
ISSN 0084-6198

Algol Bulletin
MAY ! 978

no.42

AB42.0

AB42. I
AB42. I. !
AB42. I. 2
AB42. I. 3
AB42. I. 4
AB42. I. 5
AB42. I. 6

AB42.2
AB42.2. !

AB42.3
AB42.3. I
AB42.3.2

AB42.4
AB42.4. I

AB42.4.2

AB42.4.3

AB42.4.4

AB42.4.5

AB42.4.6

AB42.4.7
AB42.4.8

AB42.4.9

AB42.4. !0

AB42.5
AB42.5. I

Editor' s Notes 2

Announcements
Modules and Separate Compilation 3
Errata to the Revised Report 3
ALGOL 68 Compiler for the DEC PDP11 Computer 3
Conference Proceedings: Vth III Meeting 4
TORRIX 4
Textbook: Programming and Problem Solving in ALGOL 68 4

Letter to the Editor
J. Nadrchal, Implementation on TESLA 200 5

Working Papers
Commentaries on the Revised Report 6
Parameterisation of the Environment for Transportable

Numerical Software 7

Contributed Papers
Wilfred J. Hansen,

Trouble Spots in the Standard Hardware
Representation for ALGOL 68 ! I

Wilfred J. Hansen,
ALGOL 68 Hardware Representation Recommendations !4

R. Bell,
Corrections to and Discussion of "A Token
Recognizer for the Standard Hardware
Representation of ALGOL 68" !7

C. H. Lindsey,
ALGOL 68 and your Friendly Neighbourhood
Operating System 22

A. P. Black and V. J. Rayward-Smith,
Proposals for ALGOL H - a Superlanguage of ALGOL 68 36

J. P. Baker,
The Most Contrived Factorial Program 50

Steven Pemberton, GrAmmar Analysis with ALGOL 68 53
Leo Geurts and Lambert Meer~ens,

Remarks on Abstracto 56
R. Dewar and J. Schwartz,

'Abstracto' Project for an Algorithm Specification
Language 64

Michel Sintzoff,
On Language Design for Program Construction 74

R. Haentjens and P. E. Gennart,
ALGOL 68 (revised) Format-text Syntax Chart 85

AB 42p. I

The ALGOL BULLETIN is produced under the auspices of the Working Group on
ALGOL of the International Federation for Information Processing (IFIP
WG2.1, Chairman Robert B. K. Dewar, Courant Institute).

The following statement appears here at the request of the Council of
IFIP:

nThe opinions and statements expressed by the contributors to this
Bulletin do not necessarily reflect those of IFIP and IFIP
undertakes no responsibility for any action that might arise from
such statements. Except in the case of IFIP documents, which are
clearly so designated, IFIP does not retain copyright authority on
material published here. Permission to reproduce any contribution
should be sought directly from the authors concerned. No
reproduction may be made in part or in full of documents or working
papers of the Working Group itself without permission in writing
from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been
provided by Professor Dr. Ir. W. L. van der Poel, Technische Hogeschool,
Delft, The Netherlands. Mailing in N. America is handled by the AFIPS office
in New York.

The ALGOL BULLETIN is published approximately three times per year, at a
subscription of $7 per three issues, payable in advance. Orders and
remittances (made payable to IFIP) should be sent to the Editor. Payment may
be made in any currency (a llst of acceptable approximations in the major
currencies will be sent on request), but it is the responsibility of each
sender to ensure that cheques etc. are endorsed, where necessary, to conform
to the currency requirements of his own country. Subscribers in countries
from which the export of currency is absolutely forbidden are asked to
contact the Editor, since it is not the policy of IFIP that any person
should be debarred from receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:
Dr. C. H. Lindsey,
Department of Computer Science,
University of Manchester,
Manchester, M!3 9PL,
United Kingdom.

Back numbers, when available, will be sent at $3 each. However, it is
regretted that only AB32, AB34, AB35, AB38. AB39 and ABql are currently
available. The Editor would be willing to arrange for A Xerox copy of any
individual paper to be made for anyone who undertook to pay for the cost of
Xeroxing.

AB ~ 2 p . 2

AB42.0 EDITOR'S NOTES

The Working group met at St Edmund's Hall, Oxford in December of last
year. The main work of the WG is now proceeding in the direction of trying
to understand the sort of languages one would need for the specification of
computations, without too much pressure from the problems of implementation.
A certain professor teaching ALGOL once remarked that, before constructing
the program to perform some operation, he would first describe his intended
algorithm "in abstracto". At the end of the class, one of the students came
to him and asked for further details of this language "ABSTRACTO". Well, the
WG is trying to decide what ABSTRACTO would be like, and some of the papers
in this issue of AB are working papers of the Oxford meeting which tried to
answer that question.

Discussion of ALGOL 68 matters mainly took place in meetings of the
Support Sub-committee, and of its Task Force on Transput. It is now the
established policy to publish "commentaries" dealing with the various bugs
and other problems that have arisen in connection with the Revised Report,
rather than to try and publish errata piecemeal. The first two of these
commentaries appear in this issue (AB~2.3.1) and it is expected that another
batch, dealing mainly with transput, will appear in the next issue.
Conventional errata will still be prepared for misprints and other such
trivia without technical significance, and I can provide a list of these to
interested parties on request (see AB42.1.2).

Other m a t t e r s d i s c u s s e d i n c l u d e d a p r o p o s a l f o r a Modules and S e p e r a t e
C o m p i l a t i o n e x t e n s i o n to t he l anguage (t h i s shou ld be f i n a l i z e d a t t he n e x t
meeting - see ABq2.1.1 in this issue) and the possibility of publishing an
implementation model of the Transput which Implementors could then implement
more or less as it stands without having first to understand all the finer
nuances of the official definition (which, whilst being "correct a - some
bugs excepted - never pretended to be an efficient means of implementation).
J. C. van Vliet of the Mathematisch Centrum, Amsterdam is working on this
alternative model.

Finally, it was announced during the meeting that John Peck, the Working
Group Chairman, would be resigning, having completed the customary three
year stint. The new Chairman is to be:

Robert B. K. Dewar,
New York University, Courant Institute of Mathematical Sciences,
251 Mercer Street, New York, N.Y. 10012, U.S.A.

Likewise, Bob Ozgalis, Convenor of the ALGOL 68 Support Sub-committee, is
retiring, and is to be replaced by:

S. G. van der Meulen,
Vakgroep Informatica, RiJksuniversiteit Utrecht,
Budapestlaan 6, Utrecht 2506, The Netherlands.

WG2.1 is, so far as I know, the only Working Group to publish its own
Bulletin. I am therefore particularly pleased to be able to offer space in
this issue (ABq2.3.2) to an official pronouncement by WG2.5 (the Working
Group for Numerical Software). Although this is primarily aimed at the
FORTRAN fraternity, it should be of concern to designers of all programming
languages.

In the last issue I published a plea for Algorithms, and the Factorial
Program in this issue (AB42.q.6) appears to be the result. As you will see,
it is of the specialized nature that I called for, having nothing to do with
any method Numerical Analysts might use for that purpose.

AB42.1 ~Dnouncements

AB 42p.3

AB42.1.1 Hodule8 6nd SeDarate Compilation

An extension to ALGOL 68 for Modules (after the style of AB37.4.1) and
Separate Compilation is under consideration by the Working Group's
Sub-committee on ALGOL 68 Support, and is expected to be adopted at its next
meeting in August 1978. In the meantime, implementors and others interested
can obtain a copy of the latest draft by writing to the ALGOL Bulletin
Editor. The final proposals, if adopted, will be published in the next issue
of the AB.

AB41.1.2 Errata to the Revised Report

A list of Errata to the Springer Edition of the Revised Report was
published in AB41.5.2 (these were all corrected in the SIGPLAN Edition).
Since then, various other misprints have come to light. It was decided,
however, at the meeting of the Working Group's Sub-committee on ALGOL 68
Support in December 1977, not to issue any further Errata pertaining to
minor misprints and clerical errors in the Report. Rather, the ALGOL
Bulletin Editor will maintain a cumulative list of all the Errata which have
been accepted by the Support Sub-committee, and a copy may be obtained on
req.cst. In particular, anyone contemplating making a new printing or
translation of the Report should obtain, and elaborate, this list.

It should be noted that none of the items on this list makes any change to
the language or resolves any technical problem. For these matters, the
Support Sub-committee has decided not to modify the Report itself, but
rather to issue Commentaries on specific problems, for the guidance of
implementors and others. The first set of such commentaries is published in
this issue (AB~2.3.1) and it is anticipated that a much larger set, covering
in particular the Transput section of the Report, will be published after
the next meeting of the Sub-committee.

AB41.1.3 ALGOL 68 Compiler for the DEC PDP11 Computers

A one-pass compiler for ALGOL 68 on the PDP 11 Computer operating under
both UNIX and RSX-IIM Operating Systems is now available for distribution.

The Compiler itself was written and developed at Liverpool University
(U.K.) and Carnegie-Mellon university. The operating-system interfaces were
provided by the University of Manitoba (Canada). The system has been
successfully used in a number of programming language courses and as a
general programming and research tool.

The source language is an extended versJon of ALGOL 68S (the official IFIP
subset of ALGOL 68). Thus, the major restrictions on the full ALGOL 68
language are the lack of formatted transput, flexible multiples (though
strings are provided) and some one-pBss implied restrictions on structured
and multiple types and on the coercions (implicit type changes) allowed.
Features provided which go beyond full ALGOL 68 include parallel processing
using "eventual variables" and an interface to Macro 11 procedures.

The system requires no special facilities beyond those available on the
simplest PDP 11s. The version currently being distributed requires a space
of 32K words (in addition to the operating system) to run. A second version
incorporating a loader (thus requiring considerably less space) is in
preparation. Those who order the existing system will receive the new
version at no additional cost; this version should be available in late

Spring 1978.

AB q2p.q

Documentation on both source language and installation instructions for
either or both operating systems will accompany the distribution tapes.

Distribution details available from:
ALGOL 68 Distribution manager,
Department of Computer Science,
University of Manitoba,
Winnipeg, Manitoba,
CANADA, R3T 2N2.

AB42.1.4 Conference Proceedings: Vth III Meetinz

The Proceedings of the 5th International Conference on the Implementation
and Design of Algorithmic Languages, held in Guidel (France), May 16-18,
1977, edited by J. Andre and J. P. Banatre, are now available at 100 Francs
per copy.

To order, write to
IRIA-SEFI-Diffusion,
B.P. 105,
F-78150 LE CHESNAY,
France

and include a cheque for 100 French francs (payable to "Agent Comptable de
i'IRIA").

AB42.1.5

TORRIX - A~rogr~mmlng System for Operations on Vectors and Matrices over
Arbitrary Fields and of Variable Size, by S. G. van der Meulen and M.
Veldhorst, is being published as Mathematical Centre Tracts No. 86. Volume I
(TORRIX Basis) is available now, and may be obtained from:

The mathematical Centre,
2e Boerhaavestraat 49,
Amsterdam O,
The Netherlands.

Volume 2 (TORRIX Complex, Triangular matrices, Sparse matrices, etc.) will
be available later in the year.

TORRIX comprises a complete library-prelude for ALGOL 68 for the efficient
handling of vectors and matrices. Volume ! comprises three chapters
describing respectively the Mathematical Foundation, Language
Considerations, and a Users Guide (with the complete text of the prelude).

ABq2.1.6 Textbook: Pro~rammin~ and Problem Solvln~ in ALGOL 6~

This new textbook, by Professor Andrew J. T. Colin of Strathclyde
University, is published by Macmillan in both hardback (ISBN 0-333-21716-0)
and paperback (ISBN 0-333-23115-5) editions. The paperback edition costs
four pounds and fifty pence. It is intended primarily to teach the art of
programming, using ALGOL 68 as the specific language.

In fact, it only describes that part of ALGOL 68 which one would expect to
teach in a first-year undergraduate course, so that there is no mention of
unions, operator definitions, GOTOs, the heap, or any advanced transput. It
is particularly noteworthy for the vast number of examples in the text,
illustrating all the common algorithms which students should have at their
fingertips. There are also copious excercises at the end of each chapter,

with worked solutions to the more interesting ones.

AB 42p.5

AB42.2 Letter to the Editor

AB42.2.1 ~molementation on TESLA 200

Dear Dr. Lindsey,

I take the liberty to complete the list of ALGOL 68 Compilers that was
published in AB41.4.6, p. 71-73. the last but one item of the list should
have the form:

A68 subset
Authors J. Nadrchal et al.

Czechoslovak Academy of Sciences, Prague
Start pate
Finish Date
~x/~J~n in
Run~ ~n
Remarks

1970
1977
ML/I macrogenerator, APS assembler
TESLA 200
No heaD, union, flex
4 passes.

Yours sincerely,

J. Nadrchal

Czechoslovak Academy of Sc iences
Institute of LSolid State Physics
162 53 Praha~6, Cukrovarnicka 10
Czechoslovakia

A842.3.1 . Commentaries on the Revised Report

AB42 ,p. 6

The following commentaries are issued by the Sub-committee on ALGOL
68 Support, a standing sub-committee of IFIP WG2.1. They deal with
problems which have been raised in connection with the Revised Report on
the Algorithmic Language ALGOL 68, and mostly take the form of advice to
implementors as to what action they should take in connection with those
problems. These commentaries are not to be construed as modifications to
the text of the Revised Report.

Note that commentaries are not being published on trivial misprints.
Those concerned about such misprints (and especially those preparing new
printings of the Report) should apply to the Editor of the ALGOL
Bulletin for the latest list of agreed Errata.

I) Interruption of loops.

Although the semantics of 3.5.2 suggest that a count of the number of
iterations of a loop should be kept even when the for-part and the
intervals of a loop-clause are EMPTY, it is clearly unnecessary for an
implementation actually to implement the count in this case, and it
would therefore be unreasonable for an implementation to interrupt
(2.1.4.3.h) the elaboration simply because such a count had overflowed.
Thus, the elaboration of WHILE TRUE DO SKIP OD would be expected to
continue beyond maxint iterations and would not be terminated unless
some othe action of the operator or operating system intervened.

On the other hand, if a for-part or a FROBYT-part is present in a
loop-clause an iteration count must be kept and will be subject to the
arithmetic limitations of the hardware. If this count should overflow,
therefore, it is reasonable for the implementation to interrupt the
elaboration under the provisions of 2.1.4.3.h. For example, in:

FOR i FROM maxint-3 TO maxint DO print(i) OD
the implementation may attempt to compute the quantity (maxint+1) (as is
indeed suggested by 3.5.2.Step 4), and it will then be quite justified
in interrupting.

2) Plus operator on strings.

The + operator for STRINGs declared in I0.2.3.10.i works with strings
whose descriptors are exactly flat (2.1.3.q.c), e.g.:

LOC [1:0] CHAR +"abc" # yields "abe" #
but has undefined semantics if a descriptor is "super flat", e.g.:

LOC [I:-I] CHAR + "abc" # should have yielded "abc" also #

This is an error in the Report, and implementations should accept all
such STRINGs and yield the same result as if LOC [1:0] CHAR had been
provided.

AB42 p.7

AB42.3.2 P a r a m e t e r i s a t i o n of the Environment for Transportabl_e
Numerical Sof tware

E d i t o r B. Ford
P repa red and agreed by the IFIP Working Group on Numerical Sof tware

(~ 2.5)

History

An early draft of this note was used as a discussion document during the
first meeting of the IFIP Working Group on Numerical Software (WG 2.5) in
Oxford in January 1975. The meeting requested a precise specification of
the purpose of the note and suggested a nigher of other improvements which
led to a second draft. Written comment led to further changes. A third
draft was discussed during a workshop on transportable numerical software
in the Applied Mathematics Division of the Argonne National Laboratory in
August 1975. A fourth draft was written in January 1976 and distributed
widely for comment and criticism. Discussion at the NSF/ERDA workshop on
portability of numerical software and at the second meeting of the IFIP
WG 2.5 (both in June 1976), together with correspondence from other parties
led to the preparation of the present document. Although some of the comment
was contradictory, it is our belief that this final doc~nent represents a
consensus view.

Objectives

The development of numerical software entails three distinct steps:

(i) the design of the algorithm

(ii) its realization as a documented source-language subroutine or
program

and

(iii) the testing of the compiled code on a given confi@uration (i.e.
a machine together with its operating system, compiler and
available libraries) and its detailed documentation for that
configuration.

While the final code must depend on the configuration, it is very desirable
for the source-language version to be transportable (i.e. needing only a
small n,lmher of mechanical changes prior to compilation on a specific
configuration) and for the algorithm to be adaptable (i.e. expressed in
terms that permit efficient and accurate computation on any configuration
that is used later). Our first aim is to suggest parameters that allow
the algorithm designer to make his work adaptable in this sense. For example,
he may need the "relative precision" for a root-finding algorithm or "page
size" for an algorithm designed to solve linear equations efficiently on a
machine with virtual memory.

Our second aim is to provide a larger set of parameters that can be used in
the transportable source-language (step (ii)) in the expectation that actual
values will be readily available in the eventual run (step (iii)). The set
has to be larger since it should include such items as the standard input
and standard output units, neither of which are likely to be of concern to
the algorithm designer. The exact way that these values will be made
available is left open~ some possibilities are as function calls, as values
in a name COMMON BLOCK and as flags for a preprocessor. In all cases we
hope that the actual names we suggest are used.

AB42p.8

Our suggested parameters are listed in the table below. In addition to a
definition we give a characteristic name for the algorithm writer and an
explicit name for inclusion in the source code. These explicit names
conform to FORTRAN conventions.

Parameter Selection

The first group of parameters, which we have called the arithmetic set, are
intended to provide necessary information about the arithmetic hardware.
It should be noted that they are not intended to be sufficient to describe
the operation of the arithmetic in full detail, nor is it expected that all
will be wanted in any one program. One group of numerical analysts feels
that the detail provided by the overflow and underflow threshold parameters is
unnecessary and that the range parameter is what is really needed; another
group wants this detail. Since range cannot be computed from overflow and
underflow thresholds, we decided that all three parameters should be included.
Similarly we expect that in many applications the relative precision parameter
will be used in preference to the mantissa length but a requirement for the
mantissa has been expressed strongly by a n~her of numerical analysts.

The next set consists of basic input-output parameters likely to be required
frequent ly.

The third set contains miscellaneous parameters. As long as the majority
of FORTRAN compilers are designed to meet the ANSI X3.9-1966 FORTRAN standard
there is a continuing requirement for a parameter for the maximum number of
characters that can always be stored in an INTEGER storage unit. The n,lmher
of decimal digits accepted by the compiler is needed for preprocessors
generating specific code for a configuration. The page size may be required
to ensure that an algorithm performs efficiently on a virtual m~nory machine.
We suggest that this parameter is given the value of I for non-paging machines.

Representation and Arithmetic Operations

We use the systems of INTEGER, REAL and DOUBLE PRECISION numbers as described
in the ANSI X3.9-1966 FORTRAN standard. For the system of INTEGER numbers
we consider the arithmetic operation a ~ b, where ~ belongs to {+,-,x}, and the
monadic operation -a. The computed and stored result can be computed exactly.
For the systems of REAL and DOUBLE PRECISION nnmhers we consider the arithmetic
operation a o b, where o belongs to {+,-,x,/}, and the monadic operation -a,
to be performed correctl~ if the computed and stored result can be expressed
exactly as a (i+E') o b (I+E") and-a(I+E"') respectively, where IE'I, IE"I and
IE, 1 , I are at most comparable to relative precision.

Characteristic
Name Definition

AB42 p9

Explicit Name

DOUBLE
INTEGER REAL PRECISION

ARITHMETIC SET

Radix Base of the floating-point
nigher system.

SRADIX DRADIX

Mantissa
Length

N~mher of base-RADIX digits in
the mantissa of a stored floating-
point n~her (including, for

example, the implicit digit when
the first bit of the mantissa of
a normalized floating-point
number is not stored).

SDIGIT DDIGIT

Relative
Precision

The smallest number x such that
1.0-x < 1.0 < 1.0+x where

1.0-x and 1.0+x are the stored
values of the computed results.

SRELPR DRELPR

Overflow

Threshold

The largest integer i such
that all integers in the
range [-i,i] belong to the
system of INTEGER n, lmhers.

The largest nnmher X such

that both x and -x belong to
the system of REAL (DOUBLE
PRECISION) n11mhers.

IOVFLO

SOVFLO DOVFLO

Underflow
Threshold

The smallest positive real nnmber
x such that both x and -x are
representable as elements of
the system of REAL (DOUBLE
PRECISION) n~mhers.

SUNFLO DUNFLO

Symmetric

Range

The largest integer i such
that the arithmetic operations

are exactly performed for
all integers a, b satisfying

I el, I bl ~ i provided that the
exact mathematical results of

a ~ b does not exceed i in
absolute value.

The largest real n11mher x such

that the arithmetic operations o
are correctly performed for all

elements a, b of the system of
REAL (DOUBLE PRECISION) nnmhers,

provided that a, b and the exact
mathematical result of a o b do

not have an absolute value
outside the range [l/x, x].

IRANGE

SRANGE DRANGE

Characteristic

Name Definition

AB42 plO

Explicit
Name

INPUT/OUTPUT SET

Standard input unit The logical unit n,,mher for
the standard input unit of
the system.

NIN

Standard output unit The logical unit n,~her for
the standard output unit of
the system.

NOUT

Standard error
message unit

The logical unit nnmher for
the standard error message
unit of the system.

NERR

Number of characters The maximum n,~her of
characters, including
blanks, which can be
read from a single record
on logical unit NIN.

NCNIN

N~ber of characters The maximum nnmher of
characters, including blanks
and carriage controls, which
can be output to a single
record on logical unit NOUT.

NCNOUT

MISCELLANEOUS SET

N[~mher of characters
per word

The maximum numher of
characters that can always
be stored in an INTEGER
storage unit.

NCHAR

Page size The size of storage defined
for use within the paging
algorithm of a virtual
storage system, in INTEGER
storage units. On non-
paging machines it has the
value 1.

NIPAGE

Number of decimal
digits

The largest number of decimal
digits allowed and converted
by a given compiler when
compiling constants.

INTEGER

NIDEC

DOUBLE
REAL PRECISION

NSDEC NDDEC

AB42.4. I

AB42 p . l l

Trouble Spots in the S tandard Hardware R ~ p r e s e n t a t i o n

fo r ALGOL 68

Wil f r ed J . Hansen

U n i v e r s i t y of I l l i n o i s a t Urbana-Champaign

June 1977

A number of implementors have written to me with various comments

about the SHR, usually complaining that some feature is surprising. This

note tries to collate these comments and--where appropriate--discuss why

the SHR is the way it is and what action a compiler might take. (For a

notation I use "[xl" for hardware representations and "/ x /" for the

corresponding ALGOL 68 symbols.)

First I want to mention the treatment of errors. No concept of

degree of erroneousness was recognized in the Report on the SHR, but I

feel that a number of usages, while questionable, ought to be accepted with

no more than a warning message. It is better to get a warning than some of

the other indications of difficulty that might arise (e.g., "/ e3 /

cannot be identified" is less clear than "point ambiguous in 14.E31").

Problems with all regimes

I.X YI ~ / ~ y /, with a warning about the incorrect underscore.

I suggest that the point strop ought to have more importance than the

underline for determing intended meaning.

14 .xy l , where Ixyl cannot continue a real denotation. The

appropriate treatment depends on the nature of Ixl and IYI" If Ixl is

IEl and IYl is a digit or a sign, then a warning is imperative. It

cannot be rejected as illegal, however, because 14.mol ~ / 4 e0 / may be

part of a program where / e0 / is a TAD. In all other cases, the inter-

pretation / 4 ~ / without a message is appropriate. Indeed, if there

have been no operator definitions, conversion of a possible real to an

integer is always satisfactory. Where real denotations may precede bold

words, they can always be widened from integral.

I"" " " "" "'"I ~ / " " /, i.e., a character denotation. Some

object that this is silly, and I agree, but we never bothered to outlaw

it. A warning for complex character denotations would not be inappropriate.

[.GO TO I ~ / ~ to /. Probably a warning isn't even needed

(thanks to D. Taupin).

AB42 p12

Problems with UPPER stropping

l.aBl ~ /~ b /. This treatment seems to be a logical consequence

of the decision that /reOFz/ is to be a selection. The "case disjunction"

is treated everywhere as a break between tokens. Otherwise, we felt, a

token scanner would have to have a special exception for when the case

changed and the first token was stropped. Note that'l.a3B31 goes to

/a3 b3 /.

l a BI ~ /a b/. The SHR dictates that this is illegal even though

laBl and la B I are allowed. Though the illegality is not very defensible,

it came about from following the principle that "bold cannot be adjacent to

underline." Compilers can certainly accept it without great harm.

IATiI ~ /atl /. There is an existing compiler that treats this

as /at i/, but this clearly does not satisfy the Report itself because

there is no way to write the /atl / symbol. There must be bold digits, and

with upper stropping they can only be recognized by the fact that they

follow bold letters.

[.Prl ~ /9~_/. The objection to this is that IPR[is available so

why is the stropping permitted. Indeed if there is only one case, it is

upper case so there is still no problem getting /9_[/. What we dld was to

follow the principle that explicit stropping always works. This helps make

the three regimes closer, so a single scanner can be used. It is a tad

inconsistent to allow this, while forbidding intimidation with underscores,

but that is what we did. In our scanner design it was easier to allow the

point strop at all places than to forbid it in some.

Problems with REServed stropping

l.a3B31 ~ / a3b3 /. That this is inconsistent with UPPER

stropping is truly unfortunate, but otherwise this treatment is very

reasonable. The alternatlve seems to be to forbid IreOFzl.

Iint I; read(i) I ~ / int i; read (i) /. i.e., case is

ignored except in UPPER. Distinguishing identifiers by case was thought

to be too prone to possible error. It is already true that variations in

spacing are not significant, i.e., that las in I is the same as la sin I.

AB42 B13

I+3ENDI ~ /+3 end /. This is illegal, but compilers cancertalnly

accept it if their implementors so desire. That it is forbidden is

probably an oversight.

AB42.4.2

AB42 p.14

ALGOL 68 Hardware Representat ion Recommendations

Wilfred J. Hansen

Univers i ty of I l l i n o i s at Urbana-Champaign

During my work on the Report on the Standard Hardware
Representation for Revised ALGOL 68, I encountered a number of ideas
which--though meritorious--could not be agreed on by the Subcommittee
on ALGOL 68 Support. I have collected a few of these here in the
hopes that where implementors choose to provide such a feature they
will all provide it in the same way.

i. TITLE's

A valuable facility for identifying listings is to have
a title at the top of each page. Therefore, the pragmat

PR TITLE string-denotation PR

should be the last line on its page. The stringdenotation should appear in
the header of succeeding pages. The provision that it start a new page is
followed in a number of implementations of other languages and works
well in practice. (A number of people suggested this, and I have
forgotten who was first.)

2. 48-Characters Representation

At least two popular languages require only 48 characters
and some devices provide only those. Usually they are

letters digits space ' $ () * + , - / =

Of the 23 special characters which are worthy, I0 are available in the 48
set, six can be avoided by using alternate constructs with bold words
(it, at, if, mod, co, etc.), and three can be represented with alternate
characters from the 48 set:

"+' [÷(]÷)

Colon and semicolon can be replaced with diphthongsas suggested in the
original Report:

: -~ .. ; + ., := -~ .=

Though only the first is still mentioned in the Revised Report, all three
are non, ambiguous. The third is a special abbreviation for the very
common assignment operation, but "..--" should also be acceptable. To
resolve the ambiguity inside strings, it should be the case that upb "...,"
yields four. There is the additional problem that "3.,4" might be either
an error or a series; especially curious is

(if3. ,7. ,215.).

AB42 pI5

Presumably a compiler will have to interpret these as semicolons so the
expression is an if rather than a case.

The remaining two worthy characters, underscore and apostrophe,
have no reasonable representation in the 48 set. Thus, there can be no
string escapes and reserved words cannot be intimidated to plain in the
RES stropping regime.

3. u~ and down

For some reason the Report provides both_~ and shl for
shlft-left-operator and bothdown and shr for shift-right-operator. But
they are not synonymous because only u~ and down can operate on
semaphores and because u~ can signify exponentiation while shl cannot.

I cannot understand the need for this tangle of relationships,
especially when shl, shr, and ** are available and are--to me at least--
more mnemonic. Therfore, i suggest that, even if implemented, _Rand
down should be restricted to their operations on semaphores. That is,
their other uses should be down-played to the extent of being mentioned
in some lowly place like a single small footnote.

4. String Escapes

The Standard Hardware Representation requires that a string
escape--if it is allowed--must begin wlth an apostrophe, but make no
further specification. There were two reasons: firstly, it was felt to
be too machine dependent, and secondly, the authors of the Report on the
SHR couldn't agree as to whether prefix or circumfix apostrophes should
be used. My own feeling is that the Cambridge scheme is excellent and
machine independent. It extends to providing two cases if it is
modified to the following form:

'' + apostrophe
'/ ÷ new line
'% + new page
'+ ÷ carriage return (no line feed)
' + tab
'- + backspace
'~ + ~ (where ~ represents a space)
'into ÷ {the number of spaces specified by "int"}
'(llst of character codes separated by commas)

+ {the indicated characters}

Note that '/ and '+ have the functions that slash and plus have when used
as ASCII carriage control characters. '% seems a logical extension and
the rest seem to be pleasantly mnemonic. I would allow the character
codes to be specified as integers, bits-denotations, or by mnemonic name
(DCi, VT, ...), but this can be left for implementation definition.

AB42 p.16

By changing the Cambridge convention to use all special
characters or digits following the apostrophe, we achieve the desirable
goal of a representation for upper and lower case strings. We simply
specify that a letter alone is the lower-case version of the letter and

'letter ÷ upper-case of letter,

On one case devices, all output strings will print in a single case, but
the system will be ready for two case devices. (Apostrophe for lower
case is currently used on at least the DEC-10.)

5. of

I included a long discussion of the of problem in the
Proceedings of the 1975 International Conference on ALGOL 58, Oklahoma
State University, pp. 335-337. Essentially, there must be a special-
character representation of of because the operation binds so much more
closely even than monadic operators and yet the bold of is at least
four characters long (unless the crowded case~disJunction is used as
in "reOFz").

As we worked on the Standard, it became apparent that the best
alternative for of is the character that is worthy and yet has no meaning
outside strings: apostrophe. Part of the function "value of" in the
formula manipulation example of Rll.lO then becomes.

BEGIN REF FUNCTION f = function name'ef;
value'bound_var'f := value of(parameter'f);
value of(body'f)

END

Since the "operand" to the left of the of must be a selector, and since
a selector must be followed by of, there is little purpose to having a
more obtrusive symbol.

For stropping regimes that still use apostrophes, the best
proposal that has appeared is the "./" that I proposed at Oklahoma
State. Only six of the 25 implementors who voted agreed that it was
first choice, but no other symobl had as many votes. In the absence
of a clearly superior symbol, I suggest that "./" be adopted as the
non-bold of:

BEGIN REF FUNCTION f = function name./ef;
value./bound var./f := value of(parame~er./f);
value of (body./f)

END

Among other advantages, "./" is entirely in lower case positions on
most keyboards, just as are the letters which are the characters usually
surrounding it. Please see the Oklahoma proceedings for further
discussion of the merits of these two representations.

AB42.4.3

AB42 p . l~

C o r r e c t i o n s to and D i s c u s s i o n of "A Token Recognizer
fo r the S tandard Hardware R e p r e s e n t a t i o n of ALGOL 68"

R. B e l l
A l g o l B u l l e t i n 4 1 . 4 . 5 1977 pp 47 - 70

Corrections evoked b y a letter to the author b y Dr V.¥. Brol,
and otherwise.

pages 48, 49, 52, 6~.

Page 51~23

Page 51}5

~e55j 15

integer-denototion ~ integral-denotationS

(Occurs only in pragmatic sections and comments)

after ~ insert a semicolon

(between declarations of 'chartype' and 'uletter'

@ uletter OR sletter @ uletter(c) OR sletter(c)

414

insets
N

N

n

n

N

I!

end o f i n s e r t
line ~IZ

(In PROC tagscanner)
.... IF NOT sol

AND char =underscore
TH~ get next character (char)

IF upperstrop AND uletter(char)
TH~ C emit a warning message

- (space or p o i n t required

FX

FI ;

Pane 62~20

etc)

between tag ending with underscore
and upper case letter
starting bold word) C

(See HR 3.5.2. Such an error causes no ambiEuity in
toke~ recognition, therefore a warning rather than
a fault message is suggested. One might ask why
this requirement is imposed: is it perhaps only to
simplify translations i n t o other stropping regimes?)

(In declaration BOOL expart)

@aletterproeAND char = "E"

B00L aletter = aletterproc ;
aletterAND char = "Z"

('aletterproc' must be elaborated first, to replace
"e" "by "I" if necessary, before 'char = "E" ' is
elaborated).

End of cgrrections '

Farther reep~ses to, .D r B~!

AB42 p18

B r o l : "Why does t a g p r o c e s s i n g c o n t i n u e when an i n c o r r e c t
u n d e r s c o r e appea r s (e . g . ' a _ . b ') ?

o b v i o u s ~ f o r b i d s th ls " .

lep3~v:

Ca)

See page 55, PROC b r e a k i n t ag .

Cons ide r f i r s t POINT or UPP~ s t r o p p i n g
(page 55, 'break in tag' called in PROC tagsoanner)

X understand that you would analTse ~a_b~ thus :-

a_ =~ <~ggle>

incorrect

b ~ ~aggl~

exit from PlOC tagseanner

<tag~ e~ivalent to ~a~

Whereas I analyse it as

~_ =~ ~taggle~

unwanted discarded, with a warning

~tag~ e~ulvalent ~ ~abM

Now the c o n c a t e n a t i o n ~ t a ~ < t a g ~ i s nowhere s y n t a c t i c a l l y
c o r r e c t i n A l g o l 68.
X t h i n k t h a t a programmer i s most l i k e l y to pu t ~ a _ . b ~
where he means to pu t ~a b ~ or ~ a b ~ , bo th o f which
are equivalent to ~ab~ . Xn suoh cases my analysis
preserves the programmer's probable intention, which X
think is preferable.

(b) Under RBS stropping
(page 59, 'break in tag' called at llne 16)

Xf for example the prograamer i n t e n d s
~ f o r i to n ~

but by mistake delivers ~fo r i..._to n~
then
my way will still give the same result as if the extra
u n d e r s c o r e had n o t c r e p t i n ;
what your way would g i v e would depend on how you r ecove r
on d e t e c t i n g the e r r o r .

(c) I suggest a warning rather than a fault message because
this is only a weak error.

AB42 p19

_z

Brol: "For the procedure 'get next character',
(a) Why does this procedure need the parameter

(actual parameter of every call is 'char) ?
(b) It is more convenient and effective in many cases

when - this procedure yield CHAR,
- the even~t routine 'on line end' make

'char := eol' where 'e of' is some
available character."

Reply:

(a3

(b3

X a g r e e t h a t f o r my own p u r p o s e s I n e e d n o t h a v e t h e
REP CHAR p a r a m e t e r ; b u t i f a n y o n e e l s e w a n t s t o add t o
my work, for example routines to deal with format texts,
he may find it helpful that 'get next character' has
this parameter.

To make 'get next character' PROC CHAR instead of
PROC (RIP CHAR) VOID will help in some places, but I
think there are Just as mAuy places where it would make
me put 'char := get next character' instead of
'get next character(char)'.

To make 'eol' some'available character' is not good.
The difficulty is t o choose an 'available character'.
T h i s m u s t b e i m p l e m e n t a t i o n - d e p e n d e n t , e v e n d e v i c e -
d e p e n d e n t . One w o u l d o b v i o u s l y c h o o s e a c h a r a c t e r
n o t u s e d i n s a y A l g o l 68 s y m b o l , and t h i s c h a r a c t e r
c o u l d n o t t h e n b e a l l o w e d as a s t r i n g - i t e m . On
implementations with small character sets this could
make difficulties. This trick could wreck the portability
of the token scanner.

Brol: "Why do you use so many generators and never use variable
declarations ?"

Reply: I agree that it is pedantic. It is alao because I
normally have to use the Algol 68-R compiler, which
is older than Revised Algol 68 and does not allow me
to use the construct 'LOC INT i' instead of the
construct 'REP INT i = LOC INT'. I could simply
use 'INT i' but dislike this, especially when teaching.

Brol: "Have you a method of design of a format scaDner?"

Reply: I have not thought about this at all.

AB42 p20

Use of the word procedures

X specify that for each different "word" there is to be a
unique procedure of mode PROC(WORDPARAMS)VOXD, and that the
token recognizer is to deliver a STRUCT(STRING repstring,
PROC(WORDPARAMS)VOID wordproc) value including the appropriate

• rocedure for every word it extracts from the program text.
All tags deliver the pr�cedure 'tagproc', all bold-tags deliver
boldtaEproe', and so on).

I h a v e n o t d e f i n e d t h e r o u t i n e s t o b e a s c r i b e d t o t h e s e
w o r d p r o c e d u r e s .

Suppose we intend to use the token recognizer to feed a
mainly) top-down syntax analyser.

It is well known that the syntax rules used in RR to define
Algol 68 lead to an inefficient syntax analyser if applied
directly, so let us presuppose some equivalent but more applicable
set of rules. From these rules a "syntax-graph" can be conceived.
This graph may be represented explicitly by a llnked-list-structure,
or implicitly in the structure of the syntax analyser algorithm.

Every syntactically correct (partlcular-)progrsm-text has an
equivalent finite production-tree, and every such productlon-tree
corresponds to some path through the syntax-graph. Prom successive
words in the program text (extracted by the token recognizer) the
syntax analyser computes the path and hence the productlon-tree.
That is to say, that having reached some vertex in the graph, the
analyser will use the next word from the program text to decide
which of the possible onward-leading edges to choose, and so will
move on to another vertex.

A unique (and hence identifying) set of attributes can be
ascribed to each vertex; let this set of attributes of a vertex
be called a "context". Hence at each step in the pathfinding
two arguments are known, the current context and the current word,
from which the next context is computed. (I think we can build
error-recovery into the syntax-graph).

Now suppose that the syntax analyser is to be written in
Algol 68: the programming device that I have in mind is as
follows.

To represent a set of attributes it is surely natural to
use a structured value. I think that a variety of modes of
structures will be needed to represent all the various contexts.
In fast I shall go to the extreme and arrange that for every
distinct context I shall have a distinctive mode of structure
(then each mode-indication will be as good as a context identifier).
It follows that the mode of all contexts must be the union of all
these modes of structures.

Now understand why I declare MODE WORDFARAMS = UNION(~ ? ?) :
•his is n~v mode for the contexts, which will all be structured
values.

a f t e r t h o u g h t now comes t o me, t h a t t h e mode f o r t h e word
procedures had better be PROC(REF WORDPARAMS)VOID , which Is
a trifling alteration from the point of view of the work done so
far, but will make things more convenient for future work on a
syntax analyser.

A~42 p.21

Use of word procedures (continued)

A step in the pathfinding may be progra~ed in roughly
this way :-

get word (next word ~ a REF WORD variable ~) ;

Now we do not have to enquire what class of word
has been extracted

(wordproc OF next word) (context ~ a R~ WORDPARAMS variable ~) ;

Calls the word procedure, whatever it is.
The word procedure will probably assign a new value
to 'context': a structured value, but not of the
same mode as the superseded structured value.

The unit of the routine of every word procedure will be a
conformity clause :-

PROC tagp~oc = (REF WORDPARAMS context) VOID :

CASE

IN

C One case part for each mode representing a context
in which a tag is syntactically acceptable
#recall that every context has a different mode# C

OUT

C Error recovery routine for all those contexts in
which a tag is wrong C

ESAC

(By no means original, see for instance Informal Introduction,
2nd Ed., Section I. 6.2).

What is happening is that the hidden mode-representation which is
assigned to a reference-to-UNITED variable is being made to work
harder, by indicating context values.

AB42.4.4
vour Frlendlv Nei~hbourhood Operating Svstem.

C.H.Lindsey.
University of Manchester.

AB 42p.22

I. Introduction.

The purpose of this paper is to consider the interface between the ALGOL
68 transput system, as defined by the Revised Report, and the features
provided by real-life operating systems which are not always particularly
friendly when seen from an ALGOL 68 point of view. I start from the
definition of the Transput as given in RI0.3, and I try to identify the
features of that Transput with which actual operating systems might have
difficulty. My purpose is to list the possible courses of action open to an
implementor in each such situation, to indicate their relative merits and,
in particular, to establish their legality, i.e. whether they imply an
actual violation of the Report. It is only when we have established the
precise extent to which the present Report copes with these various
situations that we can begin to discuss whether the Report itself is
inadequate. I have tried to include all the implementation difficulties
which have been reported recently (but bear in mind that I am restricting
myself to operating system interface problems).

2. The Gremlins.

A proper understanding of the role of the Gremlins is essential to any
understanding of the relationship between an operating system and the
Transput defined by the Report.

{For the benefit of readers not familiar with RAF slang as developed
during the last war, it should be explained that "gremlins" are mythical
creatures of unfriendly and anti-social disposition (somewhat related to
hobgoblins, trolls, and other such) which were first discovered during the
!940s inhabiting the (somewhat unreliable) radar equipment of that time.
They have been variously accused of causing component failures, dry joints,
spurious signals and even, on occasions, of interchanging connections and
causing short circuits. I have no doubt that there are still preserved, at
the Royal Radar Establishment, Malvern, Top Secret documents which the
public may never be allowed to see, describing the first discovery of these
malignant creatures.}

In the Report, the Gremlins are a semaphore which, when ned, releases a
call of "undefined" (R10.4.2.a). This call is contained in a loop which is
elaborated continuously ~II ~ with the users' programs. It is
important to realise that, in spite of the very broad wording of
R10.3.1.4.a, this call of "undefined" is very limited in the damage it can
do. Because it is elaborated in an environ very close to the primal environ,
it can only see objects declared in the standard-prelude, the
librarary-prelude or the system-prelude. Therefore it can neither see nor
interfere with objects declared within any user-task (i.e. it has no access
to anything which is kept upon the stack of any particular-program) and it
is therefore unable to cause arbitrary disruptions to the user's intentions.

What then can the Gremlins legitimately do? The only variables declared
within the standard-prelude are "chainbfile" and "lockedbfile", but it may
be presumed that the Gremlins are aware of the processes going on in the
other system-tasks (RI0.4.2) and are able to communicate with those
processes by means of variables declared in the system-prelude. Therefore,
they are able to tinker with the chain of bfiles, adding and removing links,

AB 42p.23

and they may arrange to keep a private copy of the chain so that they can
detect when alterations to the official chain have been made by "open",
"establish", "close", etc. Thus they may be presumed to be aware of all
books within the system, whether opened or not, and so they are able to
modify the contents of books (even opened ones - but that would be rather
unfair) and they can alter the physical size of books and move the position
of the logical file end.

3. Friendly and unfriendly operating systems.

The purpose of the Gremlins is to model those features of operating
systems that are beyond the control of the language designer. One can say
that the intention (or rather the hope) of the Editors of the Report is
embodied in that Transput system which would be defined by the Report if the
call of "undefined" in the Gremlins never performed any action at all. I
will define a "friendly" operating system to be one which would permit an
exact implementation of that intention.

Alas! Actual operating systems are never so friendly (and implementors of
ALGOL 68 are not the only ones to have found them so). An "unfriendly"
operating system, therefore, is one in which it has to be supposed that the
Gremlins have taken various specific actions in various specific situations.
The more outrageous the actions the Gremlins must be supposed to undertake,
the more unfriendly that operating system can be said to be.

However, since the Gremlins are indeed defined, even the most unfriendly
operating system need not be in violation of the Report. Nevertheless,
implementors should be encouraged to be "reasonable" in deciding how to
circumvent the problems posed by their operating systems. That is to say,
they should only take refuge behind some action of the gremlins when some
feature of their operating system genuinely prevents them from doing
otherwise. We know that real operating, systems are indeed unfriendly, and
that is what the Gremlins are there for, but nevertheless the Gremlin-free
implementation is the ideal which implementors should try to approach. The
same principle of reasonableness should be applied in all the other parts of
the transput definition which apparently give freedom for outrageous
interpretations.

4. Sequential files.

I take it for granted that all operating systems provide a (more or less
friendly) mechanism for storing files of textual information, for retrieving
them on demand, and for inputing them from and outputing them to external
devices. There will also be means for restricting access to files by
unauthorized users. Although an ALGOL 68 implementor might be able to
implement a closer approximation to the transput defined by the Report by
ignoring his operating system conventions and constructing files in some
private format, this course of action would hardly be appreciated by the
majority of his customers. In the case of random access books (with "set
possible"), which are a peculiarly ALGOL 68 phenomenon which may not fit in
well with the operating system, private formats may be justified, but not so
in the case of sequential files. I shall discuss random access books in a
later section. In the meantime, please assume that my remarks apply to
sequential access books only, and that I am concerned only with attempts to
implement them in conjunction with the file system provided by the operating
system.

I shall periodically give examples from particular operating systems,
usually those with which I am most familiar namely GEORGE3 (ICL 1900
series), NOS (CDC machines) and RSX11 (PDP11). In the case of RSX11, what I

AB 42p.24

will really be talking about is its Record Manager, known as FCS (File
Control Services).

It is clear that an ALGOL 68 source text on its own is insufficient to
cause a system to execute a complex program. There will be a necessity for
Control Cards, or even for more complex sequences of statements in some Job
Control Language, in order to control, in particular, the connection of
books and physical devices to the program. In what follows, I presume that
such external commands are indeed provided as may be appropriate for the
particular operating system, and I shall refer to all such external sources
of knowledge simply as "JCL".

5. An analysis of unfriendly features.

5.1. Opening of files.

Opening causes a file to be attached to a book via a channel. The Report
envisages that the book may be a file entrusted to the safe keeping of the
operating system and retrievable on demand, or it may be an online physical
device which generates (or disposes of) the book line by llne in real time,
or it may even be that "set up in nuclear physics". The Report provides no
explicit mechanism, apart from the "idf" parameters of "open" and
"establish", for indicating which of these situations is intended in each
particular case, and in the case of "create" and the .~L~gs "standin" and
"standout", opened outside the user's control, even the "idf" parameter is
not available. Clearly, therefore, information in JCL is expected to be
provided. Similarly, in the case of books output from the program, the
Report makes no provision for disposal instructions (to cause the book to be
listed on a lineprinter upon completion of the program, for example) and
here again JCL is obviously needed.

The features provided by various operating systems to make these various
attachments and disposals and the JCL whereby they are accomplished are
exceedingly diverse. It is generally best that an ALGOL 68 implementor
should try to fit in with the conventions of his operating system. Thus the
JCL he expects should be in a form similar to that required for other
languages under that system. There remains the question of what
interpretations he can reasonably place on his "idf" parameters.

The Report, in the procedures "idf ok" and "match", deliberately allows
considerable latitude here. It is sometimes the case that the customer for a
program is in the best position to know which particular books should be
selected for a particular run, and he should then provide JCL accordingly.
On other occasions it is the writer of the program who knows best, either
because the program is always intended to operate with the same books, or
because the title of the book is to be computed by the program, or because
an indeterminate number of books is to be opened in succession. In these
cases, the information should be provided in "idf" parameters, from which it
is clear that it should be possible to bring about, by writing suitable
"idf"s, anything that could have been brought about by JCL. In other words,
the contents of "idf" ~_~_~/Igs should look rather like fragments of JCL. Even
disposal instructions could be included if operating system conventions
allow.

Here are some examples of what might be reasonable:
GEORGE3

establish(
":MBACSL.FILE NAME-2(+I/AL68)(ALLCHAR, TRAPGO(:MBACT, READ))",
chan, p, i, c)

(which, being interpreted, means "establish a file with filename "FILE

AB 42p.25

NAME-2" under user name ":MBACSL" with generation number one more than
the latest existing generation number of "FILE NAME-2" and with language
code "AL68". The file is tO be in the character code which permits the
full ASCII set Of 128 characters, and permission is to be given to user
":MBACT" to read it. Hardly what one would expect in a portable program,
but all good familiar stuff to one who is used to GEORGE3.)

RSX11
establish("DKI:[!12,1]FILENAME2.A68;7", chan, p, i, c)

which specifies a physical device, a user name, a filename, an extension
and a generation number.

OS
OS distinguishes between "dsnames", by which files may be permanently

identified, and "ddnames" with which dsnames, or maybe physical devices,
may be temporarily associated by JCL statements. Either may, on
occasions, need to be used within "idf"s. FLACC distinguishes them by
preceding dsnames with an "*". Indeed, I see no reason why one should not
go further and permit complete DDs within an "idf".

Although the Report makes provision for many _q~!~EL~s in an
implementation, it will be natural for users to expect to use "stand in
channel" and "stand out channel" for all normal transput. Therefore these
channels are likely to encompass the features of all other channels, files
opened via them having their properties ("possible"s, etc) determined by
JCL. Cases where specialized channels might be included in the
implementation are where it is to be specified that Carriage Control
information is to be output, or expected on input, and a "read only channel"
for which "put" would be most definitely not possible (assuming that this
was not already a property of "stand in channel").

All the opening procedures, as well as many others, start by testing
whether the .~g is already opened. Clearly, a newly declared and not yet
initialized .~.gshould appear to the system as not opened, even though this
requirement is only hinted at rather than explicitly prescribed in the
Report.

5.2. Close, Scratch and Lock.

The intention of the Report is that,
(i) after "close", an attempt to re-open the same book should succeed,
(ii) after "scratch", such an attempt should never succeed,
(iii) after "lock", such an attempt should only succeed after permission
has been given by some operating system action.

However, since all three of these procedures ~! the Gremlins, the
implementor may legally.make any of them have any of those three effects.

What ought the implementor to do in practice? Clearly, he should
implement the intention of the Report so far as he is able, but there may
well be circumstances which prevent this. Here are some examples:

A. The book is in fact an online device (e.g. a line printer), or a
spooling system leading to such a device, which keeps no permanent
record of the text sent to it. Clearly, the effect of "close" will be
the same as the effect of "scratch".

B. The operating system, being unfriendly, does not provide any
means for user programs to delete permanent files. The effect of
"scratch" will be the same as that of "close".

C. The particular user does not have permission to delete the file.
The effect of "scratch" will be the same as that of "close" (a
diagnostic message in addition might be appreciated).

D. The operating system has no way of implementing "lock".
Therefore, it must implement "lock" like "close". Note that, although

AB 42p.26

it is often said that "lock" is unimplementable on most operating
systems, it seems to me that most systems have some means of
preventing unauthorized reading/writing of files, and a reasonable
implementation of "lock" would be to remove the particular user's own
permission to read (or at least to overwrite) it. Presumably it would
then remain unreadable by him until he gave himself permission to use
it again. If the book is an online magnetic tape, "lock" should
certainly cause the tape to be demounted (even if "close" didn't), and
it might also modify the Volume Label so as to prevent re-writing
prior to some expiry date.

Note that none of the suggestions given above implies any violation of
the Report. It has also been suggested that "scratch", in addition to
deleting the book, should also override any disposal instructions (for
example, by aborting any listing on a line printer that had been called
for). Again, this is legal, and even reasonable.

5.3. Lines.

Books to be read may have been input from external media (by some system
task), or they may have been created by a program written in some other
language, or they may have been created by another (or even the same) ALGOL
68 program. In the first two cases, they contain what they contain, and the
ALGOL 68 system can only presume that this coincides with what they were
meant to contain. In the third case, however, the Report makes it clear
that, in a friendly system, what is read back is meant to be exactly that
which was previously written out - every last character of it, with line and
page boundaries in their correct places.

Unfriendly operating systems may contain the following features:
A. Lines may be padded with blanks to the next multiple of the word

length (as sometimes in GEORGE3).
B. Trailing spaces may be removed from the line entirely, or down

to a multiple of the word length (e.g. card input in GEORGE3, the SORT
utility in NOS).

C. Empty lines cannot exist (MTS), or they subsequently get deleted
from the book (the SORT utility in NOS).

D. Certain characters may have peculiar effects (e.g. colons in
Z-type records in NOS).

Note that B is nothing to do with the effect prescribed when the book is
"compressible". The Report clearly distinguishes between writing a lot of
spaces (which are not compressed away) and not writing at all (the line is
compressed to the last character actually written). It is expected that
implementors will generally make sequential channels compressible except
where they are specifically writing to fixed width devices such as card
punches.

Apart from storing books in a private format, with length counters with
each line (a practice not to be recommended), there is not much an
implementor can do about these things. Suppose, then, that he entrusts each
line to his operating system as it is completed. In a sequential book, he
cannot then return to read that line without first closing and reopening, or
else resetting. If he closes, then the gremlins are ~tRed and they may be
deemed to have modified the text of the book to be that which the operating
system had actually stored. Thus there is no violation. If he resets, then
the gremlins are not ~_Red and there is a clear violation. Of course, he is
not obliged to permit resetting of such books, but I feel it would be better
to do it wrongly than not to do it at all. It could well be argued that
there should have been an 3AR gremlins before the final ~_~ of I0.3.1.6.j

("reset") .

AB 42p.27

5.4. Pages.

Page boundaries are primarily of interest in connection with llne
printers which have facilities for rapid paper movement to the head of the
next form. The question at issue is whether books which are ultimately
intended for printing can be held in the meantime in a form which preserves
the page boundary information. If this is not possible at all, then it is
perfectly legal for the implementor to decide that all his books shall
consist of exactly one page of some large number of lines (indeed, this is
what Cambridge have done). In Report terminology, he merely has to decree
that "max pos" of each of his channels should always return a "p" field of
I.

To implement pages properly, it is only necessary to mark the positions
of the page boundaries in the book. One of the following methods is usually
available:

A. Explicit Carriage Control (CC) characters (a la Fortran) at the
start of each line. These usually provide for advance of 0, I, or 2
lines or paper throw before printing the line. (NOS, OS, RSX11).
Unlike Fortran and some (erroneous) implementations of COBOL, it is
clear that the ALGOL 68 programmer is supposed to be totally unaware
of their existence. Unfortunately, these systems also permit books
without CC characters (indeed thls is the normal situation for input
files and for files not intended for printing), but only OS and RSX11
keep a suitable bit in the directory to indicate whether the file is a
CC one or not.

B. Implicit Carriage Control characters (GEORGE3). Although stored
for all files, the CC character is not handed over to file readers as
a character, but may be inspected by special request.

C. By use of an explicit character in the text (e.g. ASCII FF).
D. By use of segmented files. This is a feature of NOS and is used

by the PASCAL compiler but not, regrettably, by the CDC ALGOL 68
compiler (except for certain very specialized channels). A utility is
provided to print a segmented file, complete with CC. This method is
probably nearer than any other to the model of the Report.

B, C and D should provide little difficulty for the implementor; neither
should A if the system can indicate whether any given book has CC characters
(as in OS and RSX11). In other cases of A, the implementor will presumably
provide a "printer channel" which puts out CC characters as appropriate. In
that case, he ought also to provide a "CC input channel" to read such files,
stripping off the CC characters and creating page end events appropriately.
It is then up to the user to know which way each book was written, and to
use the appropriate channel. If he uses the wrong one, his implementor will
have to explain to him that the gremlins have removed all the page
boundaries, or inserted extra characters at the start of each line, as the
case may be (thus there is no violation). It also has to be decided whether,
in such implementations, "stand out channel" has the CC property or not
(certainly, "stand in channel" should not have it, except perhaps with the
aid of JCL information).

The Report model admits the possibility of empty pages which contain no
lines (just as it admits the possibility of lines with zero characters and
books with zero pages). This is clearly very othogonal (and tidy), but may
not be implementable except in cases C and D above. Clearly, the implementor
has little choice but to substitute a page containing one empty llne
whenever a user creates such a page. If the book is closed and re-opened
between writing this page and reading it, there is no violation because the
Gremlins can be blamed, but in the case of "reset" there will be a
violation, which again suggests that the Gremlins ought to have been~_2ed in
"reset".

AB 42p.28

If a book being written is "compressible", then pages are compressed to
the number of lines actually written (personally, I would have preferred to
have said that pages contain as many lines as are written to them (up to
some physical limit) and that, in non-compressible books, they are made up
to the maximum with empty lines). Note that there is no provision for
compressing lines but not pages, or vice versa. Personally, I think this is
reasonable, since I expect sequential books to be compressible in most
implementations a n y w a y .

5.5. Logical File Limit.

The Report permits the logical end of file (a point Just beyond the
furthest character historically written to the book) to be at any position
within (or just outside) the physical book. Insofar as the implementor
maintains a buffer for the llne currently being processed, he can easily
maintain a pointer indicating the position of the logical end within this
buffer, or indicate in a flag that the logical end is not within the current
line. It may be, however, that his operating system cannot distinguish
between a logical end that is at the end of the last line actually written
out, and a logical end that is presumed to be at the start of the
(non-existent) line after the last. In the case of operating systems which
actually store the CR/LF characters in the record (some options of RSX11),
the distinction can be maintained. In other cases, it will be best for the
implementor to assume that the LFE is after the last llne actually written,
since the operating system will presumably inform him as soon as he tries to
refill his buffer from the non-existent line, which is just in time to
provoke the logical file end event according to the Report. If a user writes
a book and leaves the LFE at the end of a line, therefore, the Gremlins must
be supposed to have moved it upon closing the file. In the case of a file
that is "reset" after writing, the implementor could presumably remember the
(p, i, c) of.the actual logical end, but I feel it would be better to accept
the slight violation involved in assuming the Gremlins to have been/Led in
"reset".

It is always the case that the exact position of the LFE only needs to be
known when it is within the current llne. In a sequential book being written
to, it always is. In books being read it may be in the current line or some
unknown distance ahead; the operating system must then indicate as soon as
the line containing the LFE is read. Even in the case of a call of
"newpage", which apparently may involve a leap beyond the LFE, the
implementer will in fact read successive lines of the book until either a
page marker (CC character or explicit FF) or the LFE is encountered, and
then take appropriate action according to which it is.

5.6. Physical file limits.

The physical size of a book embodies information concerning the actual
number of characters in each line, lines in each page, and pages in the
book. For lines and pages up to and including the logical end of the file
this information is historical - i.e. these numbers reflect the actual text
as input by external means, or as created by a previous user (including the
effects of compression, if any). In front of the logical end (where,
presumably, no actual text is stored) there is a presumption that each line
(page, the whole book) has some physical length which will be discovered
only when an attempt is made to write beyond it. In the case of a newly
"establlsh"ed book, the physical limits are defined to be those provided by
the user (or the defaults for the channel in the case of "create").
Therefore the implementer should maintain 3 integers (mp, ml, mc) for each
writeable book, and should provoke llne, page and physical file end events
accordingly. If now the book is closed and subsequently re-opened, should

AB 42p.29

the same values (mp, ml and mc) still apply? In a friendly system, yes; but
this would involve storing these numbers in the directory or elsewhere (RSX
11 does make provision for storing a maximum llne length in the directory,
and this could be used to store mc). There is no obligation upon the
implementor to do this in unfriendly systems, however, since the Gremlins
can be presumed to have altered the limits (presumably to the system
defaults) upon closing. In the case of a book that is "reset", there is no
reason why the implementor should forget (mp, ml, me), even if it becomes
accepted that the Gremlins are to be~ed in "reset".

Many operating systems put a limit on the amount of output on a given
stream. Usually, this is expressed as a number of lines rather than as a
number of pages. Since the default physical limits are specified by a vroc
pos field of the g~g~g~, and since there is no way for the user to discover
the limits in force except by actually running into them, an implementor
might consider provoking the physical file end event as soon as the line
limit had been exceeded. Strictly, this would be a violation of the Report
since, in general, this event would not occur at the exact end of a page,
and "create" is written so as to imply that all pages are of the same
length. There would be no violation in the case of a "create"d book that was
supposed to consist of one long page. However, there is a further difficulty
of implementation here. If the operating system imposes some such limit but
is unwilling to inform the implementor's run-time system in advance what it
is, then the run-tlme system may start filling the buffer for the offending
line and not be aware of the offence until it comes to write it out, which
is too late to provoke a physical file end event according to the Report.
Nevertheless, the implementor has to do something specific here, and a
physical file end event must be preferable to a program abort. Users should
be warned that any characters written to the buffer up to that point will
then have been lost (they can find how many by calling "char number"). A
further possibility arises if the operating system cases an interrupt upon
detecting the violation, but then allows transput to continue (perhaps the
run-time system is allowed to specify a further limit). In this case, the
output could then continue to the end of the current page (or at last for
one more line), and then raise the physical file end event in good order.

Note that for an "establish"ed book, if the operating system limit is
known at establish time it can be compared with p*l as given by the user,
and "establish" can fail if necessary. Alternatively, if it is required that
some limit be given to the operating system at this point, clearly p*l is
the right limit to give.

On input, which always takes place before the logical end, the physical
file end event can never be provoked. Line end and page end events (which
are physical events) occur according to the historical state of the file as
it was created, or written by previous users.

When a book, as previously written (and maybe compressed), is overwritten
(its logical end is moved back), then the space in front of the new logical
end ceases to be what had historically been written there, and the physical
limits revert to some undefined values, either the (mp, ml, mc) in use
beforehand (if the implementor has remembered them - which he ought to do
where he can), or the default values for the channel (which is what the
implementor ought to do otherwise).

5.7. Reading and Writing to the same book.

The Report nowhere defines that an implementor is obliged to provide
channels on which "put" and "get" are both "possible" on a sequential book.
However, the properties of such channels are well defined for implementors

who decide to take the plunge.

AB 42p.30

On a sequential book, writing is only possible on the line which contains
the LFE (more precisely, any attempt to write on a line before the LFE
causes the L~ immcdiate!y to he moved back). Three cases are of interest:

A. The book contains information up to some LFE, and has perhaos
been read part way. It is then "reset", and the next action is to
write something. The effect is as if a new book had been "create"d, as
discussed above under physical file limits.

B. The book has been read until the user has detected the logical
file end event, which is presumed to be at the start of the first
non-existent line. The user then starts writing. That non-existent
line then becomes an existent line and output proceeds. Most operating
systems should be able to manage this, even if the implementor is
forced to close the book and to re-open it in some "append" mode.

C. The book has been read by the user up to some arbitrary point
(or up to the LFE, but the LFE is not at the start of a line). He then
attempts to write. Presumably the current line at this point is made
up partly of what was read before, and partly of what he is now
writing. This is well defined, but may be defficult for some operating
systems which do not permit a line that has been read to be
overwritten, or which do not permit overwriting except from the LFE.

A is easy in most operating systems. The question at issue is whether an
implementor can permit A to happen without being required to permit B and C
also, (or whether he can implement A and B without C). The answer is yes he
can, because "put possible" is tested before each write operation (in
principle at least), and "put possible" is a procedure which, in effect,
consults both the channel and the book before delivering its verdict. It is
therefore quite legal for "put possible" to return t~ if the book has just
been reset (case A) or maybe if it is at the LFE (case B), and to return
false otherwise. (Although implementors can provide "put possible"
procedures with the most outrageous properties, reasonable implementors will
attempt to give some appearance of consistency; thus a user who checks "put
possible" for himself and finds it true can reasonably expect to be
permitted to write at the current position.)

Another case where reading and writing to the same book may be of
importance is in the case of interactive devices such as online terminals.
There are two cases to consider. If the operating system only permits
transput to online terminals in units of one complete line (NOS, GEORGE3)
then there is no problem. The device is regarded as two books attached via
two files (presumably "standin" and "standout") and what the user sees
before him is a merging of the lines of the two books (a friendly system
will print them in different colours of ink). Users must ensure that they
call "newline" after any line which they actually expect to see printed
before them and they will have to type CR at the end of each line they input
before they can expect their program to see it.

The other case is where the operating system permits transput to the
terminal a character at a time so that the user can, for example, output a
prompting message and have the customer type his reply on the same llne. It
is clear that the Report makes no pretence of being able to support such a
facility. The trouble is due to the existence of "backspace" (also misuse of
"set char number") which would be meaningless in such a context. J.C. van
Vliet hss proposed an environment enquiry "backspace possible". This is both
a sublanguage feature (in the full language, backspace is supposed to be
available on all channels) and a superlanguage feature. Nevertheless, if its
use is restricted to channels intended for interactive and other such
specialized uses, I think it is a good idea. With this feature, one can now
arrange that the online terminal is one book attached to one file (with both
"put" and "get" possible but not "backspace"). The current position in this
book is advanced whenever the user types characters in response to a "get",
as well as when the program does a "put". The LFE is presumed not to get in

AB 42p.31

the way, and what the user sees printed before him is exactly the contents
of the book as defined by the Report. Seveal query/response cycles may take
place within the confines of one line. Note that, in the sublanguage ALGOL
68S, there is neither "backspace" nor "set char number".

5.8. Files and events.

There are no truly secret modes in ALGOL 68 - not even those with
letter-alephs in their fleld-selectors. Hence the well known joke which I
published in the first edition of the Informal Introduction (page 278 - also
page 262 of the Revised Edition) in which I, quite legally from a pedantic
point of view, assigned a structure-dlsplay consisting mostly of skios to a
file variable. Having pointed out there that I did not expect implementors
to take it seriously and subsequently having done nothing about the problem
when rewriting the Report, readers should surely deduce that I did not
consider the problem worth mending (actually, we did mend the corresponding
case of the mode format and the cure is indeed worse than the disease, since
the extra letter-aleph added for the purpose does nothing to improve the
clarity of that corner of the Report). Therefore, implementors should feel
quite free to add additional fields to the mode ~ for their own
(hopefully reasonable) purposes.

In particular, therefore, they may add extra "mended" fields to their
and include corresponding extra "on" procedures in their

llbrary-preludes. (It was because of this possibility, not originally
present, that we were able to remove the "other error" field from the file
of the Old Report.)

Therefore, if situations can arise in the implementor's operating system
(discs/directories becoming full, power supply problems, etc) which he feels
users should be able to catch, but which do not fit within the existing
events, then the correct action is for him to create extra "on" procedures
accordingly. I think this treatment would also be correct for parity errors.
The Old Report suggested that "on char error" was the correct event for
parities, but we removed this suggestion from the Revised Report.

5.9. Possibles.

The various environment enquiries are all procedures with undefined
bodies (except that a few special cases are defined, such as that "get
possible" must always yield true on "stand in channel"). This of course
allows the most outrageous things to be done, but a reasonable implementor
will try to make them behave as consistently as his operating system will
allow.

In an exceedingly friendly system, each environment enquiry will always
return the same value, true or /.~igg, for a given channel. In practice, this
can hardly be managed. Here are some examples of reasonable exceptions:

A. The properties of "stand in channel" and "stand out channel" may
well depend upon the particular books and methods of attachment as
specified by the JCL. Thus if the attached book is a physical device,
or a spooling system of rigid specification, it is unlikely that other
than a straightforward "put" or "get" will be possible. On some
systems, "put" may be possible even via "stand in channel", but this
may not be so if the user in question does not have write permission
for the particular book. "reset" may well be possible on these
channels, but "set possible" is unlikely. "compressible" may turn out
to be.~11gg if the system knows that the output is destined for a card
punch (otherwise, I expect that it will always be true for sequential
books).

AB 42p.32

B. It may be that certain things will only be possible if the book is
in certain states. For example, a change from reading to writing may
only be allowed if the book is positioned at its beginning. The
procedure "put possible" would then have to test for this case and, as
soon as writing had commenced, it might be that thereafter "get
possible" yielded .~.~g. It might also be that "reidf" was only
possible if no transput had occurred since the book was opened.

Nevertheless, I would expect implementors to play fair. If a user explicitly
enquired whether some action was possible and then immediately tried to
perform that action, he could reasonably feel aggrieved if he found that the
system had suddenly changed its mind about the possibility.

5.10. Reidf.

According to the Report, the procedure "reidf" can oniy be called on an
opened book. We inherited this feature from the Old Report but, if I had to
justify it post facto, I would say that before any operation can be
performed on a book, it must first be established that the book exists and
that the user is entitled to access it, and maybe even that the user has
gained exclusive access to it. All these functions are already performed by
"open" or by "establish", so why make additional provision for them to be
performed elsewhere?

However, the problem is that not all operating systems are able to rename
a book when it is open. With such operating systems, the implementor has the
following options:

A. "reidf" closes the file, renames it, and then reopens it• This
is likely to lose the current position, it could be that a different
book is obtained on reopening, and there may be difficulty in writing
further characters, or in calling "backspace", on what had been the
current line. All in all, it is doubtful if this method could be
implemented without violating the Report.

B. As above, but "reidf possible" (which is a procedure) only
yields true if the ~ is positioned at its beginning (or maybe at
its end). This is legal (provided there are no problems with reopening
the same book - remember that "reidf" does not ~A~ any gremlins) but
maybe not what the user expects•

C. As above, but "reidf" is only possible if no transput has yet
occurred. This may be helpful if the implementor does not actually
perform the operating system "open" function until the first transput
is attempted (a practice he may find useful for other reasons)•

D. "reidf" causes no immediate action, but the revised "idf" is
remembered and the book is renamed when the file is eventually
"close"d or "lock"ed (even here there may be problems if some other
user has the book open at the same time, but that snag seems to exist
with all the methods)• I think this method is just about legal• A
possible violation could only occur if the user tried to open the book
again (assuming the operating system allowed two simultaneous accesses
to the same book) before the closing• If he tried to open it under its
old "idf" then he might succeed, even though the Report suggests that
he should fail In fact, the Report will call "undefined" in "open"
but who is to say that for the system then to give him the book which
it still knows by its old "idf" is not "sensible"? If he tried to open
it under its new name he would fail, even though the Report suggests
that he should succeed• However, the Report relies on the procedure
"match" for this purpose, and the definition of that procedure is
sufficiently flexible for it to be allowed to return false for any
reason that might be considered reasonable in the context of the
particular operating system•

E. Of course, there is no obligation upon the implementor to make

"reidf possible" at all.

AB 42p.33

I recommend alternative D, or, failing that, alternative E.

Note that the facilities which might be provided in the "idf" parameter
of "reidf" are likely to be much less generous than those suggested in 5.1
above for "open" and "establish".

5.11. Conversions.

The cony feature of the transput section of the Report is one of its less
satisfactory features. Any feature provided by the hardware or system
software for converting between character codes is likely to work on a llne
of information at a time, and then only after that llne has passed out of
the view of the ALGOL 68 run-time system. J.C. van Vliet has suggested a
restriction whereby it would only be legal to change a cony when the current
position of the ~jJ~ was at the beginning of a line. This is indeed legal,
since the conversions which the implementor may store in his library-prelude
are all of the mode Droc(ref book)cony and, the bodies of these procedures
not being defined in the Report, the implementor may elect to include in
them tests on the current position. Unfortunately, this does not solve the
problem. Here is how to output a ~L~JJlg with alternate characters in ASCII
and EBCDIC:

.~g a := standout, e := standout;
make cony (a, ascii); make conv (e, ebcdic);

~LtYA~g s := ~i~;
for i~uob s~LQ put ((odd(1) 8 a I e), s[i]) ~j~

Therefore, if the implementor is to make use of the code conversion
facilities of his hardware or system software, he can only do so by means of
disposal instructions for the book written in JCL (or maybe in some "idf"
parameter).

To implement the conv features of the Report, therefore, the implementor
must write conversion procedures for himself. Note that the Report specifies
that conversions may fail, that failures are to be checked character by
character, and that the "char error" event is to be raised immediately a
failure is discovered, in particular before any remaining characters of the
string containing the offending char are processed. One can envisage four
kinds of cony that implementors might provide:

I. There are no conversions to be done, and all characters (i.e.
all "c" for repr(O) ~ c ~ rapt(max abs char) are legal).

2. There are no conversions as such, but certain characters
(perhaps the non-printing ones) are to fail.

3. There are conversions to be done, and all characters are
convertible.

4. There are conversions to be done, but certain characters are
unconvertible and are to fail.

In case 3, where there can be no failures, it might be possible for the
implementor to postpone the actual conversion until the whole line was ready
for output, but in cases 2 and 4 he has no option but to go round a loop
once per.~Ig~dolng the necessary tests. This, however, would be intolerably
inefficient in case I where it should be possible to move a complete string
into the line buffer using the hardware MOVE instruction with which most
machines are provided. Moreover, case I is likely to be far and away the
most common situation in practice, and it should not therefore have to pay
for the inefficiencies of the others. The implementor should therefore
provide a flag to indicate whether the null conversion (case I) is in
operation and should only enter the character by character loop if this flag
is not set (this technique is used in Richard Fisker's implementation
model).

Of course the Report nowhere obliges an implementor to provide a n y
c o n v s a t a l l i n h i s l i b r a r y - p r e l u d e , and i n d e e d , h a v i n g r e g a r d t o t h e

AB 42p.34

difficulties mentioned above, it might be preferable for him not to do so.
If he does decide to provide some convs, he still has complete discretion as
to which ones he provides. There are certain characters that the Report
expects to be able to output in "put" or to input in "get". These are the
DIGIT-symbols, ,tAt, , t' • ,, , ,t÷t, , tt_tt~ "a" to "f" , the
times-ten-to-the-power-symbol and the plus-i-times-symbol (acceptable
alternatives for these last two are "e" and "i"). The implementor can save
himself a lot of checking if he assumes that conversion of these symbols
will never fail, and I have no sympathy at all for any implementor who tries
to provide Q~l~s which do not include them.

6. Random files.

Even though an operating system may provide some means of random access
to text files via the line number, it is unlikely to provide the access via
both page numbers and llne numbers that is envisaged in the Report. Many
operating systems provide no features in this area at all. I expect,
therefore, that implementors will be forced to adopt private formats for
random books. The least that they are likely to have to do when opening an
ordinary book for random access is to construct an index of where all the
pages and lines start. Please do not let me discourage any implementor whose
operating system is friendly enough to implement random access books
directly - it is just that I fear that the majority of operating systems are
nowhere near friendly enough for this purpose.

A newly "establish"ed random access book will have its LFE at the
beginning, and the only way to change this state of affairs is to write
sequentially using "put". If the book is "compressible", this will lead to
lines (and pages) of varying length, with the necessity of constructing an
index so that subsequent "set" operations can flnd them again. If the book
is not "compressible", the situation is much simpler, because all lines and
pages are now the same size, and a simple computation will enable "set" to
find any required position. Indeed, although the properties of such books
are well defined by the Report, it was never our expectation that anyone
would implement them (and certainly, there is nothing in the Report to
oblige any implementor to do so).

There is, however, room for a superlanguage feature allowing the lengths
of lines to be changed dynamically, for use with those operating systems
(e.g. MTS) which support such books directly.

7. Binary transput.

Binary transput is a mess. It was a mess in the Old Report and, although
discussions had taken place in the Transput and Data Processing
Sub-committee with a view to inventing a "record transfer" system that would
be worthy of the language, these never came to anything. Therefore, knowing
that it was a mess, we left it strictly alone, in order to provide the
greatest possible incentive for someone to come along later with a decent
superlanguage feature to do the Job properly.

The only really well-defined property of the binary transput system is
that, if you output something, you can get back exactly what you output. It
is not defined how much space is occupied by values of any particular mode,
nor that all values of a given mode occupy the same space, nor even that a
given value occupies the same space on different occasions. Unfortunately,
it is defined that the transput of structures and multiples is equivalent to
the transput of their straightened sequences of primitive values, and vice
versa. This makes efficient implementation impossible. There would be much
to be said for implementing the sublanguage in which this requirement is not

made.

AB 42p.35

If the book has random access, then the only way a user can find the
location of his data, for subsequent use of "set", is for him to enquire
about the "page number", "line number" and "char number" before he outputs
it. The procedures "space", "newline" and "newpage" may on occasions be
useful for aligning data in convenient positions, but the fact that they
work at all for binary transput is probably more due to the fact that they
exist, than that they are useful. This is probably why they are not
available for use with "put bin", "get bin", etc.

There are very severe restrictions on the mixing of character and binary
transput in the same book. These restrictions are probably more severe than
they need to be.

8. Conclusions.

I hope I have been able to show that, apart from conversions and binary
transput, the Report stands up remarkably well to the onslaughts of actual
operating systems. The only thing that I really regret is that we did not
KR the Gremlins in "reset". Certainly, I think that the solutions to the
various problems that I have proposed are as good as any others that might
be proposed in the light of the evident unfriendliness of the operating
systems (and I would add that most of these features would probably be
regarded as just as unfriendly by the implementors of other languages).

But I seem to hear murmurings in the background that, in hypothesising
all these actions of the Gremlins, and of the various other procedures whose
bodies are not defined in the Report, I am merely being wise after the
event. Not sol We knew at the time that operating systems were going to be
unfriendly. We did not know which particular unfriendly features were
actually going to rear their ugly heads when implementors actually got down
to business, but we knew that we did not know this. Therefore, we had to
indulge in a huge overkill. The Gremlins and their allies can indeed do the
most outrageous things and make utter nonsense of any program that a user
might try to run. But, although we know that operating systems are
unfriendly we presume that the implementors at least are on our side and
will curb the worst excesses of the enemy, providing us with systems that
are as comfortable as the particular operating system will allow.

9. Acknowledgments.

An earlier draft of this paper was discussed by the Transput Task-Force
of the ALGOL 68 Support Sub-committee at the Oxford meeting of the Working
Group, and I am grateful for the many helpful suggestions made by the
T a s k - F o r c e members .

AB42 p . 3 6

A B 4 2 . 4 . 5 P r o p o s a l s f o r A l q o l H-a s u p e r l a n ~ u a g e o f A l q o l 68
A.P . B l a c k , V . J . R a y w a r d - S m i t h

S c h o o l o f Compu t ing S t u d i e s , U n i v e r s i t y o f E a s t A n g l i a

§1. I n t r o d u c t i o n

T h i s p a p e r i s d e v o t e d t o t h e d e s c r i p t i o n o f a p r o p o s e d e x t e n s i o n o f

A l g o l 68 w h i c h we s h a l l c a l l A l g o l H. The m o t i v a t i o n f o r t h e d e v e l o p m e n t

o f t h i s l a n g u a g e comes f rom [1] . S e c t i o n s 3 t o 7 o f t h i s p a p e r c o r r e s p o n d

t o t h e s e c t i o n s i n [1~ w i t h t h e same names . They d e s c r i b e "

c o n s t r u c t i o n s i n A l g o l H wh ich r e p r e s e n t t h e a b s t r a c t i o n s o f H o a r e ' s

t h e o r y .

P r o f e s s o r H o a r e makes a v i g o r o u s d i s c l a i m e r i n t h e i n t r o d u c t i o n t o h i s

p a p e r : he i s n o t e m b a r k i n g on t h e d e s i g n o f y e t a n o t h e r p r o g r a m m i n g l a n g u a g e

[1] . His a b s t r a c t d a t a s t r u c t u r e s a r e i n t e n d e d t o a s s i s t i n t h e f o r m u l a t i o n

o f a b s t r a c t progrAm~, and i n t h e i r r e p r e s e n t a t i o n as c o n c r e t e c o d e . The

t r a n s i t i o n f r o m a b s t r a c t t o c o n c r e t e i s an e s s e n t i a l p a r t o f t h e p r o g r a m

d e s i g n p r o c e s s , and t h e r e a r e good r e a s o n s why i t s h o u l d n o t be a u t o m a t e d .

Hoare d raws a c l e a r d i s t i n c t i o n b e t w e e n an a l g o r i t h m i c l a n g u a g e and a

p r o g r e m m i n g l a n g u a g e , h i s n o t a t i o n s b e i n g an example o f t h e f o r m e r and

A l g o l an exam ple o f t h e l a t t e r . However , Hoare a d m i t s t h e r e a r e a d v a n t a g e s

i n t h e p r o g r a m m i n g l a n g u a g e b e i n g a s u b s e t o f t h e a l g o r i t h m i c l a n g u a g e .

Many o f h i s n o t a t i o n s can be i m p l e m e n t e d w i t h h i g h e f f i c i e n c y ; t h i s i s

c e r t a i n l y t r u e o f u n s t r u c t u r e d d a t a t y p e s and o f e l e m e n t a r y d a t a s t r u c t u r e s ,

v i z . , C a r t e s i a n p r o d u c t s , u n i o n s , a r r a y s and p o w e r s e t s .

The a d v a n c e d d a t a s t r u c t u r e s , n a m e l y s e q u e n c e s , r e c u r s i v e s t r u c t u r e s

and s p a r s e s t r u c t u r e s , a r e f u n d a m e n t a l l y more d i f f i c u l t t o i m p l e m e n t by

an a u t o m a t i c t r a n s l a t o r . C o n s e q u e n t l y , no p r o p o s a l s a r e made h e r e t o

i n c l u d e t h e s e s t r u c t u r e s i n A l g o l H (e x c e p t i n as f a r as t r a n s p u t i s a

r e p r e s e n t a t i o n o f c e r t a i n k i n d s o f s e q u e n c e) .

Many o f t h e new c o n s t r u c t i o n s p r o p o s e d f o r A l g o l H h a v e c o u n t e r p a r t s

i n t h e p r o g r a m m i n g l a n g u a g e P a s c a l [4 , S J . E n u m e r a t i o n s a r e a v a i l a b l e

(a l w a y s o r d e r e d) , and s o a r e s u b r a n g e s , a l t h o u g h t h e s e a r e more r e s t r i c t e d

t h a n t h e submodes o f A l g o l H i n t h a t a l l s u b r a n g e s o f a g i v e n p a r e n t t y p e

mus t be d i s j o i n t . The s y n t a x o f P a s c a l i s m a r k e d l y d i f f e r e n t f rom t h a t o f

A l g o l H, w h i c h i s i n t e n d e d t o i n t r o d u c e t h e s e c o n c e p t s t o p r o g r a m m e r s

more f a m i l i a r w i t h A l g o l 68. Some o f t h e c o n s t r u c t i o n s o f A l g o l H h a v e

p r e v i o u s l y been d e s c r i b e d as A l g o l 68 " m i g h t - h a v e - b e e n s " E7~.

§2. The Method o f D e f i n i t i o n

As an A l g o l 68 s u p e r l a n g u a g e , A l g o l H s h o u l d be d e s c r i b e d by a (t w o -

l e v e l , Van W i j n g a a r d e n o r) W-grAmmar, as i s u s e d i n t h e R e p o r t . (Here , and

i n a l l t h a t f o l l o w s , " R e p o r t " means t h e R e v i s e d R e p o r t on A l g o l 68 [2] .

R e f e r e n c e s t o s p e c i f i c s e c t i o n s a r e g i v e n a s , e . g . ER 2 . 2 . 2 . c] .) However ,

AB42 p . 3 7

t h i s h a s c e r t a i n d t s a d v a n t a g e s t f o r W - g r - m m a r s h a v e b e e n h e l d t o b e d i f f i c u l t

t o u n d e r s t a n d , p a r t i c u l a r l y by t h o s e who do n o t know t h e l a n g u a g e t h e y

d e s c r i b e . W h i l s t we f e e l t h i s d i f f i c u l t y i s o f t e n o v e r e s t i m a t e d , i t i s none

t h e l e s s r e a l . F o r t h i s r e a s o n , t h e c o n s t r u c t s o f A l g o l H a r e d e s c r i b e d h e r e

o n l y by means o f e x a m p l e s and n a t u r a l l a n g u a g e . I t i s h o p e d t h a t t h i s w i l l

h e " e a s i e r f o r t h e u n i n i t i a t e d r e a d e r " , b u t f o r t h e i n i t i a t e d , p a r t o f t h e

W-grammar d e f i n i t i o n o f A l g o l H c a n b e f o u n d i n [3 1 . I t s h o u l d b e n o t e d t h a t

i t i s n o t e a s y t o e x t e n d t h e gramz~ar o f A l g o l 68 s o t h a t i t d e f i n e s A l g o l H.

F o r e x a m p l e , i n A l g o l 68 t h e m e t a n o t i o n NEST, w h i c h c a r r i e s a r e c o r d o f a l l

t h e d e c l a r a t i o n s f o r m i n g t h e e n v i r o n m e n t , h a s no n e e d t o e n v e l o p d e n o t a t i o n s ,

s i n c e t h e m e a n i n g o f a d e n o t a t i o n i s i n d e p e n d e n t o f any n e s t J R . 8 . 0 . 1] . I n

A l g o l H t h i s i s n o t s o ; i t i s p o s s i b l e t o d e c l a r e e n u m e r a t i o n modes whose

d e n o t a t i o n s a r e s c o p e d .

§3. U n s t r u c t u r e d D a t a T y p e s

A l l d a t a s t r u c t u r e s i n a p r o g r a m mus t b e b u i l t up f r o m u n s t r u c t u r e d

c o m p o n e n t s . Mos t p r o g r a m m i n g l a n g u a g e s p r o v i d e some u n s t r u c t u r e d t y p e s ,

u s u a l l y r e a l s and i n t e g e r , and i n t h e o r y t h e s e a r e a d e q u a t e f o r a l l p u r p o s e s .

I n p r a c t i c e t h e r e a r e s t r o n g r e a s o n s f o r d e f i n i n g o t h e r u n s t r u c t u r e d t y p e s .

F o r e x a m p l e , a l t h o u g h c h a r a c t e r v a l u e s can b e r e p r e s e n t e d a s i n t e g e r s , i t h a s

become u s u a l t o p r o v i d e a c h a r a c t e r t y p e i n t e x t p r o c e s s i n g p r o g r m , m i n g

l a n g u a g e s . T h i s h a s two a d v a n t a g e s . F i r s t , t h e p o t e n t i a l r a n g e o f v a l u e s

o f a v a r i a b l e i s made e x p l i c i t , t h u s m a k i n g t h e p r o g r a m c l e a r e r and s u b j e c t

t o more c o m p i l e - t i m e c h e c k s , w h i c h c a n d e t e c t s u c h e r r o r s a s t h e a d d i t i o n o f

an i n t e g e r t o a c h a r a c t e r . S e c o n d , i t i s p o s s i b l e t o d e v i s e an e f f i c i e n t

r e p r e s e n t a t i o n ; b e c a u s e t h e c a r d i n a l i t y o f t h e c h a r a c t e r s e t i s u s u a l l y much

l e s s t h a n t h a t o f t h e s e t o f p e r m i t t e d i n t e g e r s , c h a r a c t e r s c a n be r e p r e s e n t e d i n

l e s s b i t s i n t h e c o m p u t e r memory.

The n e x t s t e p , a f t e r i n c l u d i n g i n a l a n g u a g e a w i d e r c h o i c e o f b a s i c

modes , i s t o a l l o w t h e p r o g r - m m e r t o d e f i n e h i s own u n s t r u c t u r e d modes ,

e i t h e r b y e n u m e r a t i o n o f v a l u e s o r by t a k i n g a s u b r a n g e o f some e x i s t i n g

mode. However t h i s i s d o n e , i t i s f u n d a m e n t a l t h a t d i f f e r e n t d a t a t y p e s

s h o u l d b e r e p r e s e n t e d a s d i f f e r e n t modes . S i n c e t h i s mode i s known a t

c o m p i l e t i m e i t i s p o s s i b l e t o e n s u r e t h a t u n r e l a t e d d a t a a r e n o t m i x e d .

The p r o t e c t i o n t h u s p r o v i d e d i s o n e o f t h e p r i n c i p a l b e n e f i t s o f t h e

e x t e n s i o n s .

3 . 1 E n u m e r a t i o n s

I n many p r o g r a m s l n t e g e r s a r e u s e d t o d e n o t e a c h o i c e f rom a s m a l l number

o f a l t e r n a t i v e s r a t h e r t h a u n u m e r i c q u a n t i t i e s . I n s u c h c a s e s we may e x p e c t

AB42 p. 38

t h e d o c u m e n t a t i o n o f t h e p r o g r a m t o l i s t t h e p o s s i b l e v a l u e s w i t h t h e i r

i n t e n d e d i n t e r p r e t a t i o n . F o r e x a m p l e , one m i g h t f i n d t h e f o l l o w i n g i n a

p r o g r a m c o n c e r n e d w i t h b i d d i n g s e q u e n c e s i n b r i d g e .

int trumps, bestsuit;

c These variables refer to integers which

indicate suit values as follows:

0 - clubs

1 - diamonds (i)

2 - hearts

3 - spades

4 - no trumps

c

The n o t i o n o f an e n u m e r a t i o n e n a b l e s q u a n t i t i e s s u c h as s u i t s o f c a r d s ,

s e x e s o r c o l o u r s t o be r e p r e s e n t e d as s e p a r a t e modes , q u i t e d i s t i n c t n o t o n l y

f rom t h e i n t e g e r s b u t a l s o f rom e a c h o t h e r . I n A l g o l H t h e f o l l o w i n g a r e

l e g a l mode d e c l a r a t i o n s .

mode suit = order (clubs, diamonds, hearts, spades, notrumps)

mode sex = scalar (males female)

mode primary colour = scalar (red, green, blue)

mode dayof~eek = order (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday)

The u s e o f t h e o r d e r - t o k e n (order) i n d i c a t e s t h a t t h e mode s h o u l d be c o n -

s i d e r e d t o be o r d e r e d ; t h e s c a l a r - t o k e n (s c a l a r) d e n i e s any s u c h o r d e r i n g .

The b o l d - T A G - s y m b o l s (c l u b s , m a l e , e t c .) a r e MODE d e n o t a t i o n s f o r t h e v a r i o u s

MODES, i n e x a c t l y t h e way t h a t , i n A l g o l 68, t r u e and fa lse a r e b o o l e a n

d e n o t a t i o n s . To be p e d a n t i c , t h e p a r a l l e l i s n o t e x a c t , f o r t r u e i s t h e

r e p r e s e n t a t i o n o f t h e t r u e - s y m b o l n o t t h e b o l d - l e t t e r - t - l e t t e r - r - l e t t e r - u -

l e t t e r - e - s y m b o l . N e v e r t h e l e s s , i t i s c l e a r [R . 4 . 2 . 2 b] t h a t t h e s i m i l a r i t y

i s i n t e n t i o n a l . T h i s d i s t i n c t i o n d o e s n o t a r i s e s i n c e i n A l g o l H b o o l i s

not a primitive mode but is defined using mode bool = order (tr~e~ false).

The use of the new denotations throughout the program enhances its under-

standability considerably; the assignation

tr~s := spades

conveys more information (to the human reader) than

trumps : = 3 (ii)

w h i c h w o u l d be i t s c o u n t e r p a r t on t h e a s s u m p t i o n o f t r umps b e i n g an int

v a r i a b l e , as i n example (t) .

AB42 p . 3 9

The situation can be alleviated in Algol 68 by use of identity

declarations for appropriate integers:

int clubs = ~ diamonds = I, hearts = 2, spades = 3, notrump8 = 4

which may then be followed by

tr~np8 := spades

in the same context as (ii).

This use of ascription is no substitute, however, for the ability to

define new basic modes: the advantages of enumeration modes become clearer

when control structures are introduced to manipulate them, but immediately

we see that there can be better protection, more efficient store utilisation,

and a closing of the gap between the data structures of a program and the

real world objects they represent.

As far as protection is concerned, not only is the progr-mmer less

likely to assign objects of one type to variables of another (because of

the mnemonic names), but such assignations are in any case syntax errors,

since each type of object is represented by a distinct mode in the program.

The standard transput routines may, of course, be applied to enumeration

modes - a facility not available in Pascal. The external forms of the values

of such modes will in general be implementation dependent. It is suggested

that where the bold-TAG-symbols used in the program text for denotations are

represented by stropping, the characters transput should be those forming

the corresponding TAG-symbol.

In Algol 68, declarers specify modes. A declarer is either a declarator,

which explicitly constructs a mode, or an applied-mode-indication, which

stands for some declarator by way of a mode-declaration [R.4.6]. Thus, to

introduce new basic types, it is necessary to provide new declarators.

Syntactically, this is done by providing a new descendent of the notion

VIRACT-MOID-NEST-declarator [R.4.S.la].

A l g o l 68 i s q u i t e s p e c i f i c a b o u t t h e e q u i v a l e n c i n g o f modes . F o r

e x a m p l e , t h e modes s p e c i f i e d by t h e mode i n d i c a t i o n s a and b i n

mode a = union (int, real);

mode b = union (real, int)

are equivalent.

Similarly, it is intended that the modes specified by the declarators

scalar (red, blue, green) and scalar (red, green, blue) be equivalent. On

t h e o t h e r h a n d , t h e declarators

AB42 p . 4 0

order (mornings afternoons evening)

order (afternoons evening, morning)

and order (mornings noon, night)

a l l s p e c i f y d i f f e r e n t modes (w h i c h c a n n o t c o - e x i s t i n t h e same r e a c h , s i n c e

a p p l i c a t i o n s o f t h e d e n o t a t i o n s c a n n o t be u n i q u e l y i d e n t i f i e d) . I n [3] , t h e

m e t a n o t i o n MODE i s e x t e n d e d t o i n c l u d e t h e m e t a n o t i o n BASIC a s an a d d i t i o n a l

a l t e r n a t i v e [R . 1 . 2 . 1 . A] . BASIC e n v e l o p s a l l p o s s i b l e e n u m e r a t i o n modes a s

i t s d e s c e n d a n t s . The mode e q u i v a l e n c i n g s y n t a x t h e n n e e d s e x t e n d i n g so t h a t

i t c a n c o m p a r e p e r m u t e d s c a l a r m o d e s , f o r e x a m p l e , t o d e t e c t t h e e q u i v a l e n c e

of scalar (males female) and scalar (females male).

3 . 2 S u b r a n ~ e s

A n o t h e r common r e q u i r e m e n t i s t o d e a l w i t h q u a n t i t i e s w h i c h , t h o u g h

i n t r i n s i c a l l y o f a b a s i c t y p e , w i l l t a k e o n l y a l i m i t e d r a n g e o f v a l u e s - a

s u b r a n g e . C l e a r l y t h e p a r e n t t y p e mus t be o r d e r e d . The b o u n d s o f t h e submode

mus t be d e n o t a t i o n s , o p t i o n a l l y p r e c e d e d by a s i g n i f t h e p a r e n t mode i s i n t e g r a l .

mode dayo~flnonth = sub (1:31);

mode letter = sub ('~": '~")

The parent mode can be an enumeration mode; for example, In the reach of

mode dayo~eek = Order(Sunda~ Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday)

t h e f o l l o w i n g i s a v a l i d mode d e c l a r a t i o n .

mode workingday = sub (Monday:Friday)

A s u b r a n g e may a l s o be d e f i n e d a s t h e u n i o n , i n t e r s e c t i o n o r d i f f e r e n c e o f

a p a i r o f s u b r a n g e s , p r o v i d e d t h e y b o t h h a v e t h e same p a r e n t mode. T h e s e o p e r -

a t i o n s a r e r e p r e s e n t e d by u, N and \ w i t h t h e i r u s u a l s e t t h e o r e t i c m e a n i n g s .

I t i s n o t p o s s i b l e t o d e c l a r e a submode o f a submode s i n c e t h e submode h a s

no d e n o t a t i o n s . F o r e x a m p l e , s u b (t~ , : t~ , ,) s p e c i f i e s a s u b - c h a r a c t e r mode, n o t

a s u b - l e t t e r mode , b e c a u s e '~" and '~" a r e c h a r a c t e r d e n o t a t i o n s .

I n A l g o l H, t h e r e i s a w i d e n i n g c o e r c i o n f r o m a submode t o a mode w h i c h

is available in strong positions.

3 . 3 M a n i p u l a t i o n

H o a r e l i s t s s e v e n o p e r a t i o n s r e q u i r e d f o r t h e m a n i p u l a t i o n o f v a l u e s o f

e n u m e r a t t o n a n d s u b r a n g e m o d e s .

T e s t o f e q u a l i t y : The e q u a l i t y and i n e q u a l i t y o p e r a t o r s a r e d e f i n e d f o r a l l

e n u m e r a t i o n m o d e s , and a l l s u b r a n g e N o d e s w h i c h a r e n o t s u ~ o d e s o f r e a l .

AB42 p . 41

A s s i g n a t i o n : T h e a s s i g n a t i o n o f v a l u e s t o n a m e s i s e x a c t l y a s i n A l g o l 6 8 .

Case discrimination: Algol H has a choice-clause which is a generallsatlon

of the cholce-clause of Algol 68. The advantages of enumeration modes

become obvious when we compare equivalent Algol 68 and Algol H. The Algol 68

case trumps +1

in 20 × bid, 20 x bid, 30 x bid; 30 x bid

40 + 30 x (bid-l) J

e s a c

i s a l m o s t i n c o m p r e h e n s i b l e w i t h o u t t h e c omme n t o f S e c t i o n 3 . 1 , a n d i s e r r o r

p r o n e e v e n w i t h i t . I n A l g o l H we c a n s i m i l a r l y w r i t e (b e c a u s e s u i t i s

o r d e r e d)

case trumps

in 20 x bid, 20 x bid, 30 x bid, 30 x bid

, 40 + 30 x (bid-l)

e s a o

t h
b u t w i t h o u t h a v i n g t o p e r f o r m a r i t h m e t i c on trumps. The v c o n s t i t u e n t

t h
u n i t s o f t h e i n - c h o i c e - c l a u s e i s e l a b o r a t e d when t r u m p s t a k e s t h e v v a l u e

o f t h e o r d e r e d e n u m e r a t i o n . I f t h e r e a r e l e s s u n i t s t h a n v a l u e s i n t h e

m o d e , t h e n t h e o u t - c h o i c e - p a r t i s e l a b o r a t e d f o r t h e e x t r a v a l u e s .

A l t e r n a t i v e l y , t h e c o n s t i t u e n t u n i t s c a n b e p r e f i x e d w i t h s p e c i f i c -

a t i o n s , a s i n t h e f o l l o w i n g .

case trumps

in (clubs, diamonds): 20 x bid

, (notrumps): 40 + 30 x (bid-l)

out 30 x bid

e s a o

E a c h v a l u e o f t h e mode may b e m e n t i o n e d i n a t m o s t o n e s p e c i f i c a t i o n ; i f

t h e e n q u i r y c l a u s e t a k e s a v a l u e n o t m e n t i o n e d i n a n y s p e c i f i c a t i o n , t h e n

t h e o u t - c h o i c e - p a r t i s c h o s e n . (I f t h e r e i s n o o u t - p a r t , a s k i p i s

e l a b o r a t e d , w h i c h may y i e l d a n u n d e f i n e d v a l u e .) I f t h e MODE o f t h e e n q u i r y

c l a u s e i s o r d e r e d t h e n s u b - o f - N O D E - d e c l a P a t o r s a r e p e r m i t t e d a s s p e c i f i c a t o r s ;

f o r e x a m p l e , g i v e n t h e d e c l a r a t i o n mode l e t t e r = s u b (' ~ " : ' ~ ") we w r i t e a

s k e l e t o n s c a n n e r .

AB42 p . 4 2

out

esac

case ch := readch

in (letter) : serial clause

(sub ("0": "9"), ". ") : serial clause

("""") : serial clause

C"$") : serial clause

("'") : serial clause

serial clause

I f , on t h e o t h e r h a n d , t h e MODE o f t h e e n q u i r y c l a u s e i s n o t o r d e r e d , t h e n

t h e f o r m o f t h e c h o i c e c l a u s e w h i c h d o e s n o t u s e s p e c i f i c a t i o n s i s n o t

p e r m i t t e d , s i n c e t h e r e i s no i m p l i c i t o r d e r i n g o f t h e v a l u e s o f t h e

e n u m e r a t i o n w h i c h c a n b e u s e d t o c h o o s e t h e a p p r o p r i a t e u n i t f r o m t h e

i n - c h o i c e p a r t .

O r d e r i n g r e l a t i o n s : The d y a d i c o p e r a t o r s <, <=, >, >= a r e d e c l a r e d i n t h e

s t a n d a r d p r e l u d e b e t w e e n o p e r a n d s o f t h e same mode and y i e l d i n g b o o l e a n

r e s u l t s . They a r e d e f i n e d f o r a s u f f i c i e n t s e t o f o r d e r e d modes , e a c h

member of which has order.

C o u n t i n g : The m o n a d i c o p e r a t o r s succ and pred, i n v o k i n g t h e s u c c e s s o r and

p r e d e c e s s o r f u n c t i o n s , a r e d e f i n e d f o r a l l s i m p l e , o r d e r e d modes . T h e s e

f u n c t i o n s map e a c h v a l u e o f a mode o n t o t h e n e x t h i g h e r o r l o w e r v a l u e (i f

t h e r e i s o n e , o t h e r w i s e t h e i r a c t i o n i s u n d e f i n e d) .

A l s o , f o r e a c h o r d e r e d mode f o r w h i c h t h e r e i s a mode d e c l a r a t i o n i n a

g i v e n r e a c h , i f t h e mode i n d i c a t i o n d e f i n e d by t h a t d e c l a r a t i o n i s some

bold-TAG-symbol, then the identifiers max-cum-TAG-symbol and min-cum-TAG-symbol

a r e d e c l a r e d and a s c r i b e d t h e maximum and minimum v a l u e s o f t h e mode. The

e x a m p l e s h o u l d make t h i s c l e a r .

mode rank = order (privates corporal, sergeant,

lieutenants captain, major, colonel, general);

c The effect on the nest is as if, in place of

this cogent, there stood the declaration

rank maxrank = general, minrank = private

c

The l o o p c l a u s e : I t i s f r e q u e n t l y r e q u i r e d t o e l a b o r a t e t h e same s e r i a l

c l a u s e f o r a l l p o s s i b l e v a l u e s o f a g i v e n mode. T h i s i s i n d i c a t e d b y t h e

u s e o f a l o o p - c l a u s e .

AB42 p. 43

loop dayofweek day

do

dailytask (day)

od

The loop-symbol is followed by a formal-declarer which gives the mode of the

identifier whose value is varied. If the mode is ordered and has cardlnality

n, say, then the serial-clause between do and od is elaborated n times in

sequence as the identifier takes, in order, the values of the mode from

minmode to maxmode. However, if the mode is not ordered, the effect is as

if n copies of the serial clause were elaborated collaterally. The loop

clause is available for all modes derived from SIMPLE, not just for integral

as in Algol 68. However, the speclal for from b~ t__o construction of Algol 68

is retained for use by integers, since conceptually that mode has infinite

c ardlnali ty.

T r a n s f e r f u n c t i o n s : I t i s s o m e t i m e s r e q u i r e d t o p e r f o r m o p e r a t i o n s f o r a

submode w h i c h w e r e d e f i n e d f o r t h e p a r e n t mode. T h i s i s s i m p l y a c c o m p l i s h e d

by ' c o n v e r t i n g t h e submode v a l u e t o t h e c o r r e s p o n d i n g v a l u e o f t h e l a r g e r t y p e ,

t h e n p e r f o r m i n g t h e o p e r a t i o n , and f i n a l l y c o n v e r t i n g b a c k a g a i n i f n e c e s s a r y .

T h i s r e q u i r e s t r a n s f e r f u n c t i o n s .

The f i r s t c o n v e r s i o n i s a w i d e n i n g , and can b e a c c o m p l i s h e d b y t h e

c o e r c i o n d e s c r i e d i n S e c t i o n 3 . 2 . I f t h e c o n t e x t i s n o t s t r o n g e n o u g h (a s

w i l l b e t h e c a s e i f t h e c o e r c e e i s t h e o p e r a n d o f a f o r m u l a) t h e c o e r c i o n

can b e f o r c e d by t h e u s e o f a c a s t .

mode smallint = sub (-9:9);

smallint si , sj , sk; int k

m l l

k := int (si) + int (sj)

I t i s , o f c o u r s e , p o s s i b l e t o d e c l a r e a v e r s i o n o f + b e t w e e n s m a l l i n t

o p e r a n d s , b u t t h i s mus t b e done e x p l i c i t l y b y t h e p r o g r a m m e r .

The s e c o n d c o n v e r s i o n r e p r e s e n t s a n a r r o w i n g , and can b e a c c o m p l i s h e d

o n l y w i t h t h e a i d o f a s t a n d a r d o p e r a t o r .

sk := s m a l l i n ~ a l k;

T h i s o p e r a t o r i s a u t o m a t i c a l l y d e c l a r e d i n any r e a c h i n w h i c h a mode

d e c l a r a t i o n i s g i v e n f o r a s u b m o d e . The l e t t e r s o f t h e TAG u s e d f o r t h e

o p e r a t o r a r e g i v e n by c o n c a t e n a t i n g t h e l e t t e r s o f t h e b o l d - T A G - s y m b o l

d e f i n e d i n t h e mode d e c l a r a t i o n w i t h l e t t e r - v - l e t t e r - a - l e t t e r - 1 .

I f t h i s o p e r a t o r i s a p p l i e d t o an o p e r a n d whose v a l u e i s o u t s i d e t h e

AB42 p.44

r a n g e e n c o m p a s s e d by t h e s u b m o d e , t h e n t h e r e s u l t i s u n d e f i n e d . I t i s

t h e r e f o r e u s e f u l t o b e a b l e t o c h e c k i f a g i v e n v a l u e i s i n a s u b r a n g e .

T h i s can b e d o n e b y a c o n f o r m i t y r e l a t i o n , w h i c h i s b a s e d on t h e c o n f o r m i t y

r e l a t i o n f o r u n i o n s w h i c h was p a r t o f t h e l a n g u a g e d e f i n e d i n 1968 [6] .

The s y m b o l s r e p r e s e n t e d b y : : = and c t a b d e n o t e a c o n f o r m - t o - a n d - b e c o m e s

r e l a t i o n , w h e r e b y t h e o b j e c t on t h e r i g h t h a n d s i d e i s a s s i g n e d t o t h e

v a r i a b l e on t h e l e f t (a n d t r u e d e l i v e r e d) i f i t i s i n r a n g e , o t h e r w i s e no

a s s i g n a t i o n t a k e s p l a c e (a n d f a l s e i s d e l i v e r e d) . The s y m b o l s r e p r e s e n t e d

by : : and c t i n v o k e t h e same t e s t b u t w i t h o u t t h e a s s i g n a t i o n . The u s e o f

t h e s e r e l a t i o n s i s i l l u s t r a t e d i n t h e f o l l o w i n g e x a m p l e s .

char c; letter a; digit b;

read (c);

i~ a ctab c then c an assignation to a has just occurred

serial clause (1)

elif b ctab c then c an assignation to b has just occurred

serial clause

else c neither a nor b have changed c

serial clause

i~ letter ct c then c c i8 in the 8ubrange letter c

serial clause (ll)

I n t h e s e c o n d e x a m p l e , t h e c o n f o r m i t y r e l a t i o n h a s t h e p r o p e r t y t h a t i t s

l e f t h a n d s i d e i s n o t e l a b o r a t e d , i . e . no s p a c e i s g e n e r a t e d on t h e h e a p .

The g e n e r a t o r l e t t e r i s s i m p l y t h e r e f o r mode m a t c h i n g . N o t e t h a t c_~ c a n

be u s e d e v e n when no mode d e c l a r a t i o n h a s a p p e a r e d f o r a s u b m o d e , and

c o n s e q u e n t l y i t i s n o t i d e n t i f i e d by a b o l d - T A G - s y m b o l , s o no s u b m o d e - c u m - v a l

o p e r a t o r i s d e f i n e d .

V e r y s i m i l a r r e s u l t s c o u l d i n s t e a d b e a c h i e v e d by s t a n d a r d o p e r a t o r s ,

a l s o i d e n t i f i e d by c t end c r a b . Such o p e r a t o r s w o u l d b e d e f i n e d b e t w e e n a

s u f f i c i e n t s e t o f modes a s r i g h t o p e r a n d , and a s u f f i c i e n t s e t o f s u b m o d e s

o f e a c h mode a s l e f t o p e r a n d . Such o p e r a t o r s w o u l d h a v e t h e d i s a d v a n t a g e

t h a t b o t h o p e r a n d s w o u l d a l w a y s b e e v a l u a t e d ; i n t h e s e c o n d e x a m p l e a b o v e ,

s p a c e f o r a l e t t e r v a l u e w o u l d b e g e n e r a t e d on t h e h e a p , and i m m e d i a t e l y

become g a r b a g e .

§4. The C a r t e s i a n P r o d u c t

The C a r t e s i a n p r o d u c t i s one o f t h e s i m p l e s t d a t a s t r u c t u r e s . I t

c o r r e s p o n d s t o t h e r e c o r d s t r u c t u r e s o f P L / I [9] and P a s c a l o r t h e A l g o l 68

AB42 p . 4 f i

• s t r u c t u r e d m o d e s . I n f a c t , w i t h one e x c e p t i o n , A l g o l 68 s t r u c t u r e s p r o v i d e

a l l t h e f a c i l i t i e s s u g g e s t e d by H o a r e [1] , a l t h o u g h t h e n o t a t i o n i s d i f f e r e n t .

I n p a r t i c u l a r , v a l u e s o f a s t r u c t u r e d mode a r e c o n s t r u c t e d , i n A l g o l 6 8 , f r om

a c o l l a t e r a l ; w h e r e t h e r e q u i r e d mode i s n o t o b v i o u s f rom t h e c o n t e x t , a c a s t

o f t h e c o l l a t e r a l i s u s e d . T h i s c o r r e s p o n d s t o H o a r e ' s s u g g e s t i o n t h a t i t

w o u l d be c o n v e n i e n t t o l e a v e t h e t r a n s f e r f u n c t i o n i m p l i c i t i n c a s e s w h e r e no

ambiguity w o u l d arise.

The exception is the with construction. In inspecting or processing a

structured value, it is often required to make many references to its com-

ponents within a single clause. Hoare favours a special construction which

could be represented as

with structure closed clause

W i t h i n t h e c l o s e d c l a u s e t h e f i e l d s o f t h e s t r u c t u r e may b e r e f e r r e d t o by

t h e i r f i e l d s e l e c t o r s a l o n e , i n s t e a d o f by t h e n o r m a l s e l e c t o r o _ f p r i m a r y

c o n s t r u c t i o n . I t i s d e b a t a b l e w h e t h e r t h e a d v a n t a g e s o f t h i s c o n s t r u c t i o n ,

v i z . , t h e c l a r i f i c a t i o n and a b b r e v i a t i o n o f a s e c t i o n o f p r o g r a m , a r e

g r e a t e n o u g h t o o u t w e i g h t h e d i s a d v a n t a g e o f i n t r o d u c i n g a n o t h e r c o n s t r u c t

i n t o t h e l a n g u a g e . A l g o l 68 i s o f t e n c a l l e d a c o m p l e x l a n g u a g e , and

a s c r i p t i o n p r o v i d e s mos t o f t h e p o w e r o f t h e w i t h c l a u s e . F o r t h e s e r e a s o n s ,

i t i s p r o p o s e d t h a t A l g o l H d o e s n o t i n c l u d e t h i s c o n s t r u c t i o n .

§5. The Discriminated Union

Although similar to Algol 68 union, Hoare's Discriminated Unions differ

in certain respects. Each type in the union has an identifier associated

with it, and every value of one of the unioned types is marked with its

identifier, to indicate its derivation. Thus it is possible to construct

a union by repeating the same type several times.

In Algol 68, in contrast, the declarator,

union (date, date)

i s i l l - f o r m e d . The i n t e n t i o n t h a t A l g o l H s h o u l d be a s u p e r l a n g u a g e o f

A l g o l 68 d i c t a t e s t h a t t h e A l g o l 68 k i n d o f u n i o n be i n c l u d e d i n A l g o l H.

S i n c e t h e a d v a n t a g e s o f d i s c r i m i n a t e d u n i o n s a r e d e b a t a b l e , and i t

w o u l d i n any c a s e be c o n f u s i n g f o r o n e l a n g u a g e t o p r o v i d e two v e r y s i m i l a r

b u t d i s t i n c t s t r u c t u r e s , d i s c r i m i n a t e d u n i o n s a r e n o t i n c l u d e d i n A l g o l H.

§6. The Array

The array is a very familiar data structure, and may be regarded as a

mapping from a domain of one type to a range of a possibly different type

AB42 p . 4 6

(t h e t y p e o f t h e a r r a y e l e m e n t s) .

I n m o s t p r o g r a m m i n g l a n g u a g e s , t h e m o s t n o t a b l e e x c e p t i o n b e i n g P a s c a l ,

t h e d o m a i n t y p e i s r e s t r i c t e d t o b e i n t e g r a l . T h i s i s t r u e o f A l g o l 6 8 .

A l g o l H a l l o w s m o r e g e n e r a l a r r a y s ; t h e mode o f t h e d o m a i n c a n b e a n y

enumeration mode, SIZETY inte~al, character or a submode of any permitted

mode.

Some examples should make this clearer.

[suit] int trickvalue;

[day of week] bool holiday;

[sub (I:80)] char punchcard

E l e m e n t s o f t h e s e a r r a y s c a n b e s e l e c t e d i n t h e u s u a l w a y .

d~ of week today := sunday;

i~ not holiday [today] then work else sleep

T h e f a c i l i t y o f u s i n g a s u b r a n g e o f i n t e g e r s a s t h e d o m a i n mode d o e s n o t

r e p l a c e t h e o r d i n a r y A l g o l 6 8 row w i t h i n t e g e r i n d i c e s , b e c a u s e t h e l i m i t s

o f a s u b m o d e c a n o n l y b e p l u s o r m i n u s a d e n o t a t i o n , a n d i t i s t h e r e f o r e n o t

p o s s i b l e t o r e a d i n s u b m o d e b o u n d s a t r u n - t i m e .

§7 . T h e P o w e r s e t

T h e p o w e r s e t o f a s e t i s t h e s e t o f a l l s u b s e t s o f t h a t s e t . T h e

p o w e r s e t a s a d a t a t y p e t a k e s v a l u e s w h i c h a r e s e t s o f v a l u e s s e l e c t e d f r o m

some o t h e r d a t a t y p e k n o w n a s t h e b a s e . P P i m a l ~ c o l o u r h a s b e e n d e c l a r e d a s

a n e n u m e r a t i o n mode w i t h c a r d i n a l i t y 3 ; t h e p o w e r s e t o f p r i m a r y c o l o u r i s a

mode w h i c h h a s a c a r d i n a l i t y o f 2 3 = 8 . I t s v a l u e s a r e a s f o l l o w s .

{ } {red, greene blue}

{red} {reds green}

{green} (red, blue}

{blue} {greene blue}

Declarators f o r p o w e r s e t m o d e s t a k e t h e f o r m i l l u s t r a t e d b y

8eto f primar~co lour

s o we may c o n s t r u c t t h e mode d e c l a r a t i o n

mode colour = setof primar~colour

a n d t h e n d e c l a r e some i d e n t i f i e r s

colour yellow = {red, green},

cyan -- {blue, green},

blue = {blue},

black = { }

The object between and including the braces is a powerset clause. The

values within i t must a l l be of the same mode, but t h e i r order is immaterial

and a repeated value is ignored, so that {green, red, red} represents the same

value as bed , green} which would not be the case fo r a co l l a t e ra l clause.

The empty powerset clause { can only stand i n a strong position. A n

al ternat ive representation of the braces a re the symbols set and g.

7.1 Manipulation

For each powerset f o r which a mode declarat ion is given, a constant is

declared corresponding t o the universal s e t , where t h i s has f i n i t e cardinal i ty.

In the example, the e f f e c t is as i f the declarat ion

colour a l l c o l o u ~ = Ired, blue, green3

were elaborated a f t e r the mode declaration.

Where the cardinal i ty of the base type is small the powerset can be

e f f i c i e n t l y represented by a l locat ing one b i t i n s t o r e fo r each value of the

base type. Thus, f o r example, values of type colour can be represented i n

three b i t s . The basic operations on powersets are usually available a s

s ing le machine ins t ruc t ions , which makes t h i s representation doubly a t t r ac t ive .

However, when it is known t h a t the cardinal i ty of the base type is large , o r

perhaps conceptually i n f i n i t e , the b i t pa t tern representation loses its

a t t r ac t ion , par t icular ly when most values of the powerset w i l l consist of

only a small number of elements of the base. In these cases i t w i l l be

necessary t o represent the powerset as some advanced data s t ruc tu re , which

an automatic t r ans la to r cannot be expected t o construct.

However, the u t i l i t y and eff iciency of the powerset of a small base type

is such tha t it ought t o be included i n Algol H; powersets are therefore

permitted providing the cardinal i ty of the base type does not exceed some

implementation defined maximum possessed by the standard prelude integer

setwidth.

Various operations can be defined between s e t s of a given powerset mode

and elements of i ts base mode. There is one operator defined between a s e t

s and an element x.

Membership : x i s i n s del ivers true i f the element

x is a member of s e t s

The following operators, with t h e i r usual mathematical meaning, a re defined

between two se t s :

equal it y ,
union,
in tersec t ion ,
r e l a t i v e complement,
inclusion.

Algol H a l s o allows assigning vers ions of union, i n t e r s e c t i o n

complement.

and r e l a t i v e

Union and becomes : 61 u:= s2 equivalent t o

In t e r sec t ion and becomes : sl n:= 82 equivalent t o

Difference and becomes : sl \:= 92 equivalent t o

I t is a l s o usefu l t o be ab l e t o s e l e c t an element from a set,

remove it. This is achieved by t h e operator outof: a: outof S

from S and assigns i ts value t o 2.

61 := s1 U 62

sl := sl n 92

s1 := 6 1 \ s2

and simultaneously

removes an element

58, Implementing Algol H

A major p a r t of t he work of any parser f o r Algol 68 is t o perform mode-

checking. Because, i n general , a given mode can be "spelled" i n a la rge

(sometimes i n f i n i t e) number of ways, t h e syntax of Algol 68 includes complex

devices which check i f modes a r e equivalent and i f a value of a given mode is

"acceptable" t o another mode CR.2.1.3.6, 2.1.4.11. The l a t t e r test depends

on the syn tac t i c pos i t i on (SORT) of t h e construct ion, a s t h e list of appl icable

coercions vary with context . A l l t h i s must be modelled within a pa r se r , which

is no small t ask .

However, t h a t t h i s t ask can be success fu l ly completed is evidenced by t h e

exis tence of severa l usable and e f f i c i e n t Algol 68 compilers. Given access t o

such a compiler and a descr ip t ion of i ts mode represen ta t ion mechanism, one

f e e l s t h a t it would no t be t oo d i f f i c u l t t o extend it t o encompass new bas ic

modes.

This f e e l i n g is reinforced by t h e comments of Wirth on t h e programming

languages Pascal and Modula. Pascal has s c a l a r types which correspond t o t h e

ordered enumeration modes of Algol H, and subrange types which provide some

of t h e f a c i l i t i e s of submodes. Arrays with general domains and powersets are

a l s o included. Nevertheless, Wirth s t a t e s t h a t one of h i s p r inc ipa l aims i n

developing Pascal was t o produce a language which could be implemented r e l i a b l y

and e f f i c i e n t l y , both a t compiler and execution t i m e . In [lo] he w r i t e s "a

most important considerat ion i n t he design of Modula was i ts e f f i c i e n t

implementability". Modula is a language based on Pascal but with an improved

syntax and t h e a b i l i t y t o a s soc i a t e access procedures with da ta i n t he manner

of a Simula C111 c l a s s ; i t includes enumerations, which may form t h e ind ices

of a r rays , and is intended f o r use i n real-t ime appl ica t ions on mini-computers.

Thus t he re is j u s t i f i c a t i o n f o r being confident t h a t most of t h e new

construct ions of Algol H could be e f f i c i e n t l y implemented by an ex tens ib le

Algol 68 compiler. To t h e bes t of our knowledge no such compiler e x i s t s ; we

have i n mind an extension device akin t o t h e Syntax Macros of Cheatham [I21

and Leavenworth C131. I n C31, a t r a n s l a t o r from Algol H t o Algol 68-R [I41

AB42 p.49

i s d e s c r i b e d where e a c h A l g o l H c o n s t r u c t i s t r a n s l a t e d i n t o A l g o l 68-R i n

s u c h a way t h a t a l l mode c h e c k i n g i s done by t h e A l g o l 68-R c o m p i l e r .

Acknowledgemen t

The a u t h o r s w i s h t o t h a n k P r o f e s s o r R . J .W. Housden f o r h e l p f u l d i s c u s s i o n s .

The m a j o r i t y o f t h i s work was done by A.P . B l a c k u n d e r t h e s u p e r v i s i o n o f Dr .

R a y w a r d - S m i t h i n p a r t i a l f u l f i l l m e n t o f t h e r e q u i r e m e n t s o f t h e B . S c . d e g r e e

a t t h e U n i v e r s i t y o f E a s t A n g l i a , N o r w i c h .

R e f e r e n c e s

[1] C .A.R. H o a r e , " N o t e s on D a t a S t r u c t u r i n g " i n " S t r u c t u r e d P r o g r a m m i n g "
by O . J . D a h l , E.W. D i j k s t r a and C .A.R. H o a r e , Academic P r e s s (1 9 7 2) .

[2] A. van W i J n g a a r d e n , e t a l . , " R e v i s e d R e p o r t on t h e A l g o r i t h m i c L a n g u a g e
A l g o l 6 8 " , A c t a I n f o r m a t i c a , 5 (1 9 7 5) .

[3] A.P. Black, "Algol H: Some Extensions to the Data Handling Facilities
of Algol 68", Project Report, School of Computing Studies, University
of East Anglia, Norwich (1977).

N. Wirth, "The Programming Language Pascal", Acta Informatlca, 1 (1971).

C.H. Lindsey and S.G. van der Meulen, "Informal Introduction to Algol 68",
revised edition, North Holland (1977).

A. van WiJngaarden, et al., "Report on the Algorithmic Language Algol 68",
Numerische Mathematik, 14 (1969).

S.G. van der Meulen, "Algol 68 Might-Have-Beens", Proceedings of the
Strathclyde Algol 68 Conference, Sigplan Notices, 12:6 (1977).

K. Jensen and N. Wlrth, "PASCAL: User Manual and'Report", Lecture Notes
in Computer Science, 18, Springer Verlag (1975).

C.P. Lecht, "The Progr-,,,ers' PL/I", McGraw Hill (1968).

N. Wirth, "Modula: A language for Modular Multiprogr-mming", Software-
Practice and Experience, 7:1 (1977).

G.M. Birtwistle, O.J. Dahl, B. Myhrhang, K. Nygaard, "Simula Begin"
Auerback (1973).

T.E. Cheatham Jnr., 'The Introduction of Definitional Facillties into
Higher Level Progr-mming Languages", Proc AFIPS FJCC, 29 (1966).

B.M. Leavenworth, "Syntax Macros and Extended Translation", CACM, 9:11
(1966).

P.M. Woodward, S.G. Bond, "Algol 68-R Users Guide", H.M.S.O. (1974).

[43

Eel

E6]

E7]

Es]

E9]

Ezl]

E12]

Eis]

E14]

AB42.4.6 The.Most Cont r ived F a c t o r i a l Program

John P. Baker
U n i v e r s i t y of B r i s t o l

AB42 p. 50

BEGIN
PROC readint = INT: (INT I; read(i); i);
INT one=1,two=2,three=3,four=4,flve=5tslx=6,seven=7,

eight=8,nlne=9,ten=10,eleven=11,twelve=12;
INT a=one;
PRIO#rlty# ME=5, LOVE=7, MY=7, LORDS=7, LADIES=7,

PIPERS=7, DRUMMERS=7, MAIDS=7, SWANS=7, GEESE=7,
GOLD=7, COLLY=7, FRENCH=7, TURTLE=7, PARTRIDGE=6;

BOOL sent to=TRUE;
OP THE = (BOOL a)BOOL:a,

TWELFTH = (INT a)BOOL:a=twelve,
ELEVENTH = (INT a)BOOL:a=eleven,
TENTH = (INT a)BOOL:a=ten,
NINTH = (INT a)BOOL:a=nine,
EIGHTH = (INT a)BOOL:a=eight,
SEVENTH = (INT a)BOOL:a=seven,
SIXTH = (INT a)BOOL:a=six,
FIFTH = (INT a)BOOL:a=five,
FOURTH = (INT a)BOOL:a=£our,
THIRD = (INT a)BOOL:a=three,
SECOND = (INT a)BOOL:a=two,
FIRST = (INT a)BOOL:a=one,

OP ME = (BOOL a,INT b)VOID:(alprint(b)),
OP LOVE = (BOOL a,b)BOOL:(a~b~FALSE),

MY = (BOOL a,b)BOOL:a LOVE b,
OP AND = (INT a)INT:a;
MODE DATE = STRUCT (INT day,month);
LOC DATE chrlstmas:=(25,12);
OP LORDS = (INT a,b)INT:a*b,

LADIES = (INT a,b)INT:a*b,
PIPERS = (INT a,b)INT:a*b,
DRUMMERS = (INT a,b)INT:a*b,
MAIDS = (INT a,b)INT:a*b,
SWANS = (INT a,b)INT:a*b,
GEESE = (INT a,b)INT:a*b,
GOLD = (INT a,b)INT:a*b,
COLLY = (INT a,b)INT:a*b,
FRENCH = (INT a,b)INT:a*b,
TURTLE = (INT a,b)INT:a*b,

OP LEAPING = (INT a)INT:a,
DANCING = (INT a)INT:a,
PIPING = (INT a)INT:a,
DRUMMING = (INT a)INT:a,
MILKING = (INT a)INT:a,
SWIMMING = (INT a)INT:a,
LAYING = (INT a)INT:a,
RINGS = (INT a)INT:a,
BIRDS = (INT a)INT:a,
HENS = (INT a)INT:a,
DOVES = (INT a)INT:a,

OP PARTRIDGE = (INT a,b)INT:a+b;
INT in a pear tree = O;
print("FACTORIAL OF ");
print(day OF christmas := readint#reads an integer#);
print(" IS ");
(day OF christmas>121print("TO0 BIG FOR THIS PROGRAM");stop);

now we are ready #

THE FIRST day OF c h r i s t m a s MY TRUE LOVE s e n t t o ME
a PARTRIDGE i n a p e a r t r e e ;

THE SECOND day OF c h r i s t m a s
two TURTLE DOVES AND
a PARTRIDGE i n a p e a r t r e e ;

MY TRUE LOVE sent to ME

THE THIRD day OF c h r i s t m a s
t h r e e FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE i n a p e a r t r e e ;

MY TRUE LOVE sent to ME

THE FOURTH day OF c h r i s t m a s
f o u r COLLY BIRDS
t h r e e FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE i n a p e a r t r e e ;

MY TRUE LOVE sent to ME

THE FIFTH day OF christmas
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree;

MY TRUE LOVE s e n t t o ME

THE SIXTH day OF christmas MY TRUE LOVE sent to ME
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
t h r e e FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE i n a p e a r t r e e ;

THE SEVENTH day OF christmas MY TRUE LOVE sent to ME
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a p e a r t r e e ;

THE EIGHTH day OF christmas MY TRUE LOVE sent to ME
eight MAIDS MILKING
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree;

AB42 p. 51

AB42 p. 52

THE NINTH day OF christmas
nine DRUMMERS DRUMMING
eight MAIDS MILKING
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree;

MY TRUE LOVE sent to ME

THE TENTH day OF christmas
ten PIPERS PIPING
nine DRUMMERS DRUMMING
eight MAIDS MILKING
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree;

MY TRUE LOVE s e n t t o ME

THE ELEVENTH day OF christmas
eleven LADIES DANCING
ten PIPERS PIPING
nine DRUMMERS DRUMMING
eight MAIDS MILKING
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree;

MY TRUE LOVE s e n t t o ME

THE TWELFTH day OF christmas MY TRUE LOVE sent to ME
twelve LORDS LEAPING
eleven LADIES DANCING
ten PIPERS PIPING
nine DRUMMERS DRUMMING
eight MAIDS MILKING
seven SWANS SWIMMING
six GEESE LAYING
five GOLD RINGS
four COLLY BIRDS
three FRENCH HENS
two TURTLE DOVES AND
a PARTRIDGE in a pear tree

END

AB42.4.7 GRAMMAR ANALYSIS WITH ALGOL68

AB42 p, 53

Steven Pemberton
Brighton Polytechnic, U.K.

There are many reasons why a compiler-writer needs to analyse
a grammar: for instance, to check that it is LL(1); to generate
tables for a parsing algorithm; or to re-arrange the grammar to
make it suitable for a particular parsing method.

The initial aim when analysing a grammar by computer is to form
an internal version of the grammar in the machine, ie. some sort of
linked list in main memory, so that it can be subsequently examined.

Up to now, the technique for forming such an internal grammar
has been to write a translator to read in a description of the
grammar from some medium, and produce the required internal form
ready for analysis.

This paper describes an Algol68 prelude for a number of modes
and operators that once declared, allows the user to write grammars
in a natural manner directly in Algol68 without the need for any
initial input stage. It has the advantages of being fast, easily
modifiable for particular needs, such as inserting actions in
the grammar, and allowing full use of the language facilities
provided in Algol68.

The Internal Grammar

The required structure of the internal form may be demonstrated
by the following declarations:

MODE RULE:STRUCT(REF NOTION notion, DEFINITION def,
REF RULE next),

DEFINITION=STRUCT(ALTERNATIVE alt, REF DEFINITION next),
ALTERNATIVE=STRUCT(UNION(NOTION,SYMBOL) member,

REF ALTERNATIVE next);

The definitions of NOTION and SYMBOL would largely depend on
particular requirements, but presumably the mode of NOTION would
include a REF DEFINITION.

Grammar Specification

The basis of the method described here is a number of operators,
chosen to look as much as possible like the characters used in
conventional syntaxes, which, thanks to priority declarations,
allow the straightforward transcription of grammars.

The first of these operators is asterisk, chosen for its (slight)
resemblance to a point, and is used to separate rules (and not to
terminate them, since it is an operator):

grammar: rule; grammar, asterisk, rule. (1)

Since it is at the outermost level, and hence has the lowest binding,
asterisk will have the lowest priority.

AB42 p. ,5~

A rule consists of a notion and its definition. The obvious
candidate for the required operator is equals:

rule: notion, equals, definition. (2)

It will have a priority higher than that of asterisk.

A definition consists of a number of alternatives separated by
some suitable operator. An upward arrow is suitable here due to
its similarity to the vertical bar in BNF:

definition: alternative; definition, up, alternative. (3)

(Alternatively, an exclamation mark could be used, but some implement-
ations may use it as a representation of the stick symbol). Up will
have a priority greater than that of equals.

Finally, an alternative is a number of members, separated by
plus symbols, used for their suggestion of concatenation:

alternative: empty; member; alternative, plus, member.
member: notion; symbol. (4)

Plus will have the highest priority of the four operators.

These definitions can be used directly to declare the required
modes and operators:

PRIO *=1, ==2, T=3, +=4;

from (I) #
MODE GRAMMAR=UNION(RULE, RULES);
MODE RULES=STRUCT(REF GRAMMAR gram, RULE rule);

OP *=(GRAMMAR g,RULE r)GRAMMAR:RULES(HEAP GRAMMAR:=g,r);

from (2) #
MODE RULE=STRUCT(REF NOTION notion, DEFINITION def);

OP ==(REF NOTION n, DEFINITION d)RULE:(def OF n:=d; (n,d));

from (3) #
MODE DEFINITION=UNION(ALTERNATIVE, ALTERNATIVES);
MODE ALTERNATIVES=STRUCT(REF DEFINITION def, ALTERNATIVE alt);

OP I=(DEFINITION d, ALTERNATIVE a)DEFINITION:
ALTERNATIVES(HEAP DEFINITION:=d,a);

from (4) #
MODE ALTERNATIVE=UNION(VOID, MEMBER, MEMBERS);
MODE MEMBERS=STRUCT(REF ALTERNATIVE alt, MEMBER mem);
MODE MEMBER=UNION(NOTION, SYMBOL),

NOTION= C as required C,
SYMBOL = C as required, but not euivalent to NOTION C;

OP +=(ALTERNATIVE a, MEMBER m)ALTERNATIVE:
MEMBERS (HEAP ALTERNATIVE:=a, m);

AB42 p.55

The use of the VOID in the mode of ALTERNATIVE happily allows us
to use the void denotation EMPTY for empty alternatives.

Example

BEGIN
NOTION expression, term, factor,
SYMBOL plus, times, open, close, identifier;

GRAMMAR g=

expression= expression+ plus+ term!
term*

term= term+ times+ factorr
factor*

factor= open+ expression+ closet
identifier ;

SKIP
END

These operators mean that if a grammar is mis-formed, the program
will fail to compile. For instance, trying to define a symbol as a
rule will cause some message about = not being declared for that
pair of modes.

Conclusion

Operator and priority declarations have hitherto been regarded as a
feature allowing programmers to define expressions for their own needs,
and as such, only as a convenience. However, it appears that an
additional advantage is that they allow constructs that would not
normally be regarded as expressions to be written in a natural and
straightforward manner, eliminating the need for some special-purpose
translators. The use of a system such as described here may well
give us a different, more dynamic, view of grammars to the static one
we are used to.

Note.Those of us who use the British Algo168r dialect implementation
that does not allow uniting in firm positions, will have to
declare *,T and + separately for the elements of the unions,
eg. * for (rule,rule)grammar as well as (grammar,rule)grammar,
and so on.
This does result in quite a few more definitions.

AB42.4.8 REMARKS ON ABSTRACTO

Leo Geurts
Lambert Meertens

Mathematlsch Centrum, Amsterdam

AB42 p. 56

I. ABSTRACTO LIVES

If an author wants to describe an algorithm, he has to choose a vehicle
to express himself. The "traditional" way is to give a description in some
natural language, such as English. This vehicle has some obvious drawbacks.
The most striking one is that of the sloppyness of natural languages. Hill
[|] gives a convincing (and hilarious) exposition of ambiguities in
ordinary English, quoting many examples from actual texts for instructional
or similar purposes. The problem is often not so much that of syntactical
ambiguities ("You would not recognise little Johnny now. He has grown
another foot.") as that of unintended possible interpretations ("How many
times can you take 6 away from a million? [...] I can do this as many
times as you like."). A precise and unambiguous description may require
lengthy and repetitious phrases. The more precise the description, the more
difficult it is to understand for many, if not most, people. Another
drawback of natural languages is the inadequacy of referencing or grouping
methods (the latter for lack of non-parenthetical parentheses). This tends
to give rise to GOTO-like instructions.

With the advent of modern computing automata, programming languages
have been invented to communicate algorithms to these computers.
Programming languages are almost by definition precise and unambiguous.
Nevertheless, they do not provide an ideal vehicle for presenting
algorithms to human beings. The reason for this is that programming
languages require the specification of many details which are relevant for
the computing equipment but not for the algorithm proper. The primitives of
the programming language are on a much lower level than those of the
algorithm itself.

The evolution of hlgh-level programming languages is one in which the
level of the available primitives increases towards the abstractions that
human beings use when thinking about algorithms. Still, the gap is very,
very large. Unfortunately, recent progress is not yet reflected in any
major, generally known programming language.

However, high-level programming languages have had a direct influence
on the presentation of algorithms in the literature. Many an author now
employs a kind of pidgin ALGOL to express himself. The pidgin
characteristics are all present: (a) the language is primarily a contact
language, used between persons who do not speak each other's language;
although each "speaker" may have his own variant, there is mutual
understandability; (b) there is a limited vocabulary, and the syntax is
stripped down to the bare necessities, with elimination of the grammatical
subtleties that can only be mastered by a regular user; (c) the language is
not frozen but permits adaptation to various universes of discourse. The
main advantages to the author (and his audience) are that there is no need
for a preliminary and boring exposition of the algorithmic notation, that
mathematical notions and notations may freely be employed, and that the
resulting description is sufficiently precise to convey the algorithm

This paper is registered at the Mathematical Centre as IW 97.

AB42 p. 57

without the deleterious burden of irrelevant detail.
This pidgin ALGOL is a language. It is not really a programming, nor a

natural language, but it has characteristics from both. It is not steady,
but evolving. How it will evolve we cannot know. But as any man-made thing,
its evolution can be influenced by our conscious effort. This language on-
its-way may be dubbed Abstracto. (The name "Abstracto" arose from a
misunderstanding. The first author, teaching a course in programming,
remarked that he would first present an algorithm "in abstracto" (Dutch for
"in the abstract") before developing it in ALGOL 60. At the end of the
class, a student expressed his desire to learn more about this Abstracto
programming language.)

Abstracto "77 is a clumsy language, like any pidgin. Only when a pidgin
language becomes a mother tongue, which is not picked up in casual contacts
but is the primary language one learns and uses, can it become the
versatile tool that allows the expression of complicated thoughts in a
natural way.

There are at least two reasons for programming-linguists to study
Abstracto. The first is that we may hope to speed up the evolution of
Abstracto, by proposing and using suitable notations for important
concepts, either derived from existing programming languages, or newly
coined. (An excellent example are Dijkstra's guarded commands.) The second
is that Abstracto may show us how to design better programming languages.

2. THE LANGUAGE OF MATHEMATICS

It is possible to draw a parallel with the language of mathematics.
Only a few centuries ago, the simplest algebraic equation could only be
described in an unbelievably clumsy way. This very clumsiness stood
directly in the way of mathematical progress.

Take, ~or example, Cardan's description of the solution of the cubic
equation x + px = q, as published in his Ars Magna (1545). The following
translation from Latin is as literal as possible, with some explanations
between square brackets that would have been obvious to the mathematically
educated sixteenth-century reader:

RULE
Bring [Raise] the third part of the number [coefficient] of things [the
unknown] [i.e., p] to the cube, to which you add the square of half the
number [coefficient] of the equation [i.e., q], & take the root of the
whole [sum], namely the square one, and this you will [must] sow
[copy], and to one [copy] you join [add] the half of the number
[coefficient] which [half] you have just brought in [multiplied by]
itself, from another [copy] you diminish [subtract] the same half, and
you will have the Binomium with its Apotome [respectively], next, when
the cube root of the Apotome is taken away [subtracted] from the cube
root of its Binomium, the remainder that is left from this, is the
estimation [determined value] of the thing [unknown].

Nowadays, there is a large basic arsenal of mathematical notions and
corresponding notations that may be freely used without further
explanation. Each specialism has, in addition, its own notations.
Nevertheless, each author is free to introduce new notations as the
circumstances require.

Which notations survive in the struggle for life is determined by
several factors, of which the ease of manipulating expressions is probably

AB42 p. S8

the foremost one. Still, several notations may coexist, each with its own
advantages and disadvantages (like Newton's versus Leibnitz's notation for
derivatives). Generally, mathematicians do not bother too much about
syntactical ambiguity and do not even stoop down to indicate operator
priorities, as long as the intended meaning is conveyed to the gentle
reader. (How different from that adversary, the automaton!)

The wildgrowth of notations in new fields can, under circumstances, be
effected beneficially by a ~ore or less authoritative body (possibly one
person). Donald Knuth's_ ,~al [2] for, among others, the use of a Greek
letter theta to denote tn~ .ss of functions of some order, constitutes an
intervention for lack of an ec ablished notation. Such interventions are
not to be confused with st~ ~ization efforts! Only in a frozen field is
it possible to standare~a~. . else we have a case of death by premature
exposure to frost (hopefully of the standard).

It is difficult to characterize what constitutes good notational
practice. Not only is "elegant" vague, but where notation is concerned, it
is just a synonym for "good to use". Some criteria are: conciseness,
similarity to notations for similar concepts, and relative independence of
context. There are, of course, enough dubious notations, such as lim f(x)
a, where the equality sign has a subtly different meaning. (An extremely
bad case in ALGOL 60 is the switch declaration SWITCH s := i], 12, 13.)

3. IN SEARCH OF ABSTRACTO 84

We expect that the introduction of better notations will prove as
important for the development of "algorithmics", as it has been - and still
is - for mathematics. One must, of course, first identify the concepts
before a notation can be developed. It seems unlikely that progress will
come from selecting mind-blowing concepts, if only because it is hard
enough to think about algorithms without having one's mind blown. If the
parallel with mathematics is not deceptive, the important point is the
manipulation of "algorithmic expressions". From a paper by Bird [3],
describing a new technique of program transformation, we quote: "The
manipulations described in the present paper mirror very closely the style
of derivation of mathematical formulas [...] As the length of the
derivations testify, we still lack a convenient shorthand with which to
describe programs, but this will come with a deeper understanding about the
right sequencing mechanisms."

At first sight it may seem attractive to view an algorithm as a
(constructive) solution satisfying a correctness formula

(p) X {q).

One can develop a notation, like Schwarz's generic command p ~ q [4], for a
solution (or the set of solutions) of the correctness formula. There must
be some constraint on the variables that may be altered by the algorithm,
since it is hardly helpful to know that

x = x 0 ^ y - Y0 ~ x = GCD(x0,Y 0)

is solved by

x := x 0 := YO := 3.

AB42 p. 59

If v stands for the alterable variables, and we write q[v := e] for the
result of substituting e for v in q, then p o q can already be expressed in
Abstracto "77 by

v := e {e : p = q[v := el),

where "¢" denotes the (indeterminate) selection operator.
If one interprets p o q at the same time as a formula expressing the

(proved) existence of a solution, some proof rules may be given. For
example, we have a proof rule

p = q Iv := e]

poq

(corresponding to the solution v := e), the proof rule

p oq, q or

por

(corresponding to p o q; q o r), and the proof rule

pl o ql, p2 o q2

plv p2 o ql v q2

(corresponding to IF pl + pl o ql 0 p2 + p2 o q2 FI). By turning a
derivation of p o q upside down, a solution is constructed. Unfortunately,
there is no suitable rule for a solution of the form

DO b -+ p ^ bop OD.

(The rule

p Abop

pop A -~b

does not express termination and allows the derivation of p o p ^ -~b for
arbitrary p and b.)

There are several other courses one may follow to search for more
constructive elements of Abstracto. One is similar to the way high-level
programming language elements originate: consider existing (Abstracto)
programs, and find similar "code sequences" that appear to be the
expression of the same more abstract concept. Just like

LI: IF NOT condition GOTO L2
perform something
GOTO Ll

L2:

AB42 p. 60

may be expressed more clearly by

DO condition ÷ perform something OD,

one might wish to express

vopt := ~;
FOR e E s
DO IF ok| (e)

THEN IF v < vopt
THEN eopt, vopt := e, v
FI WHERE v = fl (e)

ELIF ok2 (e)
THEN IF v < vopt

THEN eopt, vopt := e, v
FI WHERE v = f2 (e)

FI
OD

as

eopt, vopt := FOR e ~ s
OPT okl (e) + f l (e)

0 ok2 (e) + f2 (e)
TPO.

(This is not a serious proposal, but neither is it a mere joke.)
Instead of this bottom-up approach a more analytical consideration of

the human way of thinking about algorithms may prove, in the long run, more
fruitful. In contrast to the process of developing a program, given an
algorithm, it appears that little is known about this subject. Descriptions
of algorithms in natural languages do not provide much insight, presumably
because of the poor expressiveness for algorithmic notions. (One tendency,
however, is very noticeable, and is maybe an indication that is worth
following up: what might be called the "and-so-on" descriptions, and the
"afterthoughts". We surmise that this reflects the emergence of algorithms
as the Jump to the limit of a sequence of approximations.)

Perhaps the best approach is the following. Suppose a textbook has to
be written for an advanced course in algorithmics. Which vehicle should be
chosen to express the algorithms? Clearly, one has the freedom to construct
a new language, not only without the restraint of efficiency
considerations, but without any considerations of implementability
whatsoever.

The following is an attempt to indicate some desiderata for Abstracto
84.

Orthogonallty is a must. For a lingua franca without frozen and formal
description, exceptions are out of the question.

Abstracto 84 has an ALGOL flavor, but is certainly not committed to the
control structures or any other particular construct of any ALGOL
whatsoever.

With the exception of truth values, Abstracto 84 has no predefined
types, but only ways to construct new types from "application oriented"
types. Operations on objects are outside the realm of Abstracto 84 proper,
except such operations as have a generic meaning for a class of types
constructed by means provided by Abstracto 84 (cf. Wilkes [5]).

Although there are variables for objects of any type, these variables

AB42 p.61

are not considered as new objects. There are no pointer values (except when
introduced for a specific application).

Similarly, procedures are not considered as objects which may be
assigned etcetera.

Conditions may contain defining identifiers which are also bound in the
controlled clause selected if the condition succeeds.

4. GLIMPSES OF ABSTRACTO 84

Due to our near-sightedness, it is difficult to discern more than some
outlines of Abstracto 84. Of some prominent features a glimpse may now and
then be caught. It should go without saying that all mathematical notation
remains welcome to Abstracto.

First of all, it is clearly settled, even in this early stage, that
Abstracto is rich in "iterators" (operators or other constructs that
operate on generators in an Alphard-llke sense). For example, one may write
a condition

3 e e s: p(e),

and if this succeeds, then in the scope of the selected clause, if any, e
accesses some element from s satisfying the predicate p. Such constructions
may provide a clear and concise description that is quite close to the
algorithm originally conceived. Also, if it is immaterial for the algorithm
in whlch order elements are selected, it is important that this be
expressed.

The control structures of Abstracto 84 seem to be centered around
guarded command sets (Dijkstra [6]) of the form:

CI ÷ Sl 0 C2 ÷ $2 0 "'" 0 Cn + Sn.

The basic meaning of such a form is: if at least one of the C. holds (where
the evaluation of a condition is supposed to have no side effects), then
some corresponding S is selected (but not yet evaluated). In the
terminology of the A~CGOL 68 Report, a scene is selected, composed from that
S. and an environ whose most recent locale may have been added because of
the declarative form of C..

The meaning of IF ...iFI and DO ... OD may now be defined easily. It
appears, however, that in Abstracto 84 several other control structures may
be defined with the guarded commands at their cores, as suggested by the
FOR ... OPT ... TPO construct in the previous section. The basic simplicity
of the concept, in conjunction with its indeterminacy, should warrant ease
of manipulation.

Many types, specifically those that can be treated satisfactorily by
so-called axiomatlc/algebraic specifications, can be defined in the way
exemplified below:

tree ::= nll I atom (val: item) I pair (left, right: tree).

(We write "::=" to stress the similarity with BNF, although this "syntax"
of objects is more abstract than usual, since the nodes in the "parse tree"
of an object are labelled; in the example, "nil", "atom" and "pair" are
node labels.) This notation is similar to Hoare's notation for recursive

AB42 p .62

data structures [7]; it carries no other information than is relevant from
an abstract algorithmic point of view. There are three nice things about
this way of defining types. In the first place, it is easy to derive in a
straightforward way "axiomatic" specifications in the style of Guttag [8],
but the notation is much more compact. (For the above example, we would
obtain nine lines for the discernible functions and eighteen for the
axioms.) Secondly, this way of defining offers a unification of three
well-known concepts:

records, as in

complex : : - pair (re, im: real);

(disjoint) unions, as in

arithmetical ::= i (val: int) I r (val: real);

PASCAL scalars, as in

color ::~ red I blue I green.

Finally, it is easy to instruct a compiler to handle such definitions.
The only drawback is the inefficiency, reason why such definitions are
maybe Abstracto rather than Concreto.

Objects of a thus defined type can now be subjected to a "conformity
condition", as in

DO t FITS
pair (tl, t2) ÷ t := t2

OD.

In this example, if the condition succeeds, t2 accesses the tree t.right.

5. A POSSIBLE PITFALL

Unless we are very mistaken, program development by successive "program
transformations", i.e., a sequence of manipulations on expressions which
represent algorithms, has a promising future. Each transformation rule is a
theorem. To us, computer maniacs, the perspective is tempting to create a
data base of transformations to be applied mechanically. Since the
applicability of each transformation is also checked mechanically, we have
done away with all bugs (except for those in the original, pure, algorithm,
possibly a problem specification). What vista! Of course, we must invent
for our Abstracto language some syntactic notions to allow expression of
the applicability of transformations.

The last sentence should make it clear already that the pursuit of this
Utopian concept - unless one contents oneself with trivial transformations
that might as well be applied directly by a compiler - spoils the
simplicity of Abstracto. Worse yet, the concept wholly ignores the fact
that in mathematics for none but the simplest theorems the applicability
may be checked by "syntactical" means. If computers would have dated back
to the inception of modern mathematical notation and only mechanizable
transformations would have been studied, the so-called special products
would, presumably, still be among the high-lights of mathematical
knowledge.

To quote once more Bird [3]: "we did not start out, as no mathematician

AB42 p. 63

ever does, with the preconception that such derivations should be described
with a view to immediate mechanization; such a view would severely limit
the many ways in which an algorithm can be simplified and polished."

REFERENCES

[1] Hill, I.D., Wouldn't it be nice if we could write computer programs in
ordinary English - or would it?, Computer Bull. 12 (1972) 306-312.

[2] Knuth, D.E., Big omicron and big omega and big theta, SIGACT News
(]976) 2, 18-24.

[3] Bird, R.S., Improving programs by the introduction of recursion, Comm.
ACM20 (|977) 856-863.

[4] Schwarz, J., Generic commands - a tool for partial correctness
formalisms, Computer J. 20 (1977) 151-155.

[5] Wilkes, M.V., The outer and inner syntax of a programming language,
Computer J. I_! (]968) 260-263.

[6] DiJkstra, E.W., Guarded commands, nondeterminacy and formal derivation
of programs, Comm. ACM 18 (1975) 453-457.

[7] Hoare, C.A.R., Recursive data structures, Stanford University Report
CS-73-400 (1973).

[8] Guttag, J.V., Abstract data types and the development of data
structures, Comm. ACM 20 (1977) 396-404.

AB42 p. 64

AB42.4.9 'ABSTRACTO' PROJECT FOR AN ALGORITHM SPECIFICATION

LANGUAGE

R. DEWAR, J. SCHWARTZ

COURANT INSTITUTE OF COMPUTER SCIENCES

DECEMBER 1977

i. Semantic and Syntactic ~spects ofPrO@rammin~ Lan@ua~es

Any programming language has two aspects which together

determine much of its character. The first of these, which can

be called the semantic side of the language, is defined by the

set of primitive operations which the language makes available.

It is useful to think of these as the operations of a logical

machine, which we shall call the interpreting machine of the

language. Then we can make the following remarks:

(a) If, for reasons of efficiency, the interpreting

machine of a language L is restricted to operations which have

a very elementary, hardware-like character, then L is bound to

be of relatively low level.

(b) The development of progressively more powerful programming

languages has been bound up with a progressive enrichment of the

family of operators provided by the interpreting machines of these

languages. However, language designers have often been reluctant

to use operations until it become clear that these operations

could be implemented very efficiently. The following is a rough

account of major steps taken to date in the enrichment of in-

terpreting automata:

AB42 p. 65

i. FORTRAN: static call/return primitives; I/0 operations.

ii. ALGOL-60: recursive call/return primitives, stack

allocation.

iii. PL/I: allocate/free primitives for space allocation,

pointers, structured records.

iv. ALGOL-68, LISP: allocation primitives supported by

garbage collection, combined, in the ALGOL-68 case,

with a structured record facility.

v. SIMULA: (also other simulation languages): multiple

pseudoparallel processes, supported by process-creation

and coroutine-call primitives.

vi. APL, SETL: arrays, sets; array, set, and map operations.

vii. SNOBOL (also various A.I. languages such as PLANNER,etc.):

backtracking primitives.

Part of what we wish to suggest is that a deliberately radical

leap forward from the semantic level reached thus far would be

useful.

The second major aspect of a language, which can be called

its syntactic side, appears as the external form of the language.

Syntactic design aims to provide a set of notations which conduce

to effective, correct use of a language's underlying semantic

primitives. Significant subsidiary aims are as follows:

i. The notations should help to localize the network of

logical relationships upon which correct program functioning rests,

and should have the property that the logical import of a code

submodule is conveyed as clearly as possible by its external form.

This is partly a matter of providing adequate syntactic mechanisms

for grouping and arranging code fragments.

ii. A language's syntax can fnclude rules of redundancy

which cut down on the likelihood that certain types of common

errors will go undetected. These rules, which a compiler can

enforce, can require a programmer to provide material

apt to have significant documentary value, to arrange his code in

ways apt to enhance readability, etc.

AB42 p. 66

iii. A language's syntactic processor can include mechanisms

which facilitate modest language extensions.

Some otherwise very interesting languages, such as APL and

SNOBOL, have conspicuously ignored goals (i) and (ii). LISP

certainly ignores goal (ii), while ALGOL-68 certainly achieves

it in large measure. The design of SIMULA is interesting in

connection with goal (i), which has also shaped the design of

such recent languages as CLU and ALPHARD.

2. pure specification Lan@ua~es

Whatever its syntax and semantics, a programming language

serves two purposes. On the one hand, it serves a vehicle for

communication with a computer. On the other hand, it is a system

for definitive specification of algorithms. From the viewpoint

of this latter purpose (and ignoring the former) efficiency is

irrelevant. Thus a pure specification language can have the

following character:

(a) Its underlying collection of semantic primitives can

include any operations which are generally useful, rigorously

and simply definable, and heuristically transparent, irrespective

of the possibility of implementing these operations at all, let

alone efficiently.

(b) Its syntactic structure can follow that of the best

current languages, since syntax seems less bound by efficiency

considerations than does the choice of a family of underlying

operations.

Even if unimplementable, a pure specification language

could be used as follows:

i. It can have a compiler, and be compiled. This would

allow correctness checks based on redundancy to be performed,

and some structural and documentation standards to be imposed.

ii. It can form part of a program verification system

which allows the correctness of algorithms to be proved rigorously.

AB42 p. 67

iii. It can be part of a program transformation system,

which allows initial programvariants to be transformed semi-

mechanically into equivalent, but perhaps more efficient (e.g.

implementable) forms.

iv. It can be used for explaining, teaching, and studying

algorithms and large systems of algorithms.

Donald Knuth has remarked that premature optimization is

the root of al~ evil in programming. But if no recognized

language provides sufficiently powerful semantic primitives,

premature optimization (at some level) must remain an inescapable

part of the very statement of algorithms. Only a determinedly

'high level' specification language can allow algorithms to be

stated in their most direct 'root' forms.

3. Semantic Primitives for a Pure Specification Lan@ua~e

It is clearly desirable for the semantic primitives of a

specification language to be objects and operations in terms of

which mathematical reasoning can conveniently and directly be

conducted. In view of the central importance of set theory and

predicate calculus within logic, this suggests the use of finite

and infinite sets and sequences. More highly structured objects

such as trees or graphs can readily be defined in terms of these

primitive objects, though of course there may be some advantage

in making such objects available directly. The following are

a few significant operations:

(a) Map application f{x}= {yl [y,x] 6 f}, and its n-parameter

generalizations. Also, the corresponding 'storage' ,operator

f{x}:=s, and the n-parameter generalizations of this.

(b) Map multiplication f.g = {[x,y]l (~z) [x,z]qg&[z,x] 6 f},

together with its various n-paramete r generalizations.

(c) Map inversion.

(d) Transitive expansion of a map: f* is the set of all

sequences [Xl,X2,...] such that x2+ 1 E f{Xn}. Various n-parameter

generalizations of this operation are also useful.

(e) Various operations on sequences, including concatenation,

insertion, and selection of the first index and of the sequence of

indices at which a given predicate is satisfied.

AB42 p. 68

(f) Union, intersection, etc.

Any programmed function which references no variable external

to itself can be considered to define a mapping with infinite

domain. Note that all the operations of set theory extend in

an obvious way to maps of this kind. In an implemented specification

language, set theoretic operations applied to such mappings will

become operations of l-calculus type which bind parameters,

compose functions, apply function calls, etc.

Semantic primitives significant for control flow are:

(a) Procedure call with recursive stacking.

(b) Backtracking. An elegant version of this can be

based upon a unary nondeterministic selection operation

6, for which 6s selects an arbitrary element of the set s, with

backtracking to the point of selection in case of subsequent

failure. Significantly, this very powerful primitive admits a

quite simple proof rule. This operator also has interesting set

theoretic connections, and suggests various potentially useful

constructs and notations.

(c) Pseudoparallelism with an await primitive. Although

the proof rules for this construct are not simple, pseudoparallel

dictions afford the most natural way of modeling real-world

situations which are inherently parallel. In situations of

this kind, verifiable conformity to an external situation,

rather than logical correctness in any abstract mathematical

sense, is often the crucial issue.

4. SyntacticForms for a Specification Language

AS stated, we expect present syntactic forms, including

procedures, calls, if,While, and case statements, etc. to retain

much of their present form in a high-level specification language.

Syntax appropriate for the representation of nondeterminism

and of multiple pseudoparallel processes may also be needed.

Additional dictions which describle important program transformations

may also be needed: for example (see section 5 below) dictions

indicating that the values of particular subexpressions are to

AB42 p. 69

be kept on hand and updated differentially rather than being

calculated de ,ovo when needed.

An important issue is the extent to which syntactic forms

which rigourously isolate program layers from each other will

be provided. Object-type extension mechanisms providing this

kind of isolation may be desirable. If provided, such extension

mechanisms should preserve the abstract and general character

of the specification language itself.

Syntactic extension mechanisms of a more general sort

may also be desirable. In fact, it may be appropriate to give

the specification language, not one fixed syntactic form, but

only some clean internal syntax with which a variety of parsers

can communicate. Of course, even if this is done, ~ will still

be desirable to publish some initial external syntax attractively

representing the facilities of the language.

5. Implementation-of Subsets of a Specification Lan~ua@e

Purely manual inspection of an algorithm's text can easily

overlook flaws, and full formal algorithm verification is still

prohibitively expensive. It is therefore still useful to execute

an algorithm in a well-chosen variety of test cases, which can

at least enhance one's confidence ~hat egregious blunders of

various kinds have been eliminated. Example: let a directed

graph g be given as a set of pairs Ix,y]. Then the graph contains

a cycle if and only if there exists a subset s of the graph

such that the end of every edge in s is the start of some other

edge in s. Thus in a set-theoretic specification language we

can write the following one-line test for the existence of a cycle:

there is_a_cycle:= ~s • power_set(g) I (¥ sl (3y • s) x(2) = y(l))

But this is wrong! To state the test correctly, we must exclude

the case s = null_set, and write

there is a cycle:= power set(g) I (s ~ null set & (VX E s I

(~y • s) x(2)=y(1))).

AB42 p. 70

Inspection can easily overlook, while testing will immediately

reveal, the flaw in the first version of this algorithm.

For this and other reasons we judge it quite useful to

implement as broad a subset of the specification language as

is feasible. As a matter of fact, it now appears likely that

rather broad subsets can be implemented at a reasonable level

of efficiency. We may therefore hope that such an implementation

can be developed as a valuable tool for program prototyping

and experimentation with algorithms.

A perspective rather different from the one we have set

out would regard this possibility rather pessimistically,

consider efficiency to be an inescapably central issue in

programming language design, and prefer therefore to make

available, not a family of powerful abstract semantic primitives,

but rather a kit of extensibility tools based upon efficient,

near machine-level operations only. Such an approach will aim

to facilitate the build-up of efficient variants of generally

useful abstract operations in forms tailored to the particular

contexts in which they are to be applied. Ideally, this would

be done in a syntactic framework structured to isolate the

'inner' detail of these operations and the objects on which

they act from 'outer' layers of the algorithms in which they

are used.

Against this perspective, we raise the following objections:

(a) From the pure specification point of view, it is

surely preferable to admit all well-known, precisely defined,

general, heuristically appea~ing operations into one's initial

collection of primitives. If necessary, layered extension can

begin from, rather than culminate at, this point.

(b) Even to know what general systems of operations

can be efficiently implemented is difficult. To design an

efficient implementation for them is more difficult still.

A good implementation of a specification oriented language

will attack this problem in a concentrated way, once, and can

AB42 p. 71

provide a spectrum of operations, some of which retain substantial

efficiency since they only relize 10gically simple primitives,

and this only in favorable contexts. A user left to his own

devices is likely to founder in the very process of realizing

the high-level operations which he needs, and may indeed not

even realize what these are. A community of users which is

not carefully coordinated is likely to suffer from incompat-

ibilities if complex objects and operations need to be designed.

Example: To design map-like structures which allow records to

be accessed efficiently via simple key-word lookup is not hard;

but to go on from this to the design of efficientstructures

which allow records, or perhaps entire substructures, as search

keys is not substantially easier than to implement major

portions of a full specification language.

6. Research Efforts Which Wide Acceptance of a Specification

Lan~ua@e Would Facilitateand Focus

A number of techniques which allow concise but inefficient

algorithms to be transformed into more efficient forms have been

recognized. Among these are:

(a) Elimination of backtracking by use of pre-compiled

success/failure tables. This technique can, for example, trans-

form simple very general backtracking parsers into efficient LR

and LL parsers.

(b) Transformation of recursions into much more efficient

iterations. Rules governing a variety of transformations of this

type have been collected by Darlington, Burstall, Strong, and

Walker.

(c) Abstract strength reduction. Here we keep the value

of one or more expressions constantly up-to-date, so as to

avoid expensive, from-scratch calculation of these expressions.

(d) Choice of particularly advantageous data structures,

as allowed by logical context.

AB42 p. 72

These techniques, while still fragmentary, point to a

style of programming b~ transformation in which detailed,

possibly efficient algorithm versions are derived from condensed

abstract initial specifications by explicit transformations.

Two styles of transformation can be conceived. The first of

these is a system guaranteed style, in that it takes place within

a system which will only permit a transformation to be applied

when equivalence of an untransformed program with its trans-

formed version is certain. A second possibility is to operate

without this guarantee, thereby leaving certification of the

logical propositions needed to justify a transformation to the

programmer. Thus, for example, a hypothetical declaration

represent x,y b~ list

can be used to transform each set union operation x: = x u y

appearing in some program into a list concatenation, (and also

to transform each iteration over x to a list iteration), leaving

it to the programmer to guarantee that x and y have disjoint

values at each point at which a set union operation is actually

replaced by a list concatenation. Both transformational styles

realize the notion of 'top-down' programming in a specific

technical sense and appear as promising directions for future

development.

Transformation by declared choice of data structures

appears to be a presently feasible technique promising sub-

stantial advantage. A system,guaranteed variant of this form

of transformation can supply data structures which either realize

abstract operations efficiently, or abort if some assumption

implicit in a declared data choice facts.

Experience with program transformation will reveal typical

transformational patterns and make explicit the logical assumptions

on which these transformations depend. Where widely advantageous

transformations are seen to rest on relatively superficial

AB42 p. 73

logical assumptions, it will be possible to design . global

program analyser/optimizer routines which automatically justify

and apply these transformations. Thus the effort we propose

should derive advantage from, but also serve to focus,

the rapidly developing mass of work on program optimization.

AB42 p.74

AB42.4.10 ON LANGUAGE DESIGN FORPROGRAM CONSTRUCTION

Michel Sintzoff
Centre de Recherche en Informatique

Nancy, France

ABSTRACT. It is argued that the structure of a specification and program-
ming language must be based on program formation rules which are well
defined, well justified and easily applicable. Two related case studies
are considered : how to eliminate risks of failures from non-deterministic
programs,' and how to design communicating programs in terms of non-
deterministic ones. It is shown that the discovery of adequate construc-
tion rules is essential as well as very difficult, and that such rules
provide a necessary guidance in the quest of simple and systematic means
for specifying and expressing algorithms.

I. INTRODUCTION

A progr~ing language should be a language for programming, viz.
a IAn~uage for making programs. It is then sensible to base the structure
of such a language on good program formation rules. Good rules are rules
which have the following characteristics : their definition is foolproof;
it is proved that they inevitably yield some desired property of programs;
and their use is easy in the sense that the rSle of the human intuition
is strictly reduced. This excludes verification rules, which come too
late in program design, as well as equivalence rules which give no guaran-
tee of convergence in the program design process; for instance, the use of
the fold- and unfold-transformations is very delicate when no adequate
strategy is provided.

To substantiate our discussion, we shall develop two case studies :
how to improve non-deterministic programs by reducing the risks of failures
such as non-termination or abortion, and how to design communicating pro-
grams (i.e. programs without common access to global data spaces). More
general views will be presented in the last section.

Q
until February 1978. Permanent address
2, av. Van Becelaere, B-1170 Brussels.

: MBLE Research Laboratory,

AB42 p.75

2. INCREASING THE CHANCES OF SUCCESS

Consider the following, arch-known problem : to reach a goal
q m a • 0 ^ a = b by successive applications of the rules f. from the sys-
temff hereafter, i

ff I
fl
f2
f3

: true ÷ a := a-b
: true ÷ b := b-a
: true ÷ a :=-a, b :=-b

One of the difficulties, of course, is that ill-chosen successive appli-
cations of f3 may never reach q. Let us then try to find more intelligent
conditions Yi for the substitutions (or assignments if you so wish) in f..

We denote by ff such an improved system :

{~I : yl ÷ a := a-b
ff f2 : y2 ÷ b :-- b-a

f3 : y3 ÷ a :-- -a, b :=-b

In order to ensure some sort of completeness, we do require that the domain
of possible success by ff is equal to the domain of guaranteed success by
ff : in other words, if we start in a state from which there is some way
to reach q by ff, then by using ff we will be certain to reach q without
any risk of non-termination or of dead end.

The central question is thus : how to find the conditions yi's ?
Here are a number of ways.
(I) An omniscient oracle gives the Yi'S. If we do not trust the oracle,

we verify his gift by using a Floyd-like termination function or a
Dijkstra-like weakest precondition. We reject this because the availa-
bility of oracles, the invention of functions and the induction of limits
of predicates are all too difficult.
(2) The conditions yi's are obtained themselves as fixed points of predi-
cate transformations. We abandon this for the same reason as above.
(3) The conditions Yi'S are directly driven by a complexity function, akin
to a termination function and to be invented, as proposed by H. Boom.
This is to be rejected too.
(4) Recalling functional analysis, we try to approximate the unreachable
y.'s by feasible conditions Yi or 3: (the bar for sea level and the cir-
cumflex for mountains) : any i approximates Yi from below, I.e. Yi D Yi'

it is safe, but may be difficult; each Yi is an approximation from above,

viz. Yi D Yi' it is unsafe and rather easy. Both approximations can be

quite imprecise, since false D y. and y. D true. Since we found no cons-
- ~ • .i i. •

tructive way to ensure a sufflc~ent precision, we have abandoned this
method also. The techniques (2) and (4) are discussed in [3] , where
more detailed references are given.

We now present still another method, which again is approximate
and yet yields complete solutions when it does succeed. This method is
based on sufficient criteria for the equality of the fixed points of two
functions of predicates. We shall keep our formal apparatus to a mini-
mum, and present here only a basic version of the proposed method.

AB42 p. 76

Definitions. A system ff is made of rules f. each of which consists of a
condition p and a substitution s. The backwardsappllcatxon of such a
system to a predicate r is noted ff.r and is simply defined by

ff.r = Y f..r
l I

(p ÷ s).r = p ^ (s.r), or p ^ (s.r) {p ÷ s}r

(...a. := E).r = r [...a. + E]

(÷ for substitution)

For instance, in our g.c.d, example above, ff.q m a > b A a = 2b v
a > 0 A 2a = b V-a > 0 A-a = -b. Moreover, we use the following obvious
notations :

f+g m Ir.(f.r vg.r)
f;g m Ir.(f.(g.r))

I m Ir.r
p÷Cp' ÷s7~ (p^p')÷s

We observe that(f;(g+h)) ~ ((fig) + (f;h)). We recall that the domain
of possible success by ff for a given goal q is the least fixed point of
the function Ir.(q V ff.r); the domain of guaranteed success by ff for q
is the least fixed point of Ir.(qv ff.rA7 ff.'qr), viz. the weakest
precondition; ff is continuous.

N

Theorem I. Consider a goal q and a system ff = [f..
i=I z

IF the conditions Yi verify, for all i,~, k = I...N,

(0) YiA Yj = false for i @ j

(-) fi.a~a v V fj.a vyiv V yj ̂ fj.~
j<i j>i

(~) fi.y k D CR [(fi;fk), 1+ff IV V CR [(fi;fk), (fj;ff)]
j~

v Yi v V yj ̂ c~ [(fi;fk), Cfj;ff)]
j>i

where CR [h, Z gi] =VCR [h, gi]
i i

and CR [h,g] =itrue if h.v m g.v for each variable v,
[false otherwise

THEN the domain of possible success by ff for q is the domain of guaranteed
success for q by f~-= .Z ~i where ~i ~ (Yi ÷ fi)"

1

A

Proof. Since ff is deterministic beCause of (0), the domains of guaran-
teed success and of possiblesuccess by ff are identical. Let us denote
b~ zz the domain of possible success using ff and, similarly, z'~ w.r,t.
ff. We shall prove zz m zz by Inductxon; zz xs the l~m~ of the
iterates

AB42 p. 77

0 n+l n
ZZ := q; ZZ := ZZ v ff.zz n n n , or zz vVf..zzn^-I V fj.zz

i i j<i

Similarly for zz, using

" n+1 - n . .zz n 0 := q; zz := zz v yj A fo

o ~0
Subthesis 0 : zzi = zz ; clear.] = Subthesis I : zz

i.e. qvgfi.q^'3 V fj.q = qvVyj ^ f..q;
i j<i j o

this is implied by (~). n-1 -n-1 n -n n+l "n+1
Subthesis 2 : for all n ~ I :zz = zz , zz = zz ~-zz = zz .
The consequent amounts to (for all i)

fi.zzn D zz n v V f..zz n vyi v V yj ^ f..zz n
j<i J j>i J

. n+ I . ~n+1 . . • ~n n
given ~ne ~exlnl~lons or zz ana zz ,ana replaclng zz by zz . Let

AA • • • • • - " ~ A

us now unfold zz by using the restrlct~ve deflnxtlon (zz) on the lhs
and the liberal one (zz ") on the rhs. For all i, k,

fi.YkAfi.fk.zzn-1 • zzn-lv ff.zz n-lv ~/ f..ff.zz n-1

V YiV~/ YjAfj.ff.z zn-1.
j>i

This is indeed implied by (~) because fi.fk.zzn-1D g.zz n-1

CR [(fi;fk),g] = true.

holds when

Exercise. Let us try to apply this theorem in our small g.c.d, example :

(o)ly2 ~n yl

[y3 •7 yl ̂ 7 y2

fa=2bA~b D yl
(-) 12a=b ̂ a>O • y2

[a=b A a<0 • y3

We now compute the simplification criteria CR [h,g] , and we find

CR [(fl;f3), (fB;fl)]= true, because f3 ~ -a -b uand
f I -a+b -b

• CR [(f2;fB), (fS;f2)]= true, similarly.
CR [(fB;f3), !] = true, which is obvious.

| a l b
f l la-blb
r3 ~+b I -b

Hence the subsystem (t~) can here be reduced to

AB42 p. 78

I fl.yl D yl
fl.y2 D yl
fl.y3 D yl vy3

I f2.yl D y2
f2.y2 D y2
f2.y3 D y2 vy3

(fB.yl D true)
(fS.y2 D true)
(fB.Y3 D true)

It remains to derive Yi,S verifying (0), (~) and (~). Note that ~
solutions are acceptable, not just, say, least ones. We can thus try to
find solutions which are expressed in a very limited language; and we
shall here consider nothing more than Algol-like boolean expressions on
the variables a,b and the constant 0, without arithmetic operations.

We solve our system of inequations by successive eliminations.
Let us start with yl; it is characterized by a = 2bAa>b D yl and
(a := a'b).yl D yl, i.e. by

yl --- yl V a=2b A a > b V(a := a-b).yl

We look at the first iterates

yl (°) yl (I) := a=2b^a>b

The expression for yl (I) is already outside our expressive power; we
approximate it as well as we can by an acceptable boolean expression :

yl (I) := a > b Ab > 0

This is a drastic approximation but is quite easy to find.
Then, yl(2) := a > bAb > 0Va-b > bah > 0, i.e. a > bah > 0, i.e. yl
Our tentative solution for yl is thus found :

(1)

yl z a > bAb > 0.

Observe that the least solution is yl m b> 0^3c : (c ~2Aa=c.b); for
us, this is too difficult to induce. The next 11n~nown is y2, defined
by the five implications

y2 D-l(a > bAb > 0)
2a=bAa > 0 D y2

(a := a-b).y2 D a > b^b > 0
(b := b-a).a > bah > 0 D y2
(b := b-a).y2 D y2

or, after simplifications, by

y2 D b ~ aAa > 0 2a ~ bah > a D y2
(b := yZ

Using drastic approximations again, we easily find

Y2-= b> aAa> 0.

The four remaining implications define y3. Happily, a simple expression
can also be found in this case, for instance

y3 ~ a ~ 0Ab ~ 0.

Thus, we have derived the improved system~

AB42 p. 79

~I : a> bab > 0 ÷ a := a-b
~f2 : b>ana> 0 ÷b := b-a.
[f3 : a ~ 0Ab ~ 0 ÷ a := -a, b := -b

With f'f, we always reach q =- a = bAa > 0 when starting on any initial
state from which q may be reached using the original system ff (without
the conditions yi). Outside that domain, there is no guarantee of --~A
sensible action :Afor example, q can never be reached by ff from a
b = 0, and then ff cycles indefinitely without reaching q.

Refinements. If we want to stop when q is reached by ff, we simply
enforce the a~itional constraint y. D~ q. If we want to permit nonde-

• ° ° ° ° .S.

termlnlsm in ff, we flrst add wlthln ff a new rule pl Ap2 ÷ (sl I s2) for
each pair of rules pl ÷ sl and p2 ÷ s2; of course, (slls2).r ~ (sl.r)A
(s2.r). If theorem I is not strong enough, we strengthen it; this is
necessary if, in our g.c.d, exercise, we replace f3 by

f3 : true ÷ a :=-a
f4 : true ÷ b :=-b

One way to improve theorem ~ is to establish conditions (0), (~), (~)
and (~) which imply zz = zz by an induction of depth three; and so on
at will. Another way to strengthen the theorem is to define CR [h,g]
in terms of weaker criteria ensuring thatVn : h.zz n = g.zzn; for
instance, we can say that CR [h,g] = true if h.q ~ g.q and if (h;ff;
h-l) m (g;ff;g-1~with the assumption (h-1;h) =!an d (g;g-1) =!-
Note also that the applicability of theorem I may depend on the order
chosen for the rules in ff : a different order may yield more simplifi-
cations in (~), and may yield different solutions Yi'S anyway.

All these refinements are elaborated and reported elsewhere.

Discussion. Many questions are left unanswered. How to choose the best
simplified inequations, (~) or (~...~) ? How to derive solutions of
these inequations ? How to tackle richer program structures than just
conditional substitutions ? How to know the domain zz explicitly ?

Yet, the method proposed above does have some advantages. Assume
that a user specifies q and ff, that he knows the domain zz of possible
success, and that a problem-solver proposes ff : then, ff can often be
verified by a simple application of theorem I, without any induction or
invention whatsoever. The fact that the domain of success remains
implicit is classical for parser generators : the additional contexts
which allow for deterministic reduction rules do not describe the well-
formed sentences of the language explicitly, and this is why these con-
texts can be constructed. The approximation of unfeasible properties by
sufficient ones has also been the central reason of many successful
methods of program checking and optimization by compile-time interpreta-
tion on non-standard models.

The g.c.d, exercise amounts to replace MalC' ev-like conditional
equations defining g

a ~ 0 ÷ g (a , a) = a
g(a,b) = g(a-b,b)
g(a,b) = g(a, b-a)
g(a,b) = g(-a, -b)

AB42 p.80

by equations for computing g without entering dead alleys :

a = bAa > 0 ÷ g(a,b) = a
a > bah > 0 ÷ g(a,b) = g(a-b, b)
b > aAa > 0 ÷ g(a,b) = g(a, b-a)
a g O A b ~ 0 ÷ g (a , b) = g (- a , - b)

This kind of replacement is also the aim of the method worked out by Knuth
and Bendix [2] ; the main differences are that we consider only very res-
tricted equations since we accept simple substitutions only, that we assume
a goal q to be given, that we do tackle the case of commutative axioms
such asg(a,b) = g(-a, -b), and that we use conditional equations instead
of pure equations.

A theorem by Strachey (see 12.72 in [4]) gives sufficient condi-
tions for the equivalence of two while-loops; these conditions test commu-
tativity properties of the bodies of the loops. The spirit of that theo-
rem is not unlike that of theorem I, and can be traced back to Tarski's
fundamental theorems on fixed points. The main difference is that theorem I
is not an equivalence theorem : the formation of ff on the basis of ff
is strictly oriented towards an increase of the chances of success. This
is a striking illustration of the fact that the discovery of convergent
formation rules on the basis of blind transformation rules is not always
trivial. See also [5](4.4, 6.3) regarding equivalence rules.

3. SIMPLE COMMUNICATION CONSTRUCTS

In order to avoid the use of global variables to access a common
memory, Milner, Hewitt, Dijkstra with Hoare, and others, have proposed
to express all the interactions between program modules in terms of one-
way communications of data. The existing proposals still lack transpa-
rent definitions of semantics or of proof rules. Our aim is to find a
direct way, to design communicating programs by formation rules for non-
deterministic programs as developed in the previous section. We present
a rather naive attempt in thisdirection, shunning any concern for erudite
semantics for l~ck of time and competence.

Consider two modules, fl and f2, and ~ communication of dAta E1
from fl to the local variable x2 in f2

f l ~
the notations of [I] express this by

fl : ... f2! (El)... f2 : ... f1? (x2)...

To a channel of communication from fl to f2, we shall associate a port-
identifier c12. Such a port-identifier may be used, in the source module
fl, only in a test for emptiness or in an export-operation :

fl : ... void(c12) ÷ El ex c12 ...
(Read : ... IF c12 is void THFLN El is exported through c12 ...)

AB42 p.81

In the destination module f2, the port-identifier c12 may be used only
in a test for availability or in an inport-operation :

f2 : ... -Ivoid(C12) ÷ c12 in x2 ...
(Read : ... IF c12 is full THEN c12 ports data into x2 ...)

The inport-operations correspond to tennisball-assignments : after you
hand on a tennisball, you do not hold it anymore. In order to tackle
concurrency in terms of serial nondeterminiam, we must prevent any logical
interference between concurrent modules. To this end, we shall enforce
the structure (export; inport) i on the port-operations. Here are the
rules for defining and using ports.

Szntax
Definition of c12 from fl to f2 : e_~ fl o~c12 in f2
Applications of c12 in fl void (c12) (V-boolean expression)

E1 e xc12 (El : local expression)
Applications of c12 in f2 : void (c12) (a boolean expression)

c12 in x2 (x2 : local variable)

Semantics
c : port-identifier
r : any predicate not containing void (c).

Axioms :

(Export) void (c)Ar [c ÷ E]{E e._x c}'Ivoid (c)Ar
(Inport)'Ivoid (c)Ar [x ÷ c]{c in x} void (c)Ar

This is all we need in order to consider concurrent, communicating programs
to be non-deterministic ones as in section 2. Note the property

(Transport) void (c)Ar [x ÷ E]{E e x c; c i_.nx} void (c)Ar

Thus an assignment x2 := E2, within f2, to a local variable x2 corresponds
to a transport (E2 e x c22; c22 i._nx2) through a port c22 local to f2, i.e.
going from f2 to f2. Let us now illustrate these rules on two childish
examples.

Tricolor national flags (source : E.W. Dijkstra). There are three bags,
al, a2, a3, containing pebbles which are white, red, or blue. A pebble
can be transferred from al to a2, or from a2 to a3, or from aS to al, but
in no other way. The goal is : all white pebbles in al, all blue ones in
a2, and all red ones in a3. The specifications are thus (i = I...3, and
3+1 = I)

Ports :
Begin :

End :

ex f [i] ~ort c [i, i+I] in f [i+I]
(--Vb E aa : blue (b)vred (b~vwhite (b))
& aa = U a [i]&(Vi = i...3 : void (c [i, i+1]))

i
(Vb e al : white (b)) & (Vb e a2 : blue (b)) & (~b E a3 : red (b))
& U a [i] = aa & (~i = I...3 : void (c [i, i+I]))

i

AB42 p.82

white

blue red

We assume the availability of an indeterminate conditional assignment
some b in a sth p(b); this assigns to b some element e of a such that
p(~ ho~s, if any, and yields true if there is one and false otherwise.
The formal details of the program derivation are rather obvious; the
result is

fl : fll : void (c12)Asome bl i nal sth not white (b)
÷(bl ex c12; al := al = bl)

f12 :-Ivoid (c31) ÷ (e3~-in dl; al := al ~ dl)

The modules f2 and f3 are obtained by symmetry, using not blue amd not red
instead of not white. The variables bl, dl, ..., are local.

Let us now see what: happens if some other commumieation structure
is provided. Assume for example that pebbles cam betransferred between
any two pairs of bags :

fl

Ports : ex f [i]
e_~ f [i+I] port c [i+1, i] i_~ f [i]

I f11:void(c12)Asome bl in al sth blue(bl) ÷ (bl ex c12;al
f12:-Ivoid(c31) ÷ (e31~na1; al
f13:void(c13)Asome bl in al sth red(bl) ÷ (bl ex c13; al
f14:-~oid(c21) -- ÷ (c21 i-~ dl; al

port c [i, i+I] i_~f [i+I] i=I...3, and 3+I = I

:= al = bl)
:= al ~ dl)
:= al = bl)
:= al ~ ~1)

and similarly for the two other modules.

Christmas cards (source : C.A.R. Hoare). There are N persons. Each one
must send one card to ea-.h other one, and displays on his wall a]] the
cards he receives. There is a port between any two persons. Thus, for
i,j = I...~, i # j,

Ports : ex f [i] port c [i,j] in f [j]
Begin :~,j : void(c [i,j])

& drawer [i] = ~card [i,j] & wall [i] =
End : Vi,j : void(c [i,j])J

& drawer [i] = ~ & wall [i] = Ucard [j,i]

J

I fl [i,j] : drawer [i] has card [i,j] ÷ (card [i,j] e..~ c [i,j] ;
• drawer [i] := drawer [i] = card [i,j])
f [i]~f2 [i,j] :-~oid(C [a,i]) ÷ (c [j,i] i.~b |i]; ~

wall [i] := wall [i]+ b [i])

The identifiers drawer [i] and wall [i] are set-variables local to f [i] .
The conditions of the rules fl [i,j] do not have to test void(c [i,j])
sinceTvoid~c [i,j])A(drawer [i] has card [i,j]) m false.

AB42 p.83

Discussion. To express all communications in terms of such one-place,
one-way ports is of course debatable. At any rate we have achieved our
limited goal : the very simple properties of the port-operations permit
a direct use of construction rules available for non-deterministic pro-
grams. There is no risk of global non-determinism, viz. a premature
decision to wait on some condition whereas another condition is already
true : the definition ff.r ~ ~/fi'r requires to apply some fi if at least

one of the conditions is true. Exclusive access to local variables could
be taken care of by the traP.sport-property : we replace rules such as
p ÷x := E by two rules pAVoid(cx) ÷ E e x cx and pA -hroid(cx) ÷ cx i_~x,
where cx is a local port-identifier uniquely associated with the local
variable x.

We did not require that an export-operation and the subsequent
inport-operation must coincide in time. This is one of the reasons for
the simplicity of our scheme. In case these operations should be synchro-
nized, we can add an auxiliary export-operation in the destination and
the corresponding inport in the source : then, the source halts at the
communication point as long as the destination. ~ For implementing the
tests void(c) or-]void(c), auxiliary signals should be transmitted along
the channel c to acknowledge receipt or to ring up on the line. This can
be and has been criticized ; note that similar problems are raised when
one assumes that a process may broadcast to all the others an end-signal
telling its job is finished. See [6] for the mathematical semantics of
a pure port-model in which synchrbnization is primitive.

4. CONCLUSION

Section 2 was devoted to the constructive derivation of certainly
successful programs from possibly successful ones. The moral of the story
is that we have to find successful rules of program formation on the basis
of possibly successful transformation rules. In Section 3, we suggested
that feasible construction rules for restricted means of expression are
preferable to elaborate notations with hazardous construction rules.
After all, in the tale of the wizard of 0z, Dorothy is eventually victo-
rious thanks to her innocent use of plain water.

Programmers should concentrate their precious energy on strategic
thinking rather than on tactical chores; and they should not hope in
their lifetime for automatic programming by artificial intelligence. We
thus favour a language for programming programs, viz. a language for des-
cribing and communicating strategies of program development, in other
words a language for supporting the construction of algorithms which pro-
duce algorithms on the basis of user's specifications.

mP,S, : There is a neater, logical way. We insert a test void(c12) after
each export-operation through c12 :

fl : ... void(c12) ÷ El ex c12; void(c12) ÷ ...
f2 : ...Tvoid(c12) ÷ c12 in b2 ...

This is related to the transport-property, and is consistent with our
principle : to eepurate the condition of an operation from the associated
substitution.

AB42 p.84

Acknowledgements. The work reported here has been done during 1977 in
Nancy (courtesy CNRS and MBLE). B. Mayoh gave an excellent opportunity
for in-depth discussions on parallelism, by organizing a seminar at
Aarhus University in June. The meeting of WG 2.3 in Augustus provided
an indirect (none of this was ready) but strong incentive. G. Huet
frankly described the current state of the works based on [2]. The
present, first version benefitted from the vivid meeting of WG 2.1 in
December and from a cordial reception by the Oxford Progr-~ing Research
Group.

[11

[21

[3]

[~,l

[51

[61

REFERENCES

C.A.R. Hoare, Communicating sequential processes, CACM, 1978.

D. Knuth and P.B. Bendix, Simple word problems in universal algebras,
in J. Leech (ed.), Computational Problems in Abstract Algebra,
Pergamon, Oxford,'1969, pp. 263-297.

M. Sintzoff, Inventing program construction rules, Proc. IFIP
Conf. on Constructing Quality Software, North-Holland,
1978.

J. Stoy, Denotational Semantics, M.I.T. Press, 1977.

J.W. de Bakker, The fixed point approach in semantics : theory and
applications, in J.W. de Bakker (ed.), Foundations of Computer
Science, Mathematisch Centrum, Amsterdam, 1975, pp. 3-56.

G. Milne and R. Milner, Concurrent processes and their syntax,
CSR-2-77, Dept of Computer Science, Univ. of Edinburgh, 1977.

AB42.5. I AB42 p.85

A L G O L 6 8 (r e v i s e d) format - t ex t S Y N T A X C H A R T

I format-text I pso ~ oollectlon-list p~o $

n m-ENCL0SED-clause pso

I ~tesra.1.-pattern I

I real-pattern I

]xx>lean-palrtern

string-pattern

bits.-pa~tem

2_~__-_~. v a ~ a ~ l e - p o ~ - ~ d

elan-mould floating-point-mould

boolean-frame

real-pattern ccmplex-f~eme real-pattern

RADiX-f rein intesra.l-mould

~ , ~ - ~ o ~ - ~ I - ~ , ~ . ~ = ~o ({ ~o 1~ I

~i~- I I ' ~ i l r e n t -

- 0
- 1

- k
- - X

- i '
- p
- q

E ~

- 2
- 3
- 4
- 5
- 6
- - 7
- - 8
- -9

- e h a . ~ l e n o t a t i m

- stri, s-~e,otat/~

I- ÷

tNCLDSED-cl.a~

~ o

format-pattern I insertion f m-DrLOSED-c~use

............. :::-::=:::

,4

l ~ 1 - = ~ d I { d ~ i ~ - ~ I }

I~lo~-~o~-=u~l-~==~-~o~=-==~ ,~.~n~- ,~ ~__~:_~ { ~ - ~ I }

[boolean-frame I insertion b

I~o~-~,~] ~ = , , • •
"P - - "IP

l e ~ = ~ t - f ~ " I i , , , ~ s •
t " - ' 1 '

l = , ~ , l . x - ~ , ~ . I ~ . ~ i o s i
+ - - e

I di~t-f~a~] ~ser~ia. ~_£11~t_o~ +-+'tz}S d
{ z ~ o - n , ~] ~ r ~ l i ~ • • . z

[P 4 ~ D I X - f ~ I ~ser t : ion P, ADIX r

[~ - 1
- 2
- 4
- 8
- 16

TYPE-pattern at.a~t,e t ~
a~Z NOTI~-paTtem ' r

rh¢ NOTION'e repl/calzz,,
b o o l e a n - f ~ - ,
fr~ ~ 81gn-fr~:~
aro ~sup~essible-
NOTION ~ tha Rmff.ae4
Repor~ ; c~denot told

R. Paentjens & P.E. Germart I~IERM Brussels April 1978

Made as a complement ID 1~e ALGOL 68 (zmvhmd) SYNTAX CHART of J.M. Watt, J.E.L. Peck & M. Sin1~ff

