOMMENT ;
{error(l 4), COMMENT} EMPTY.

BOLDCOMMENT POINT TAGGLE:
letgit {match} BOLDCOMMENT POINT TAGGLE;
underscore { } BOLDCOMMENT ;
{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{} BOLDCOMMENT.

regime ~ UPPER

BOLDCOMMENT :
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point { } BOLDCOMMENT POINT;
underscore { } BOLDCOMMENT UNDERSCORE;
other { } BOLDCOMMENT ;
{error(l 4), COMMENT} EMPTY.

BOLDCOMMENT POINT :
lowerletter {reset, match} BOLDCO~LMENT POINT LOWERTAGGLE;
upperletter {reset, match} BOLDCOMMENT POINTETY UPPERTAGGLE;
point { } BOLDCOMMENT POINT;
underscore { } BOLDCOMMENT UNDERSCORE;
other { } BOLDCOMMENT ;
{ error (l 4), COMMENT } ~MPTY.

AB 44p.45

BOLDCOMMENT POINT LOWERTAGGLE:
lowerletgit {match} BOLDCOMMENT POINT LOWERTAGGLE;
underscore { } BOLDCOMMENT UNDERSCORE;
{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT POINTETY UPPERTAGGLE:
upperletgit {match} BOLDCOMMENT POINTETY UPPERTAGGLE;
underscore {} BOLDCOMMENT UNDERSCORE;
{} BOLDCOMMENT ENDTEST.

BOLDCOMMENT UNDERSCORE :
upperletter {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore { } BOLDCOMMENT UNDERSCORE;
other { } BOLDCOMMENT ;
{ error (l 4), COMMENT } EMPTY.

BOLDCOMMENT UNDERSCORE UPPERTAGGLE:
upperletgit {} BOLDCOMMENT UNDERSCORE UPPERTAGGLE;
point {} BOLDCOMMENT POINT;
underscore {} BOLDCOMMENT UNDERSCORE;
other {} BOLDCOMMENT;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} EMPTY;
{ } BOLDCOMMENT.

regime = RES

BOLDCOMMENT:
letter {reset, match} BOLDCOMMENT TAGGLE;
digiscore {} BOLDCOMMENT LETGITSCORE;
other {} BOLDCOMMENT;
{error(14), COMMENT} EMPTY.

BOLDCOMMENT TAGGLE:
letgit {match} BOLDCOMMENT TAGGLE;
underscore {} BOLDCOMMENT LETGITSCORE;
{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT LETGITSCORE :
letgitscore { } BOLDCOMMENT LETGITSCORE;
other { } BOLDCOMMENT ;
{ error (l 4), COMMENT } EMPTY.

BOLDCOMMENT ENDTEST:
[matching] {COMMENT} ~4PTY;
{ } BOLDCOMMENT.

AB 44p.46

regime - STROP

BOLDCOMMENT :
point { } BOLDCOMMENT POINT;
strop { } BOLDCOMMENT STROP;
other { } BOLDCOMMENT;
{error(l 4), COMMENT} EMPTY.

BOLDCOMMENT POINT:
letter {reset, match} BOLDCOMMENT POINT TAGGLE;
point { } BOLDCOMMENT POINT;
strop { } BOLDCOMMENT STROP;
other { } BOLDCOMMENT ;
{ error (I 4), COMMENT } EMPTY.

BOLDCOMMENT POINT TAGGLE:
letgit {match} BOLDCOMMENT POINT TAGGLE;
underscore { } BOLDCOMMENT ;
{ } BOLDCOMMENT ENDTEST.

BOLDCOMMENT STROP:
letter {reset, match} BOLDCOMMENT ST~OP TAGGLE;
point { } BOLDCOMMENT POINT;
strop { } BOLDCOMMENT STROP;
other { } BOLDCOMMENT ;
{error(l 4), COMMENT} EMPTY.

BOLDCOMMENT STROP TAGGLE:
letgit {match} BOLDCOMMENT STROP TAGGLE;
strop { } BOLDCOMMENT ENDTEST;
underscore { } BOLDCOMMENT ;
{ } BOLDCOMMENT ENDTEST.

. BOLDCO~ENT ENDTEST:
[matching] {COMMENT} EMPTY;
{ } BOLDCOMMENT.

AB 44p.47

7. IMPLEMENTATION NOTES

Essentially the lexical analyzer described here is a finite state
machine. Implementation techniques for finite state machines are well
known, so we shall not discuss them here. Nevertheless there are some
details, largely pertaining to the method of description of the lexical
analyzer, that should get some attention. We discuss them below.

(]) The lexical analyzer consists of eight separate programs, one for
each pair (level, regime). If more than one such program is
needed, one might wish to combine coinciding parts of these
programs. An obvious way to do this, is to turn common sets of
states representing a submachine of the finite state machine into
procedures or subroutines. Such sets of states are, for instance,
the sets of states for the reading of short operators, strings and
comments. The degree of interweaving can even be increased by
combining "similar" states, such as the "EMPTY" states, into a
single state. Pushing this interweaving too far, however, can
easily lead to a loss of efficiency, because it requires a
frequent inspection of the current regime and/or level.

(2) The "append" instruction can be implemented by copying the
"buffer" to the "info" and subsequently clearing the buffer (as
described in section 3). However, it can be seen that if the
buffer is not empty, the only instructions executed on info and
buffer are "save", "append" and "clear". So the concatenation of
info and buffer behaves like a stack. Therefore we can implement
them as :

string infobuff;
int sep;

where

infobuff[] : sep]

represents the info, and

infobuff[sep+l : up b infobuff]

represents the buffer. An "append" instruction now boils down to:

sep := upb infobuff;

(3) In the description of the machine the input is represented as a
string, while in fact it most likely is a file. This can give some
problems implementing the "reread" instruction. The "reread"
instruction appends the contents of the buffer to the head of the
input and clears the buffer. This instruction is only used in the
format level programs (so if we only need the unit level programs,
the problem does not exist). It can be implemented by copying the
buffer to a special lookahead buffer and (after clearing the
buffer) start reading from this lookahead buffer instead of the
input file. It can easily be seen that as long as the lookahead
buffer is not empty, no characters are "saved", i.e. put in the
buffer. So one might be tempted not to copy the buffer at all and

AB 44p.48

use the buffer itself as the lookahead buffer. By doing so,
however, the stack behavior of the concatenation of info and
buffer will get lost, because it is possible that a "put"
instruction must be executed with a nonempty buffer (it is
possible to restore the stack behavior though, but this is rather
tricky). So if the info and buffer are concatenated as described
in (2), one should not use the buffer as the lookahead buffer.

REFERENCES

[|] HANSEN, W.J. and H. BOOM,
Report on the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 40 (1976) 24-43.

[2] BELL, R.,
A Token Recognizer for the Standard Hardware Representation of ALGOL 68,
Algol Bulletin 4l (1977) 47-70.

[3] WIJNGAARDEN, A. VAN, et al. (eds.),
Revised Report on the Algorithmic Language ALGOL 68,
Acta Informatica 5 (]975) |-236.

[4] HANSEN, W.J.,
Trouble Spots in the Standard Hardware Representation for ALGOL 68,
Algol Bulletin 42 (]978)]|-13.

AB 44p.49

APPENDIX 1: CHARSETS

All worthy characters (including both upper and lower case letters)

plus all characters of the reference language (including some control
characters) may occur in the input, i.e. the following characters are
allowed:

a b c d e f g h i j k l m n o p q r s t u v w x y z
AB CD EFGB I JKLMNO pQRST UVWXYZ
0 | 2 3 4 5 6 7 8 9 • I0" space . v ^ & # < _< --> > /

• z~trlq~+++ -=×* , ; () I : [1 @°$
~ " -- newline newpage

The charsets applied in section 6 are defined below. A set of characters is
denoted by a list of its elemehts surrounded by curly brackets, each
element separated by a blank. Furthermore we use "+" for set union and "-"
for set difference. The char~et "item" is not defined; it must be equal to
the set of all characters that are allowed as a string item.

at = {@}
bus = {J)
cent = {~}
close = {) }

colon = { : }
comma = {, }
control = {newline newpage}

cross = {~}
differs = {~}
digiscore = digit + underscore
digit = {0 | 2 3 4 5 6 7 8 9}

divided = {/}
dollar = {$}
dyad = nomad + {v ^ b ~ < > ~ % D L [17 + ~ + -}

equals = {=}
hexletter = {a b c d e f A B C D E F}
hjmotuvw = {h j m o t u v w H J M 0 T U V W}
letgit = letter + digit
letgitscore -- letgit + underscore
letter = lowerletter + upperletter

letter a = {a A}
letter b = {b B}
letter c = {c C}
letter d = {d D}
letter e = {e E}
letter f = {f F}
letter g = {g G}
letter i = {i I}

letter k = {k K}
letter I = {i L}
letter n = {n N}
letter p = {p P}

letter q = {q Q}
letter r = {r R}

AB 44p.50

letter s
letter x
letter y
letter z
lowerhjmotuvw

lowerletgit
lowerletter
lowerletter a
lowerletter b
lowerletter c

lowerletter d
lowerletter e

lowerletter f

lowerletter g

lowerletter i
lowerletter k
lowerletter 1
lowerletter n
lowerletter p
lowerletter q

lowerletter r
lowerletter s
lowerletter x
lowerletter y
lowerletter z

= { s s }

= { x x }

= { y X }

= { z z }

= { h j m o t u v w}

= lowerletter + digit
= {a b c d e f g h i j k i m n o p q r s t u v w x y z}
= {a}

= { b }

= {c }
= { d }

ffi { e }
= {f}

= {g}
= {i}

= {k }
= { l }
= {n}
= { p }

= {q}
= {r}
= {s }
= {x}
= { y }

= {z}

lowernoradletgit(n) = lowerletgit - lowerradigit(n)

lowerradigit(1)
lowerradigit(2)

lowerradigit(3)

lowerradigit(4)
minus

nil
nohexletter

nomad
noradletgit(n)
open
plus
point

quote
radigit(1)

radigit(2)
radigit(3)
radigit(4)
semicolon

sign
stick
strop
sub
ten
tilde

typo
typoscore
under score
upperletgit
upperletter

= (o 1}
= { o 1 2 3 }

= { 0 1 2 3 4 5 6 7}

= { 0 1 2 3 4 5 6 7 8 9 a b c d e f }

= {o}
= letter - hexletter
-- {< > / × *}

= letgit - radigit(n)
= {(}
= {+}
= { . }
= {"}

={0 l}
= {o I 2 3}

= { 0 1 2 3 4 5 6 7}
= {0 1 2 3 4 5 6 7 8 9 a b c d e f AB C D E F}
= {;}
= {+ -}
= { I }
= { ' }
= {[}

= { i o }
= { ~ }

: {space .} + control
= typo + underscore
= {_}

= upperletter + digit
= {A B C D E F G H I J K L M N O P Q R S T U V W X Y Z}

AB 44p.51

APPENDIX 2: ERROR DIAGNOSTICS

error

1 Illegal character at the unit level.
Character skipped.

2 Illegal character at the format level.
Character skipped.

3 Unidentified point.
Point skipped.

4 Unidentified strop.
Strop skipped.

5 Bold preceded by underscore.
Underscore skipped.

6 Bold followed by underscore.
Underscore skipped.

7 Illegal bold word at the format level.
Bold word skipped.

8 No digits in fractional part of real denotation.
Zero inserted.

9 No digits in exponent part of real denotation.
Zero inserted.

I0 No radix digits in bits denotation.
Zero inserted.

i | Illegal string item.
Character skipped.

12 Strop not followed by strop in character or string denotation.
Strop inserted.

13 End of file in character or string denotation.
Quote inserted.

1 4 End of file in comment.
Comment symbol inserted.

AB 44p,52

AB44.4.4 ,.The Use of Algol 68 Pattern Matching

to Describe a Formal Logic System

by V.J. Rayward-Smith,

School of Computing Studies and Accountancy,

University of East Anglia, Norwich, NR4 7TJ.

Abstract

Axioms of formal logic cannot be defined in a

context-free manner and thus standard parsing techniques

cannot be used in their recognition. This paper describes

how SNOBOL-iike pattern matching techniques are applied

to overcome the parsing problem in a package of routines

used in the teaching of formal arithmetic. The routines

are written in Algol 68 using pattern matching facilities

described by Housden and Kotarski (1977).

§I. Introduction

In his paper McGettrick (1976) discusses the problems of dealing

with logical expressions in a computer aided learning environment. In

this paper we describe the Logic Teaching Package (LTP), a package of

Algol 68 routines used to teach students the concepts of formal

arithmetic. LTP is designed for the use of third year undergraduates

undertaking a course in Mathematical Logic. This course uses the

well-known book by Kleene (1952) as its text and, in this paper, we

discuss how LTP covers those concepts introduced in Chapter IV of the

book.

It is not difficult to recognise strings conforming to Kleene's

definitions of variable, term or formula. In fact, since all these

can be described in a context-free manner, standard parsing techniques

can be used. However, this is not the case for the majority of the

axioms defined by Kleene and thus such standard parsing techniques

AB 44p.53

a r e no t g e n e r a l l y a p p l i c a b l e .

The p r o b l e m i s overcome by u s i n g SNOBOL-like c h a r a c t e r s t r i n g

p a t t e r n m a t c h i n g t e c h n i q u e s (G r i s w o l d , Poage and P o l o n s k y , 1971) t o

r e c o g n i s e t h e v a r i o u s c o n s t r u c t s . Because o f t h e a u t h o r ' s p e r s o n a l

p r e f e r e n c e f o r A lgo l 68, LTP i s w r i t t e n i n t h e l a n g u a g e and t h e p a t t e r n

m a t c h i n g f a c i l i t i e s u s e d a r e t h o s e d e s c r i b e d i n Housden and K o t a r s k i

(1977) . T h i s a lbum o f modes, o p e r a t o r s and p r o c e d u r e s which p r o v i d e s

SNOBOL-like p a t t e r n m a t c h i n g f a c i l i t i e s f o r t h e A lgo l 68 programmer

has been w e l l t e s t e d by s u c c e s s i v e c l a s s e s o f Comput ing S t u d i e s

u n d e r g r a d u a t e s on a Data S t r u c t u r e s c o u r s e t a u g h t i n t h e second y e a r

o f a B.Sc . programme a t U.E.A. (Housden and Rayward-Smi th , 1975) .

The r e c o g n i t i o n o f a c o r r e c t p r o o f i n fo rma l a r i t h m e t i c

d e m o n s t r a t e s t h e immense power o f p a t t e r n m a t c h i n g t e c h n i q u e s . The re

have been some a t t e m p t s t o d e t e r m i n e p r e c i s e l y t h e c l a s s o f l a n g u a g e s

r e c o g n i s e d by r e s t r i c t e d s e t s o f t h e p a t t e r n m a t c h i n g f a c i l i t i e s b u t

t h e p r o b l e m r e m a i n s u n s o l v e d f o r t h e g e n e r a l c a s e . F l e c k (1971) shows

t h a t t h e c o n t e x t - f r e e l a n g u a g e s can be r e c o g n i s e d u s i n g j u s t t h e

p r i m i t i v e p a t t e r n n u l l , s t r i n g c o n s t a n t s and v a r i a b l e s t o g e t h e r w i t h

a l t e r n a t i o n , c o n c a t e n a t i o n , u n e v a l u a t e d e x p r e s s i o n and a s s i g n m e n t

o p e r a t o r s . In l a t e r works , F l e c k (1975, 1978) d e s c r i b e s t h e two

c l a s s e s o f l a n g u a g e s r e c o g n i s e d by t h e s e p a t t e r n m a t c h i n g f a c i l i t i e s

w i t h t h e a d d i t i o n o f (a) c o m p l e m e n t a t i o n and (b) immed ia t e v a l u e

a s s i g n m e n t . I f b o t h c o m p l e m e n t a t i o n and immed ia t e a s s i g n m e n t a r e

added t h e n p a t t e r n m a t c h i n g can be used t o r e c o g n i s e t h e e x t e n d e d

c o n t e x t - f r e e l a n g u a g e s as d e f i n e d i n Liu (1977) . In t h i s p a p e r , we

d e s c r i b e t h e u s e o f p a t t e r n m a t c h i n g t o r e c o g n i s e a l a n g u a g e t h a t i s

n o t an e x t e n d e d c o n t e x t - f r e e l a n g u a g e . T h i s i s a c h i e v e d by t h e u se

o f d e f e r r e d e v a l u a t i o n o f p a t t e r n p r o c e d u r e s . The t h e o r e t i c a l

l i m i t a t i o n s o f such a t e c h n i q u e have y e t t o be e x p l o r e d f u l l y a l t h o u g h

a s t a r t has been made (F l e c k , 1978) .

AB 44p.54

§2. V a r i a b l e s , t e r m s and f o r m u l a e

C l e a r l y , p a t t e r n s can be d e f i n e d which c o r r e s p o n d t o t h e

definitions of variable, term and formula found in Kleene (1952).

However, one of the niggling problems in handling logical expressions

is that of removal and insertion of parentheses. The conventions for

omission of parentheses are given in Kleene (1952) together with

rules for restoring an expression to its fully parenthesised form.

Rather than cope with all the problems inherent in this, LTP firstly

translates any term or formula presented to it into an equivalent

Polish form (~ukasiewicz, 1951). For example,

both a=bvc&d

and a~ ((bvc) ~d)

a r e t r a n s l a t e d i n t o ~(a)&v(b) (c) (d)

Note t h a t d u r i n g t r a n s l a t i o n s e v e r a l c h e c k s a r e c a r r i e d o u t .

F i r s t l y , a l l v a r i a b l e s a r e r e c o g n i s e d ; u n q u a n t i f i e d v a r i a b l e s a r e

s u r r o u n d e d by (and) b u t q u a n t i f i e d v a r i a b l e s t o g e t h e r w i t h t h e

q u a n t i f i e r r e m a i n i n s q u a r e b r a c k e t s . For example ,

/Hc](c'+a=b)

is translated to [Hc]=+'(c)(a)(b)

Because variables can consist of an arbitrary number of characters,

these two conventions simplify later processing. Secondly, during

the translation phase the sprurious space characters are removed since

it is assumed that spaces are everywhere insignificant in the

student's input. Thirdly, the existence of any illegal input symbols

is reported to the student user by suitable error messages. Lastly, the

algorithm to translate an infix expression into its equivalent prefix

form enables any mismatching of parentheses to be reported during the

AB 44p.55

t r a n s l a t i o n p h a s e . The o p e r a t o r s a r e r a n k e d i n t h e o r d e r =, &, v, ~,

Vx, Hx, =, + , . , ' , where x i s any v a r i a b l e and t h e t i g h t e r t h e

o p e r a t o r b i n d s , t h e f u r t h e r t o t h e r i g h t i t a p p e a r s i n t h i s l i s t .

A f t e r c o m p l e t i o n o f t h e t r a n s l a t i o n p h a s e , variable, term and

f o r ~ l a a r e d e f i n e d u s i n g t h e f o l l o w i n g p a t t e r n s and p r o c e d u r e s ,

t h e n o t a t i o n b e i n g t h a t o f Housden and K o t a r s k i (1977) .

s t r i n g l e t t e r = " a b c d e f g h i j k l m n o p q r s t u v w x y z " , d i g i t = "0123456789" ,

z e r o = " 0 " ~ ob = " (" , cb = ") " , os = " [" , c s = "] " ;

p r o c max no = (p a t t e r n p) p a t t e r n : (r e f p a t t e r n q = heap p a t t e r n ;

q := p + *q o_ r_nu l l) ;

p a t t e r n number := span (d i g i t) ,

q u a n t i f i e r : = e x i s t s o _ r _ f o r a l l ~ t h e s t r i n g s e x i s t s and f o r a l l

r e p r e s e n t H and V ~,

c o n n e c t i v e : = and o__ror o _ r i m p l y ~ t h e s t r i n g s and , o r , imply

r e p r e s e n t ^, v , = c,

v a r i a b l e := ob + b r e a k (cb) + cb ,

q v a r i a b l e : = os + b r e a k (cs) + c s ,

t e r m : = max no (p a r t p r ime) +

(z e r o o_ r_va r i ab l e o_r_ (p l u s o _ r d o t) + * t e rm + * t e r m) ,

f o r m u l a : = e q u a l s + * te rm + * t e rm

o r * c o n n e c t i v e + * f o r m u l a + * f o r m u l a

o r n o t + * f o r m u l a

o r * q v a r i a b l e + * f o r m u l a

The o p e r a t o r * when a p p l i e d t o an o b j e c t o f mode r e f p a t t e r n

p r o d u c e s a p a t t e r n which p r e s e r v e s t h e "name" o f i t s p a t t e r n a rgument

and n o t i t s v a l u e . Th i s d e f e r r e d e v a l u a t i o n o f p a t t e r n s i s u sed b o t h

t o a v o i d u n n e c e s s a r y c o p y i n g d u r i n g p a t t e r n c o n s t r u c t i o n and a l s o i n

t h e c o n s t r u c t i o n o f r e c u r s i v e p a t t e r n e x p r e s s i o n s . The r e c u r s i v e

AB 44p.56

definition in m~no enables one to construct a pattern q to match

as many occurrences as possible of the pattern p in any input string.

The user of LTP is not made aware of the internal representation

but is simply provided with routines allowing him to test whether the

strings he defines represent variables, terms or formulae and to test

his understanding of the conventions for omission of parentheses.

Routines are also provided to check the student's understanding of

scope. The scope of a binary operator is found from the internal form

by searching from the operator for the first two occurrences of

formula-patterns. Hence, in =(a)&v(b)(c)(d), the scope of & is found

to be v(b)(c)(d). If the operator is unary, the scope is simply the

first such formula-pattern discovered. Since quantified variables are

regarded as unary operators, the scope of a quantified variable can

be similarly found, enabling LTP to check whether a given occurrence

of a variable in a formula or term is bound or free.

A procedure ~zPkbound is available which marks with a dollar

sign every bound occurrence of a variable in a formula. So, if

m~/~kbound is applied to [~h]=+'(c)(a)(b), both occurrences of c will

be marked resulting in [~c$]=+' (c$)(a)(b), but if ma/~kbound is

applied to v [Hc]=+' (c) (a) (b) =(c) (a), the third occurrence of c

will not be marked. When substituting terms for variables, it is

important to distinguish the free and bound occurrences of variables

since the substitution of a term t for a variable x in a formula A

consists of simultaneously replacing only the free occurrences of x in

A by occurrences of t. A term t is free for x in A(x) if no free

occurrence of x in A(x) is in the scope of a quantifier Vy or Hy,

where y is a variable of t. To check for this property, we simply

mark all bound occurrences of variables in A(x) using nzzPkbound;

AB 44p.57

t i s t h e n s u b s t i t u t e d f o r a l l unmarked o c c u r r e n c e s o f x i n A t o

p r o d u c e a new f o r m u l a A (t) . I t t were f r e e f o r x i n A (x) , a p p l y i n g

n~zP/cbou~/ t o A (t) would c a u s e no new m a r k i n g .

§3. P o s t u l a t e s o f t h e t h e o r y

K leene d e f i n e s t h e f o l l o w i n g p o s t u l a t e s .

GROUP A. Postulates for the predicate calculus.

GROUP Ai. Postulates for the propositional calculus.

la. A = (B ~ A).

l b . (A ~ B) ~ ((A ~ (B ~ C)) ~ (A ~ C)) .

3. A ~ (B ~ A & B).

5a. A ~ A V B .

5b. B ~ A V B .

7. (A = B) = ((A = ~ B) = ~ A) .

2. A , A ~ B
B .

4a . A & B = A .

4b. A & B ~ B .

6. (A ~ C) ~ ((B ~ C)

(A v B ~ C)) .

8. - n - h A = A.

GROUP A2.

.

(A d d i t i o n a l) P o s t u l a t e s f o r t h e p r e d i c a t e c a l c u l u s .

C ~ A(x) ~ lO. VxA(x) ~ A(t).

A(X) ~ C
12. HxA(x) ~ C"

GROUP B. (A d d i t i o n a l) Pos tu la tes f o r ntmber theo ry .

C = VxACx).

11. A(t) ~ ~xA(x).

13. A(0) & Vx(A(x) ~ A(x')) ~ A(x).

14. a' = b w ~ a = b.

16. a = b ~ (a = c ~ b = c).

18. a+0=a.

20. a .O = O.

15. --ta' = O.

17. a = b ~ a ' = b '

19. a + b ' = (a + b) ' .

21. a . b ' = a . b + a .

For P o s t u l a t e s 1 -8 , A, B and C a r e f o r m u l a e . For P o s t u l a t e s

9 -13 , x i s a v a r i a b l e , A(x) i s a f o r m u l a , C i s a f o r m u l a which does

AB 44p.58

not contain x free and t is a term which is free for x in A(x). For

Postulates 14-21, A is a formula, a, b, c and x are variables.

Postulates 2, 9 and 12 are known as rules and all the other

postulates are known as axioms.

Patterns corresponding to axioms la, ib, 3-8 and 14-21 are

simple to write. For example, the pattern corresponding to axiom la

is defined in the following way:

pattern axiom la = imply + *formula @ a + imply + *formula + *a

In this example, the operator * is applied to the string variable, a,

and this causes a pattern to be produced in which the reference to a

is kept. When pattern matching takes place, the operator @ ensures

that the variable a is associated with the first occurrence, of a

formula in the input string and thus *a ensures a match with an exact

repetition of the same formula.

Patterns corresponding to the remaining axioms (i0, Ii and 15)

are not so straightforward and stress the importance of the deferred

evaluation of procedures. The difficulty with these three axioms

arises from substitution. We will illustrate how these difficulties

are solved by constructing a pattern corresponding to axiom i0, i.e.

~[Vx]A(x)A(t), where t is a term free for x in A(x) and A(t) denotes

the formula achieved from A(x) by replacing every free occurrence of

x in A by t. The pattern required uses the operator * applied to a

procedure which defers deproceduring until the routine is encountered

during pattern matching. Considerable care must be taken, when using

such deferred procedures, to ensure that any variables used in the

body of the procedure are in scope when the procedure is executed.

This is why procedures delivering patterns used in Housden and

Kotarski (1977) are all of mode proc pattern. Problems of handling

procedures with parameters are similar to those discussed by

Rayward-Smith (1977) .
The pattern for axiom 10 is:

pattern axiom 10 = imply + os + forall + break (cs) @ x +

cs +!€ormula @ a + *formula @ b +

*(pattern:(pattern p; string adol:= markbound (a);

while ob + x + cb

isin adol replaceby "*I1 do skip od; -
while dollar isin adol replaceby "11 do skip od; -
int j , i : = index ("*", adol) ; -
if i-0 then p:= patt a -
else p:= adol [l:i-lj + term @ t; -

(j:= index (it*tt, adol [i+l:& adol]))+0

do p:= p + adol [i+l: j-l] + * t; -

if' i<e adol then p: =p+adol [i+l :upb adol] fi - - -

if (pos(1) + p + rpos(0)) isin b then - - -
if upb markbound (a) -upb a=* markbound (b) -upb b -
then null - else fail

else fail - -

Having identified the formula A(x) (called a), the variable x and

A(t) (called b), the procedure constructs a pattern which wiIl match

any string which is equal to a except that every free occurrence of

x is replaced consistently by a term t. It then checks that b is an

~ 44p.60

example o f t h i s p a t t e r n and t h a t t i s a t e r m f r e e f o r x i n A (x) .

Note t h a t i t i s p o s s i b l e t o i n c o r p o r a t e i n t o t h e p a t t e r n e r r o r m e s s a g e s

i n f o r m i n g t h e s t u d e n t u s e r o f LTP why some p a r t i c u l a r s t r i n g u n d e r

c o n s i d e r a t i o n m i g h t n o t be an example o f t h e p a t t e r n .

R u l e s 2, 9 and 12 r e q u i r e more t h a n one i n p u t s t r i n g . I n a

p r o o f , t h e s e r u l e s a r e u s e d t o deduce a s t r i n g f rom p r e v i o u s s t r i n g s .

For example , t h e p r o o f o f a = a g i v e n i n K leene (1952) commences

1. a = b ~ (a = c ~ b = c) - Axiom 16.

2. 0 = 0 ~ (0 = 0 ~ 0 = 0) - Axiom l a .

5. (a = b ~ (a = c ~ b = c)) ~ ((0 = 0 ~ (0 = 0 ~ 0 = 0))

(0 = 0 ~ (0 = 0 ~ 0 = 0))) - Axiom la.

4. (0 = 0 ~ (0 = 0 ~ 0 = 0)) ~ (a = b ~ (a = c ~ b = c)) -

Rule 2, 1, 5.

The first 5 lines of this proof can be easily checked in

isolation but the 4th. line needs reference to lines 1 and 5. Hence,

when proof checking, every line is stored. If it is an axiom, it is

checked using the pattern definitions described above but if it is a

rule, the corresponding pattern definition refers to previous lines of

the proof. LTP checks any student proof and outputs suitable error

m e s s a g e s .

§4. Conclusion

The major criticism of LTP is the relatively large amount of

store required (~ 40 K) and although work is continuing in an effort

to reduce this, significant reductions are not anticipated. On the

credit side, however, LTP is a useful packagein two respects. Firstly,

the unsophisticated user can have his understanding of predicate

calculus thoroughly checked and can receive useful output giving

AB 44p.61

g u i d a n c e as t o t h e c a u s e of his e r r o r s . S e c o n d l y , t h e s t u d e n t

f a m i l i a r w i t h t h e p a t t e r n m a t c h i n g album can f i n d a new i n s i g h t i n t o

t h e meaning o f c o n c e p t s such as " t i s a t e rm f r e e f o r x i n A (x) " . By

a p p r o a c h i n g a f o r m a l l o g i c s y s t e m t h r o u g h p a t t e r n s , many p r e v i o u s l y

d i f f i c u l t c o n c e p t s a r e c o n s i d e r a b l y s i m p l i f i e d .

Acknowledsemen t

The author would like to thank Mrs. B. Roper and Miss P. Newby

for their programming assistance during the development of LTP.

Professor Housden gave much useful advice on the use of .his.patterns

album together with continuous encouragement.

References

FLECK, A.C. (1971). Towards a theory of data structures, Journal of

Computing and System Sciences, Vol. 5, No. 5.

FLECK, A.C. (1975). Recent developments in the theory of data

structures, in Proceedings of the 4th Texas Conference on Computing

Systems, Austin, Texas .

FLECK, A.C. (1978). Formal models for string patterns, in Current

Trends in Programming Methodology, Vol. 4; Data Structuring, edited

by R. Yeh, Prentice-Hall.

GRISWOLD, R.E., POAGE, J.F. and POLONSKY, l.P. (1971). The SNOBOL 4

Progr~ng Language, Prentice-Hall.

HOUSDEN, R.J.W. and KOTARSKI, N. (1977) . C h a r a c t e r S t r i n g P a t t e r n

Matching in Algol 68, in Proceedings of the Strathclyde Algol 68

Conference, SIGPLAN, Vol. 12, No. 6.

AB 44p.62

HOUSDEN, R.J.W. and RAYWARD-SMITH, V.J. (1975). An Information

Structures Course based on Algol 68-R presented at the Conference on

Experience with Algol 68, Liverpool University. (Copies available

from the au thors) .

KLEENE, S.C. (1952). Introduction to Metamathematics, North-Holland.

LIU, K.-C. (1977). An Efficient Algorithm for String Pattern Matching,

Ph.D. Thesis, Iowa.,

LUKASIEWICZ, J. (1951). Aristotle's Syllogism from the Standpoint of

Modern Formal Logic, Oxford University Press.

McGETTRICK, A.D. (1976). Teaching Mathematics by Computer, The Computer

Journal, Vol. 20, No. 3.

RAYWARD-SMITH, V.J. (1977). Using Procedures in Lis t Processing,

in Proceedings of the Strathcl~de Algol 68 Conference, SIGPLAN,

Vol. 12, No. 6.

AB 44p.6 3

0

"+1

j:

m

[]

~ . ~ % ~ ~+ ~ '.% .,~

,, ...~.~ ~'~r,,i,~ / ~ 1

I

J

