
ISSR (X ~ 4 - 6 1 9 8

A l g o l B u l l e t i . n no 4 1

JULY 1977

CONTENTS

A B 4 1 . 0

A B 4 1 . 1

A B 4 1 . 1 . 1

A B 4 1 . 1 . 2

AB41.1.3

AB41.1.4

AB41. I. 5

AB41.1.6

AB41. I. 7

AB41.2

AB41.2. i

AB41.4

AB41.4. i

AB4i. 4.2

AB41.4.3

AB41.4.4

AB41.4.5

AB41.4.6

AB41.5

AB41.5. i

AB41.5.2

PA6E

ALGOL 60 Supplement - Errata 74

Revised Report - Errata 74

E d i t o r ' s N o t e s 2

Announcements 3

ALGOL 60M 3

Conference ProceedinEs = New Direct ions
i n A lgor i thmic Languages - 1976 3

Confe rence P roceed ings= lV th I I I Meeting 3

ALGOL 68 4

The S t a n d i n g Subcommit tee on ALGOL 68
S u p p o r t - T r e a L l e n t o f q u e s t i o n s asked about
t h e Revised Repo r t . 4

Informal Introduction - Revised Edition 5

Report in BRAILLE 6

Letters to the Editor 7

A.N. Maslov, Hardware Representation 7

Contributed Papers 8

R. de Morgan, The Algollers 8

J.C. Van Vliet, On the ALGOL 68 Transput
Convers ion Rout ines. IO

D. Holdsworth, Visibility and Teachability of
I/0 Processing in High Level Languages. 25

A.N. Walker, The Syntax of an ALGOL Program 40

R. Bell, A Token-recognlzer for the Standard
Hardware Representation of ALGOL 68 47

Some ALGOL 68 Compilers 71

AB41p 1

The ALGOL BULLETIN i s p r o d u c e d u n d e r t h e a u s p i c e s o f t h e W o r k i n g Group

on ALGOL o f t h e I n t e r n a t i o n a l F e d e r a t i o n f o r I n f o r m a t i o n P r o c e s s i n g (I F I P WG2.1,

C h a i r m a n P r o f e s s o r J . E . L . P e c k , V a n c o u v e r) .

The f o l l o w i n g s t a t e m e n t a p p e a r s h e r e a t t h e r e q u e s t o f t h e C o u n c i l o f I F I P :

"The o p i n i o n s and s t a t e m e n t s e x p r e s s e d b y t h e c o n t r i b u t o r s t o t h i s B u l l e t i n

do n o t n e c e s s a r i l y r e f l e c t t h o s e o f I F I P and I F I P u n d e r t a k e s no r e s p o n s i b i l i t y

f o r any a c t i o n w h i c h m i g h t a r i s e f rom s u c h s t a t e m e n t s . E x c e p t i n t h e c a s e

o f I F I P d o c u m e n t s , w h i c h a r e c l e a r l y s o d e s i g n a t e d , I F I P d o e s n o t r e t a i n

c o p y r i g h t a u t h o r i t y on m a t e r i a l p u b l i s h e d h e r e . P e r m i s s i o n t o r e p r o d u c e

any c o n t r i b u t i o n s h o u l d be s o u g h t d i r e c t l y f rom t h e a u t h o r s c o n c e r n e d .

No r e p r o d u c t i o n may b e made i n p a r t o r i n f u l l o f d o c u m e n t s o r w o r k i n g p a p e r s

o f t h e W o r k i n g Group i t s e l f w i t h o u t p e r m i s s i o n i n w r i t i n g f rom I F I P " .

F a c i l i t i e s f o r t h e r e p r o d u c t i o n and d i s t r i b u t i o n o f t h e B u l l e t i n h a v e b e e n

p r o v i d e d by P r o f e s s o r Dr . I r . W. L. Van d e r P o e l , T e c h n i s c h e H o g e s c h o o l , D e l f t ,

The N e t h e r l a n d s . M a i l i n g i n N. A m e r i c a i s h a n d l e d by t h e AFIPS o f f i c e i n

New Y o r k .

The ALGOL BULLETIN i s p u b l i s h e d a p p r o x i m a t e l y t h r e e t i m e s p e r y e a r , a t a

s u b s c r i p t i o n o f ~7 p e r t h r e e i s s u e s , p a y a b l e i n a d v a n c e . O r d e r s and r e m i t t a n c e s

(made p a y a b l e t o I F I P) s h o u l d b e s e n t t o t h e E d i t o r . Pa ym e n t may be made i n any

c u r r e n c y (a l i s t o f a c c e p t a b l e a p p r o x i m a t i o n s i n t h e m a j o r c u r r e n c i e s w i l l be

s e n t on r e q u e s t) , b u t i t i s t h e r e s p o n s i b i l i t y o f e a c h s e n d e r t o e n s u r e t h a t

c h e q u e s e t c . a r e e n d o r s e d , w h e r e n e c e s s a r y , t o c o n f o r m t o t h e c u r r e n c y c o n t r o l

r e q u i r e m e n t s o f h i s own c o u n t r y . S u b s c r i b e r s i n c o u n t r i e s f rom w h i c h t h e e x p o r t

o f c u r r e n c y i s a b s o l u t e l y f o r b i d d e n a r e a s k e d t o c o n t a c t t h e E d i t o r , s i n c e i t i s

n o t t h e p o l i c y o f I F I P t h a t any p e r s o n s h o u l d be c o m p l e t e l y d e b a r r e d f rom

r e c e i v i n g t h e ALGOL BULLETIN f o r s u c h a r e a s o n .

The Editor of the ALGOL BULLETIN is:

Dr. C. H. Llndsey,

Department of Computer Science,

University of Manchester,

M a n c h e s t e r , M13 9PL,

E n g l a n d .

Back n u m b e r s , when a v a i l a b l e , w i l l be s e n t a t ~3 e a c h . Howeve r , i t i s

r e g r e t t e d t h a t o n l y AB32, AB34, AB35, AB37, AB38 and AB39 a r e c u r r e n t l y a v a i l a b l e .

The E d i t o r w o u l d be w i l l i n g t o a r r a n g e f o r a X e r o x copy o f any i n d i v i d u a l p a p e r

t o b e made f o r a n y o n e who u n d e r t o o k t o pay f o r t h e c o s t o f X e r o x i n g .

AB41.O EDITOR'S NOTES

AB41 p. 2

Again, I have to apologise for the long delay since the last issue, and

again the reason has been lack of contributions. Again also, the remedy lies

in your hands, dear readers. As it turns out, due to various items turning

up at the last minute, we have been able partially to make up for the delay by

producing a rather thicker issue than we have had recently.

Although the contents of this issue are fairly typical of the sort of

material we like to publish, there is one departure from the norm in the form

of a rather substantial algorithm. Although I have no desire to compete with

CACM, and other Journals which publish algorithms regularly, I think that there

could well be a place in the ALGOL Bulletin for Algorithms of a specialized nature,

such as those concerned with program handling (e.g. compiling, editing, formatting,

etc.) or those which illustrate novel, or particularly neat, programming methods.

So, please send your contributions. Algorithms may be in ALGOL 60

(preferably ALGOL 60M) or in ALGOL 68, and the customary rules (notably those

requiring evidence that the algorithm actually works) will apply. Of course,

comments and certifications will also be welcomed in due course.

Now for some good news. Three issues ago, I had to increase the cost of

the AB from $5 to $7 per three issues. At that time, I was finding it difficult

to predict what future costs would be and there was very little fat in hand.

Now things are much better, a good cash balance has been accumulated, and I

therefore feel justified in declaring this to be a free issue. In other words,

all those subscribers entitled to receive this issue (AB41) will automatically

have their subscription extended by one, so that they will eventually receive

four issues for their $7.

AB41 p.3

AB41.1 Announcements

AB41.1.1 ALGOL 6OM

After it had gone to press, some serious misprints were discovered in

the Supplement to the ALGOL 60 Revised Report (Comp. Jour, 19 3 Aug. 1976),

and errata to correct these appeared, together with the full Modified Report,

in Comp. Jour. 19 4 Nov. 1976. The errata are also reproduced at the end of the

Report and those who have copies of that edition of the Supplement are invited

to elaborate them without delay.

The full Supplement has now been published again (with those errata

incorporated and hopefully with no new ones introduced) in SIGPLANNotices.

AB41.1.2 Conference Proceedings: New Directions L in Al~orithmic Languages - 1976

The papers and discussions at the 1976 meeting of Working Group 2.1 at

St. Pierre de Chartreuse have been edited by Steve Schuman in a similar format

to last year's proceedings, and all ALGOL Bulletin subscribers should have had

a copy by now. Additional copies may be obtained, so long as stocks last,

from Stephen A. Schuman, IRIA Laboria, BP 5 - Rocquencourt, 78150 LE CHESNAY,

France.

AB41.1.3 Conferenc e Proceedings: 4th International Conference on the Design
and Implementation of Algorithmic Languages.

The proceedings of this Conference, held at New York on June 14th - 16th 1976

(see AB39.1.4) may be obtained, for U.S. $12.O0 from:

Miss Lenora Green,

Courant Institute,

251 Mercer Street,

New York, NY 10012,

U.S.A.

~(Cheques to be made payable to New York University).

AB41.1.4 ALGOL 68

AB41 p.4

There are a few small misprints in the Acta Informatica edition of the

Revised Report, and the relevant errata will be found on the last page of this

AB. Please elaborate them without delay. Note that the TR74-3 edition is

unaffected. Note that only very minor misprints are being corrected at this

stage. There are in addition various bugs that have been found in the Revised

Report, but no action is being taken on these until the Support Subcommittee has

considered them separately (see the following item, describing the procedure

that is to be followed.)

In the meantime, the complete Revised Report (with these misprints corrected)

has been published in SlGPLAN Notices May 1977. Also, in that same issue of

SIGPLAN Notices are "A Sublanguage of ALGOL 68" by P.G, Hibbard (the defining

document of ALGOL 68S), there published for the first time and the Report on

the Standard Hardware Representation, (originally published in AB40.5). Thus

all three Reports on ALGOL 68, as approved by the Working Group and by IFIP, are

now available in one volume. Reprints from ACM.

AB41.1.5 The Standing Subcommittee on Algol 68 Support Treatment of Questions
asked about the ReVised Report.

The process for answering questions about the Revised Report and other

associated documents:

i. A question is first posed to the Subcon~mittee by sending a letter to

the convener of the Subcommittee either to request interpretation or

to report an alleged error, inconsistency or typographical misprint

in the Revised Report on the Algorithmic Language Algol 68 or associated

documents. The letter which becomes the property of Working Group 2.1

should include a self-referencing publication release because private

communications are automatically subject to copyright by international

convention.

2. The question should arrive sufficiently in advance of a meeting to allow

appropriate distribution to the subcommittee before the meeting in order

to be considered at that meeting.

3. During the meeting following receipt and distribution of the letter by

the convener, the question will be scheduled for discussion,voting

and action. The possible actions which can be taken include:

AB41 p.5

a Decide no problem is raised by the question,
or that the problem raised by the question
had already been discussed and resolve.

b Decide that a trivial problem exists raised
by the question.

For possibilities a and b the convener will refer the letter to a

member of the Subconnnittee who will write an appropriate response.

c Decide that the question raises a problem.

The convener will appoint a taskforce to examine the question and

report back. The taskforce has the responsibility to produce a

written report which will explicate the problem as well as possible

actions for its resolution. This should be accompanied by a statement

of the relative advantages and disadvantages of each action.

In any case, a file of all questions and their answers will

be maintained by the convener for the future use of the Subcommittee.

At a future time an editing taskforce may be asked to compile a

publishable document containing the essence of the file.

The current convener of the Standing Subcommittee on Algol 68

Support, R. Uzgalis, can be contacted at: University of California,

Los Angeles, Computer Science Department, Boelter Hall 3731H,

Los Angeles, California, 90024.

AB41.1.6 Informal Introduction - Revised Edition

The Revised Edition of the Informal Introduction to ALGOL 68, by C.H. Lindsey

and S.G. van der Meulen has now been published by North-Holland at a price of

Dfl. 35.OO/US $14.50 Paperback (ISBN 0-7204-0726-5) or Dfl. 70.O0/US $28.75

Hardback (ISNB 0-7204-O504-1). It may be obtained from booksellers or direct from

North-Holland Publishing Company, P.O. Box 211, Amsterdam, The Netherlands.

In the U.S.A. and Canada it is distributed by Elsevier North-Holland, Inc.,

52 Vanderbilt Ave., New York, N.Y. 10017, and in Australia by Dutch-Australian

Book Depot, 11-13 Station Street, Mitcham, Vic. 3132. Please be sure that you

ask for, and obtain, the Revised Edition, which comes in a garish red cover to

distinguish it from the lurid green of the first edition.

This Revised Edition is the volume referred to in 0.3 of the Revised Report.

Although it still follows the same general plan as the original edition, it has

been brought fully into line with th~ Revised Report. As before, it aims to

describe the whole of the language and may thus be used both as a work of reference

and as a text book (although it does not claim to be suitable as a primer for novices).

Appendices have been added on ALGOL 68S and on the Standard Hardware Representation.

AB41.1.7 Report in BRAILLE

1 /

AB41 p.6

After the publication of the Revised Report on ALGOL 68 in 1975, the

Mathematical Centre has undertaken the task of producing a braille version

of the ALGOL 68 Report. This braille version is based on a copy of the tape

from which the Revised Report has been typeset. Except for Winnie the Pooh

and a few other pictures, the complete Report has been converted.

Any information on this braille version can be obtained from:

J.C. Van Vliet,
Mathematical Centre,
2e Boerhaavestraat 49,
AMSTERDAM,
The Netherlands.

Copies of the Report will be made available in the form of either a large box

of brailed paper or an (IBM-compatible) magnetic tape containing a one-to-one

representation of the braille version.

The price will be limited to the cost of reproduction.

AB41 p.7

AB41.2 Letters to the Editor

AB41.2.1HardwareRepresentation

The Editor,

ALGOL Bulletin.

Dear Sir,

I suggest a new formulation of section C.i of the Report on the Standard

Hardware Representation for ALGOL 68 (AB40.5 and SIGPLAN Notices May 1977), as follows:

The standard is defined in terms of worthy characters in order that program

conversion will require only a transliteration of character codes.

The transliteration may be done automatically if each implementer provides

the following:

I) Each translator has a single input representation corresponding to the

standard. However, a program may be represented in another code than this input

representation. A mapping program is needed which maps the program to the input

representation. There are many mapping programs.

2) A portable program should provide a "cap" before the Codes of the program

in the porting file.

The structure of the ca p

The file contains codes represented by some fixed number of bits. Each

character (worthy character or helping character, see below) is represented by a

word containing such a fixed length code. There are helping characters:

disjunctor, new line, end of text and end of input. The cap is the sequence of

representing words for the characters:disjunctor, new line, all of the worthy

characters in the order in which they appear in *I, end of text, end of input, the

upper-case national letters followed by a disjunctor (or only a disjunctor), the

lower-case letters followed by a disjunctor or the lower-case letters and lower-

case national letters followed by a disjunctor (if there were upper-case national

letters) or only a disjunctor.

3) There is a general mapping program such that it may do the transliteration

of new codes given the cap and an integer (the number of bits in each representing

code).

(The cap is not a universal method of portability, but it is a satisfactory

method in many cases.)

Yours faithfully,

A.N. Maslov
Department of Algorithmic Languages,
Faculty of Computer Science,
Moscow State University,
Moscow. U.S.S.R.

AB41 p.8

AB41.4.1 TheAlgollers

by R. de Morgan. (Reprinted from the Newsletter of the BCS ALGOL Group).

A long, long time ago (about eighteen years, give or take a furlong), several

wise men sat down and designed a programming language. Being of a somewhat

adventurous nature, they produced a somewhat adventurous language; indeed, so

adventurous was this language that people debate to this day the properties of

this wondrous language and others that owe Some of their origins to it. It was

called "Algol 60", but didn't seem to have any features of specific use to

astronomers. They revised it a bit in 1962, but unlike later languages, did not

update its number; indeed, most people were quite content to call it simply "Algol",

and some of them spelt it with capital letters.

Algol had a wealth of features. Some indeed were quite extraordinary and could

be used to perform wonderful feats of computation in mystical ways (the way it

could find prime numbers with a single statement seemed to smack of witchcraft).

Some of the features were left to the imagination and ingenuity of the implementers,

resulting in a wealth of dialects of the language. Machine dependent features

such as input-output were skilfully avoided so as to avoid contamination of

programs. Nevertheless, implementers seemed to think that this was a desirable

addition, and added input-output systems of every conceivable shape and size.

While the outside world were marvelling at the wonders of Algol 60, the wise

men were busily at work designing its successor. They spoke of it as "Algol X",

and there was even talk of an "Algol Y", but when it saw the light of day, it

was called Algol 68. Here indeed was a magnificent language - it had a bigger,

better Report, parts of which were written in a curious form called a W-grammar, and

seemed to require many type fonts, not to mention italic full stops. "Why didn't they

use BNF?" was the cry. Fortunately, someone pointed out that if one read the

examples at the back of the report, it all became clear.

Meanwhile, halfway up a hill in darkest Worcestershire, at a Very Secret Place,

Scientific Civil Servants were labouring night and day to produce the very first

Algol 68 implementation. This was kn~m as Algol 68R and became Very famous.

Following this, many other implementation sprang up, but implementers had great

difficulties with some of the features, and various subsets were born.

But the Algol 60 devotees had not been idle. Meeting at secret locations in the

English countryside, they set out to eliminate the dreaded Remaining Trouble Spots.

They called their Algol 60 "Modified" (they did not like to call it Algol 76 for fear

that the Algol 68 authors would become angry with them for having a higher number),

and they even included a simple input-output system. They produced a Report,

as was the custom, and published it in a Learned Journal.

AB41 p.9

Both the Algol 60 and Algol 68 devotees were members of a Secret Society, which

was called the Algol Association. They would come from far and wide to listen

to the wisdom and lore imparted by famous Algol mystics. They also communicated

with each other by means of a Bulletin, speaking both in words and algorithms.

Although there was some amount of rivalry between the Algol 60 and Algol 68

factions, they were united in their scorn of other societies such as the Cobolers

and the Fortranners. These societies spoke strange tongues which weremost

un-Algol-like.

There had grown up a movement called Structured Programming,~d the Algol devotees

found that they could write structured programs without much difficulty. Indeed,

by using Algol 68 they found that they could do away altogether with the hateful

labels that many said spoiled the beauty of their languages. The Cobollers and

Fortranners were very jealous of this, and tried to write structured programs of

their own. The Algollers saw that this was futile and laughed them to scorn

saying "How can they expect to write structured programs with such foolish languages?".

But the people of the world were much confused by all this talk, and did not know

which way to turn. Most of them were very conservative by nature and said

"Why should we use these new languages that these mystics invent? Let us instead

use the languages that our forefathers have always used." And so they went their

way, and performed their Sorts and Merges, and entered Subroutines, and did other

mundane things; for such was the way of the world.

AB41.4.2 On the ALGOL 68 Transput Conversion Routines

by

J.C. van Vliet (Mathematisch Centrum, Amsterdam).

AB41 p. i0

ABSTRACT

In section I0.3.2. l. of the Revised Report on the Algorithmic Language

ALGOL 68, a set of routines is given for the conversion of numerical values

to strings and vice versa. If this set is used as an implementation model,

the way in which the numerical aspects are dealt with causes considerable

trouble. A new version of these routines is given in which numbers are first

converted to a string of sufficient length, after which all arithmetic is per-

formed on this string. In this way, for each direction only one place re-

mains where real arithmetic comes in.

INTRODUCTION

In section 10.3.2.1. of the Revised Report on the Algorithmic Language

ALGOL 68 [I] (in the sequel referred to as the Report), a set of routines

is given for the conversion of numerical values to strings and vice versa.

Compared with most other sections of the Report' this one seems to have re-

ceived little attention from the editors.

This section may be looked upon from two different points of view: one

may take it either as a definition of the intention of the conversion, or as

some kind of implementation model. In any case, the following remark from

section 10. I.3. of the Report applies:

"Step 8: If, in any form, as possibly modified or made in the steps

above, a routine-text occurs whose calling involves the manipu-

lation of real numbers, then this routine-text may be replaced

by any other routine-text whose calling has approximately the

same effect;"

AB41 p.ll

Taking the former point of view, one might wonder whether the inten-

tion is best described by a set of ALGOL-68 routines. (In that case, one

should at least add an extensive description in some natural language too.

For example, it took me quite some time to discover when exactly ~ndefined

is called. It seems to b ~ve been the intention to call undefined only when

it is obvious that no string may be delivered satisfying the constraints set

by the parameters, as in the case fit~dCm, 3, 4). However, when x and i are

of the mode real and int, respectiveiy, whole(x, 1) calls undefined, while

whole(i, 1) does not.)

Using the routines as an implementation model, the remark from section

I0, I.3. that is cited above will haw~ to be invoked heavily. To give an ex-

ample, it is impossible to print L m~zr real by means of the routine fixed

from the Report, because of the stat,~ment

L real y:= x + L .5 * L .I ÷ after;,

which is used for rounding. Adding one half of the last decimal that is

asked for excludes a whole class Of numbers in the vicinity of L max real

from conversionl Also, y may well be equal to x after execution of this

statement if the number that is being added is relatively small compared to

x; so the result is truncated rather than rounded.

The errors found in the section on conversion routines in the Report,

are listedbelow. The problems caused by the way in which the numerical

aspects are dealt with (overflow, accuracy) are also discussed. Next, a ver-

sion of the routines is given which bypasses these numerical problems. Here,

numbers are first converted to strings of sufficient length, after which all

arithmetic is performed on these strings. This version may really be seen as

an implementation model: for each direction of conversion, there is only one

place where real arithmetic comes in.

The control Data ALGOL 68 implementation [2] has been of great help in

testing boththe routines from the Report and the ones given below. Numerous

talks with H. Boom, D. Grune and L. Meertens have contributed considerably

to the polished form of the various routines.

AB41 p. 12

When we try to use the routines from the Report as they are, the following

numerical problems arise (apart from the one already mentioned in the intro-

duction):

- The statement in lied:

while y + ~ .5 * ~ .I + after ~ ~ 10 ÷ length do length +:= I odj

assumes that integers may take on the same values as reals, for

L 10 ÷ length has mode L int. This may well not be the case, thus yielding

an integer overflow. Presumably, the intention has been to write

L 10.0 ÷ length.

Notice however that the left-hand sideof the boolean expression may

still cause a real overflow if y is approximately equal to L max real.

- The statement in subf~ed:

while y ~ ~ I0.0 ÷ before do before +:= I o_d;

may cause an overflow if y and L max ~eal are of the same order of magni-

tude. One could write something like

while y / ~ I0.0 ~ ~ 10.0 + (before - I) ~_ before +:= I o d;,

but then the next statement will cause the overflow. One may combine the

two statements as follows:

while y ~ ~ 1.0 ~ y /:= L I0.0; before +:= I od;

If, however, division is not too accurate, the repeated division may cause

large numbers to be converted much less accurately than small numbers.

AB41 p. 13

ANOTHER SET OF CONVERSION ROUTINES

The main differences between the set of conversion routines presented

below and the set in section |0.3.2.|. of the Report are the following:

- numbers are converted to strings of sufficient length, after which the

rounding is performed on the strings. This seems to be the only reason-

able way to ensure that numbers like L mcccreal may be converted using

fixed or float. (One must be careful when rounding causes a carry out of

the leftmost digit. For example, in float this will cause the decimal

point to shift. This will in turn yield a new exponent which, after con-

version, may need more (or less~) space.)

- the routines fixed and float are written non-recursively.

- no use has been made of the routine L 8tanc~dize. In general, I have

tried to minimize the number of places where real arithmetic comes in.

Only (part of) the routine 8ubfixed, and a few lines in string to L real

use real arithmetic and may therefore have to be rewritten for a specific

machine.

Care has been taken that Whole, fixed and float behave exactly as the

corresponding routines from the Report are intended to. However, as has al-

ready been discussed briefly in the introduction, it is difficult to see

exactly when undefined is called. Therefore, I have decided to call

undefined in all cases where error characters are returned.

The (hidden) routines subwhole and 8ubfixed behave slightly different-

ly from their namesakes in the Report. In particular, error character8 are

never delivered. Together with the removal of L standardize, this necessi-

tates some changes in the editing of integers and reals in the routine putf

in section |0.3.5.|. of the Report.

Conversion b£ means of whole.

The routine whole is intended to convert integervalues. It has two

parameters:

- v, the value to be converted, and

- width, whose absolute value specifies the length of the string that is

produced.

AB41 p.14

Leading zeros are replaced by spaces and a sign is normally included. The

user may specify that a sign is to be included only for negative values by

specifying a negative or zero width. If the width specified is zero, then

the shortest possible string is returned.

The routine whole proceeds as follows: First, using subwhole, a string

s is built up containing all significant digits and possibly the sign of the

number being converted. If the user has specified a width of zero, this

string s is delivered as a result. Otherwise, the length of s should not be

greater than the absolute value of the specified width. If it is, undefined

is called and error characters are returned; if not, spaces are added in

front of s if necessary, and the resulting string is delivered.

Examples:

whole(Z, -4) might y i e l d "...0", "..99", ".-99", "9999", or , i f i were

greater than 9999, "****", where "*" is the yield of errorchar;

whole(i, 4) would yield ".+99" rather than "..99";

whole(i, O) might yield "0", "99", "-99", "9999" or "99999".

proc whole = (number v, int width) string:

case v in

~(L int x):

(bool neg; string s:= subwholeCx, neg);

(neg I "-" I: width > 0 1 "+" I "") plusto s;

i~ width = 0 then e

eli~ int n = abs width - upb s; n -> 0

then n * "." + s

else undefined; abs width * errorchar

fi)~,

(L real x) : fixed(x, width, O)

esac;

proc ~. subwhole = (Lint x, r el bool neg) string:

begin string s:= "", Lint n:= abs x; neg:= x < L_ O;

while dig •char(S (n mod L 10)) plusto s;

n overab L 10; n ~ L O

do skip od;
s

end;

AB41 p.15

Conversion by means of f~ed.

The routine f~ed is intended to convert real values to fixed point

form (i.e., without an exponent). It has an after parameter to specify the

number of digits required after the decimal point. The other parameters have

the same meaning as those for whole.

From the value of the width and after parameter, ghe amount of space

left in front of the decimal point may be calculated. (The values of the

after and width parameter should be such that at least some number may be

converted according to the format they specify. If this is not possible,

undefined is called and error chcs~acters are returned.) If the space left in

front of the decimal point is not enough to contain the integral part of the

number being converted, digits after the decimal point are sacrificed. If

the number of digits after the decimal point is reduced to zero and the num-

ber still does not fit, undefined is called and error characters are re-

turned.

Implementation of the simple algorithm described above involved some

nasty problems. Therefore, the comprehensive description of the new version

of the routine fized which follows is supplied with various examples to il-

lustrate the places where great care is needed to maintain correctness. The

routine proceeds as follows: If the value of the after parameter is less

than zero, undefined is called immediately, and error characters are re-

turned. Otherwise, using subfixed, an unrounded string 8 is built up, con-

taining all significant digits before the decimal point, and after+l digits

after the decimal point. As a side-effect, the variable point points to the

digit after which the decimal point has to be inserted, while the boolean

variable neg indicates the sign of the value submitted (neg .~ v < 0). Thus,

for example,

s:= 8ubfized(3.13, 3, point, neg, false) -~ 8 = "31500" & point = I,

s:= subfixed(O. 75, 1, point, neg, ~alse) ~ s = "75" & point = 0.

In both cases, neg gets the value false. Then, a value w is calculated in-

dicating the number of positions available for digits and the decimal point.

For example,

fixed(3.13, 10, 3) ~ w = 9,

fixed(0.75, 0, 1) ~ w = O,

fixed(0.75, 2, I) ~ w = 1.

AB41 p. 16

In the last example, undefined will be called, because no number can be con-

verted according to this format (the two positions specified are swallowed by

the sign and the decimal point, so no space remains for the one digit speci-

fied after the decimal point). (Obviously , in case the value of the width

parameter is zero, undefinedwill not be called.)

Suhsequently, two cases are distinguished:

• The user specified a width of zero, i.e., the shortest possible string

containing after digits after the decimal point has to be delivered. In

this case the string iS simply rounded starting from the last element. If

this rounding causes a carry out of the leftmost digit, the decimal point

has to be inserted one place further to the right (fixed(0.95, O, 1)

leads to 8 = '~5" & point = 0 via sublimed, and 8 = "10" & point = 1 via

round, ultimately resulting ~n the string "1.0" to he delivered);

• The user specified a non-zero width. Then, the number digit8 is calcula-

ted: the number of positions available for dig~ts. This number obviously

is either w - 1 or w: either a decimal point is to be delivered, or it is

not. A decimal point will not be delivered if after = 0, or if the deci-

mal point just falls outside the available number of positions w. (Note

that the case after = 0 does not present any problem and may safely be

ignored.) Otherwise, the decimal point has to be inserted somewhere, so

digit8 = w - 1. (Note furthermore that if the room available for digits

is not even sufficient to contain all digits of the integral part (i.e.,

point > W), a call of undefined will ultimately result.)

The next step will be to round the string. Again, if the number of posi-

tions available for digits is greater than the number of digits to be de-

livered, the string is simply rounded starting from the last element. If

this causes a carry out of the leftmost digit, the decimal point has to

be inserted one place further to the right, and the longer string is de-

livered. Otherwise, the string is rounded starting from the digit at po-

sition digit8 + 1. If this rounding causes a carry, the string has to be

snipped at the position indicated by digits, except when the decimal

point is now left just after position w. (This tricky case occurs, e.g.,

at the call f~zed(gR.?, -3, 1). Following the flow of control, we see

that digit8 = 2, so a call round(2, "9970") results, which yields

AB41 p. 17

true & s = "I00". As, however, the decimal point just shifted out of the

available number of positions (3), the whole string can be returned.)

We are now left with a string s containing all significant digits to be de-

livered. If there is space for at least one more digit, and the decimal

point is at the extreme left, "0" is added at the front end, thus delivering

"0.35" rather than "..35" (and "0" rather than "." in a case like
m m

fixed(O. 3, -~, O) :).

As a last step, undefined is called and error characters are delivered if

the room available for digits is not sufficient to contain all digits of the

integral part of the value submitted, or the after and width parameters are

such that no number may be converted using that format. In all other cases,

a sign is added if necessary, and a decimal point may be inserted. If the

specified width is non-zero, the remaining positions are filled with spaces.

The resulting string is delivered.

Examples :

fixed(x, -6, 3) might yield "_.2.718", "27.183", "271.83" (one place after

the decimal point has been sacrificed in order to fit the number in),

"2718.3", ",_27183" or "2?1833" (in the last two examples, all positions

after the decimal point are sacrificed);

fixed(x, 0, 3)might yield "2.718", "27.183" or "2?1.828".

'proc fixed = (number v, int width, after) string:

i~ after < 0

• then undefined; abs width * errorchar

else int point, bool neg;

string s:= subfixed(v, after, point, neg, ~alse) i

int w = abs width - (neg v width > 0 I 1 I 0);

i~ width = 0

then (round(upb s " 1, s) I point +:= 1)

else int digits = (w = point I w I w - I);

i~ digits > upb s - 1

the.n (round(upb s - 1, s) I point +:= 1)

else (round(digits, s) I point +:= 1; (point ~ w I s:= s[:digits]))

(point = 0 ^ (s = "" v w - 1 > upb 8) I "0" plusto s; point:= 1);

AB41 p.18

i~ upb 8 < point v (aft~r >_ w ^ width ~ O)

then undefined; ab8 width * errorchar

else 8:= (neg I "-" I: width > 0 i "+" I "") +

(point = upb 8 I 8 I 8[:point] + "." + 8[point + I:]);

(width = 0 I 8 I (ab8 width-upb8) * "._" + 8)

Notice that the above routine does not distinguish variable-length numbers;

they are just passed down to 8~fixed. The same will hold for the routine

float given below.

The routine 8~f~ed performs the actual conversion from numbers to

strings, and may be called from either f~ed or float. When called from

f~ed, it has to return a string containing all digits from the integral

part of the value submitted, and after + 1 digits from the fractional part.

When called from float, it has to return a string containing the first

after + 1 significant digits. In both cases, the last digit is truncated,

and not rounded. (The rounding is done later on, and rounding the n,,mher

twice may cause something like 9.46 to be converted to "10.0".) Considering

this string as a number, the value of the parameter p will be the shift of

the decimal point from the first digit. The parameter neg will indicate the

sigh of the value submitted (true iff negative).

It goes without saying that the routine 8~f~ed must be ' completely

accurate: it will be used to measure the accuracy of numerical algorithms,

and we want to be sure that that is really what is measured, and not the

accuracy of the conversion. It is therefore impossible to give an ALGOL-68

routine that will do. Instead, we give the following semantic definition:

It is a unit which, given a value V, yields a value S and makes

p and neg refer to values P and B, respectively, such that:

• B is true if V is negative, and false otherwise;

• it maximizes

• S P-i
M= c..

i = lwb S i m

AB41 p. 19

under the followinE constraints:

• lwb S m I;

• upb S - P + after + I if floatin8 is false, and after +]

o t h e r w i s e ;

• for all i from lwb S to upb S:

0 ~ c i ~ 9, where c i - char diE(Sill);

• M ~ Ivl.

(If one wants to circumvent the need to know the storaEe allocation tech-

niques used by the compiler (which is needed to build the string), one may

construct an embeddin 8 like:

proc ~ subfixed = (number v, int after, re~ int p, re~ bool negj bool floating)

string:

begin int size; guess storage(v, after, size, floatingJ;

size:-- some sufficiently large integer, an upperbound for

the number of digits that will result #

[I : size] char s;

do subfixed(v, after, p, neg, floating, size, s);

the actual conversion; the characters are placed in s.

As a side-effect, size indicates the number of digits placed

ins #

s[: size]

end;

.

The (h idden) r o u t i n e r o u n d i s u s e d f or r o u n d i n g . The parameter s r e f e r s

to the s t r i n g t h a t w i l l be rounded, the parameter k r e f e r s to t h e l a s t e l e -

m e n t of s t h a t w i l l be r e t u r n e d . The r o u t i n e y i e l d s t r u e i f the rounding

c a u s e s a c a r r y ou t o f t he l e f t m o s t d i E i t .

proc ~ round = (int k, ref string s) bool:

i~ bool carry:= char dig(s[k + I]) ~ 5; s:-- s[: k]; car2nj

then

for j fram k b~-I to I while carry

do int d = char dig(s[j]) ÷ I; carry:= d = 10;

s[j]:= (carry I "0" I dig char(d))

AB41 p.20

od;

(carry ["I" plusto S); carry

else false

Conversion by means of float.

The routine float is intended to convert real values into floating

point form. It has an exp parameter to specify the width of the exponent.

Just as in the case of the width parameter, the sign of the exp parameter

specifies whether or not a plus-sign is to be included. (This possibility is

not mentioned too clearly in the Report.) If the value of the ezp parameter

is zero, float acts as if minus one were specified, i.e., the exponent is

converted to a string of minimal length. (Again, this possibility is not

mentioned clearly in the Report. Moreover, it contradiats Fisker's remark

on page 3.4 of his thesis [3], where it is stated that in this case float

acts as if the value of the exp parameter were one! This seems to be a mis-

take.) The other parameters are the same as those for the routine fixed.

(However, the value of the w/dth parameter may obviously not be zero.)

The routine float proceeds as follows:From the values of width, after

and exp, it follows how much space is left in front of the decimal point (as-

suming no sign will be delivered). Then sublimed is called, which returns a

string s containing a sufficient number of significant digits. As a side ef-

fect, exponent gets the value of the exponent, assuming the decimal point to

be just in front of the first digit while neg gets to indicate the sign of

the number, For example,

s : = ~ubfixed(321.073, 4, exponent, neg, true) = s = "32107" & exponent = 3,

s:= subfixed(.O043?9, 4, exponent, neg, true) ~ s = "43790" & exponent = -2.

We now adjust before if a sign is to be delivered.

The number is then (conceptually) standardized, yielding the real exponent.

This exponent now has to fit in a string expart, whose cngth is bounded by

the width specified by the exp parameter. If this is not possible, the

digits after the decimal point are sacrificed one by one; if there are no

more digits left after the decimal point and the exponent sti]l does not fit,

digits in front of the decimal point are sacrificed too. Note that this has

repercussions on the value of the exponent (and thus possibly on the width

AB41 p. 21

of the exponent). More precisely, this process goes as follows: Let before

and aft denote the number of digits before and after the decimal point, res-

pectively. Let eorpspace be the width allowed for the exponent. If the expo-

nent does not fit (upb expca~t > e2cpspc~e), then one of the following happens:

i) If there are still digits after the decimal point to be given in

(aft > 0), then aft -~= 1. If, however, as a result of this, aft = 0,

we threaten to deliver something like $.e,~ so the decimal point has to

be left out too, which gives us one digit extra in front of the decimal

point, so

before +:= I; exponent -:= 1.

ii) If there are no digits left after the decimal point, digits in front of

the decimal point are given in, so

before -:= 1; exponent e:= 1.

In either case, one position extra is assigned to the exponent, so

expspace +:= 1. This shuffling will end, and then the string is rounded.

If this rounding causes a carry out of the leftmost aigit, the exponent must

be increased, which may cause some more shuffling. During this process, we

have to check at each step whether all digits have been consumed

(sign before + sign aft ~ O, which also caters for wron B input parameters). In

that case, undefined is called and error characters are delivered. Otherwise,

the various parts are glued together and the resulting string is delivered.

Examples :

float(x, 8, 3, 2) might yield "-2. 7182a+0'; "+2.72,o+11" (one place after

the decimal point has been sacrificed in order to make room for the

exponent) ;

float(x, 6, 1, O) might yield "-256101", "+261o!2" or "+1,0!C8" (in case x

has the value 0.886,0-9) .

proc float = (number v, int width, after, exp) string:

begin int before:= abs width - (after ~ 0 I after + I] O} - Cabs exp + I},

exponent, aft := after, expspace := ab8 exp;

bool neg, rounded:= false, possible:= true;

string s:= subfixed(v, before + after, exponent, neg, true), expart:= "";

(neg v width > 0 T before -:= 1); exponent -:= before;

while expart:= (exponent < 0 ~ "-" I: exp > 0 I "+" ~ "") + •

8ubwhole(ab8 exponent, loc bool);

AB41 p.22

i~ sign before + sign aft ~ 0

then possible: = false

elif u~b expart > expspace

then expspace +: = I.;

(aft > 0 [aft -:= I

(aft = 0 I before +:= I; exponent -:= I)

I before -:= I~ exponent +:= I)~ true

elif rounded then false

elif round(before + aft, s)

then exponent +: = I~ rounded: = true

else false

i~ -I possible then undefined~ abs width * errorchar

else (neg I " -~" t : w~Zdth > 0 I " + " I " ") + s [: before] +

(aft = 0 I "" I "'" + s[before + Z : before + aft]) +

'~"+ (expspace -upb expart) * '~. + expart

end~

Conversion of strings to numbers.

The routine string to Lint from section I0.3.2.1. of the Report works

fine, so we will not pay any attention to it. Although the routine string to

L real looks reasonable, it uses L standardize, and a new version of it is

given below. The routine needs real arithmetic, and thus must be rewritten

on most machines. The version given here is merely an outline of how things

might be done.

The routine string to L real is hidden from the user. Therefore we may

safely assume that the layout of the string supplied is correct. The first

element of the string contains the sign of the number. Furthermore, the

string may contain a decimal point, and it may contain an exponent.

The routine proceeds as follows: First, we search for the exponent

part, the beginning of which is indicated by "e", and the decimal point "-".

If there is an exponent part, it is converted using string to int, yielding

an exponent expaPt. If the conversion of the exponent is unsuccessful,

' AB41 p. 23

string to L real returns false, indicating unsuccessful conversion too.

Otherwise, the first significant digit is sought, pointed to by j. The expo-

nent expart is now adjusted so that it yields the exponent of the number as-

suming the decimal point to be just after the first significant digit. L max

real, being the largest value that may result from the conversion, is adjus-

ted in the same way, yielding a value max and an exponent max exp. Of course,

conversion is unsuccessful if expart >max exp. Subsequently, the first L

reallwidth significant digits are converted. (Note that any further digits

would not affect the value.) At each step of this conversion, we have to

cater for the case where expart = max exp; for then, the next digit of max

and the one from the string have to be compared to see whether conversion

may still continue• As a last step, if conversion has been successful, the

resulting number is (supplied with the correct sign) assigned to the para-

meter r. The routine yields true if the conversion has been successful, and

false otherwise.

proc ~ string to L real = Cstrin~ s, ref L real r) bool:

begin int e:= upb s ÷ 1; char in string("e", e, s J;

int p:= e; char in string(".", p, s); int expart:= O;

bool safe: = (e < upb s I string to int(s[e + 1 :], 10, expart) I true);

i~ safe

then int j:= 1;

for i from 2 t_o e - 1

while s[i] = "0" v s[i] = "." v s[i] = " "

i od;

expart +:= p - 2 - j;

L real x L O, max:= L max real, int length:= O, max exp:= O;

while max / L 10.0 + max exp _> L 10.0 do max exp +:= 1 od;

(expart > max exp I safe:= falser;

for i from j + 1 to e - 1 while length < L real width ^ safe

do

i~ s[i] = "." then skip

elif int si = char dig(sEi]); length +:= 1; expart = max exp

then int d = S entier (max / L 10.0 ÷ max expJ;

(si > d I safe:= false I x +:= K si , L 10.0 ÷ expart);

max -:= _K d * _L 10.0 ÷ max exp; max exp:= expart -:= 1

else x +:= _K si * L 10.0 ÷ expart; expart -:= 1

fi

AB41 p.24

o_m
(s a f e

8Gfe

end;

k •

I r ~ = (s [- 1] : "+" I ~ I -x))

REFERENCES

/13 WIJNGAARDEN, A. VAN, et al (eds.), Revised Report on the Algorithmic

Language ALGOL 68, Acta I n f o r m a t i c a 5 (1975) 1-236.

[2] ALGOL 68 Version I Reference Har~al, Control Data Serv ices B.V.,

R i j s w l j k , The Ne the r l ands , 1975.

[3] FISKER, R.G., The Transput Seotion for the Revised ALGOL 68 Report,

Dissertation, Dept. of Computer Science, University of

Manchester, August 1974.

AB41 p. 25

AB41.4.3 Visibility and Teachability of I/0 Processing in High-Level
Languages. D. Holdsworth, (University of Leeds).

INTRODUCTION

A recent search for a widely available high-level

language suitable for initial teaching to students in

courses ranging over DP, mathematics and computational

science has proved fruitless. In attempting to find a

reason for this one is drawn to the conclusion that the

DP student needs a greater control over I/O than

is provided by most "scientific" languages, and DP languages

(e.g. COBOL) take a derisory view of arithmetic. In addition

where layout control is available (COBOL, FORTRAN, ALGOL68)

it is provided by a lot of new syntax specific to I/O. This

paper argues that the semantic rewards for learning this

syntax are insubstantial, and consist primarily of a

limited masking from the user of the characters making up

a line of text. From an educational point of view this is

probably a bad thing. Recent interest in teachable

languages I'2 has not tackled this problem.

We illustrate a possible solution for output, by

proposing a scheme which is embedded in Algol68, and would

argue that the result is in many ways an improvement in the

facilities provided by the language definition 3. The

proposal involves no new syntax, and a partial implementation

(using Algo168-R~ is included as Appendix i. The major

reason for the choice of Algol68 is the presence of generic

user-defined operators in the language, thus making for

a clean implementation of semantic concepts which are almost

AB41 p.26

visible in COBOL. The system could be readily extended

to include fixed-format input with a minimum of difficulty,

but we still see some problems with free format input

which seem to indicate that many languages make a mistake

in imposing an artificial symmetry between input and

output.

• I. Ai@o168 I/O

The official I/O system of Algol68 not only involves

new syntax in formats but also involves stretching unions

close in dynamic typing, and so involves run time overheads,

or "botching" the compiler to treat print etc. as special

cases, as in Algo168C 5.

2. Mapping onto an output device

The scheme we propose is based on the idea that

lines of characters are the only things that can be output.

For this we use the outp operator. Where this is not true

(i.e. interactive graphics devices) we envisage the provision

of extra outp operators to perform the transput of non-

character information. Thus conforming to our view that

output can be handled by declarations utilising existing

language features. The operator outp is either monadic or

dyadic. The monadic form outputs a row of chars to standout,

while the dynadic form has the name of the file as its

first operand:

AB41 p. 27

eo~o

outp"Z£ne of output"

is equivaleht to

standout outp "line of output".

Control of paper motion can be achieved by providing

system declarations of some other mode of object which

defines the operation to be performed, as with the

standard newline and newpage:

e.g. outp newpage

Probably the most convenient default is to have

each outp produce a newline at the beginning, equivalent to:

print((new~ine,"line of output"))

New facilities like 8ameline could provide for

requirements such as overprinting.

With such a scheme the choice between control

operations and printing operations would be taken at

compile time.

3. Mapping onto rows of characters

The above simple output system presupposes that

there exist convenient syntactic constructs for con-

struction of appropriate character strings. If Algol68

offered user-defined widenings, it would be possible to

arrange that clauses such as:

line[7:ll]:=i

would widen an integer i into a [1:5] char. However, our

aim is to avoid introducing new language features largely

AB41 p. 28

for the benefit of the i/o system, although a user-defined

widening opens up possibilities for other meaningful cases.

Nonetheless, we shall not persue the avenue further. A

very similar (superior?) facility is obtained by intro-

ducing a dyadic operator repr which stores a representation

of its 2nd operand in its first operand. For character

output of the sort we are considering, the Ist parameter

would be of mode ref[l:]char, (see §4 for more powerful

options offering layout control).

It is envisaged that in normal use there will be

a character buffer used for assembling output, say:

[l:120]char l i n e ;

The construction of a line of output consisting of

the values of an integer i and reals x and y would procede

as follows:

clear Sine;

line[:5] repri;

line[7:16] reprx; line[18:27] repr y;

outp line

This is undoubtedly longer than:

print((newline, i, x, y))

but it can be taught without invoking unions and row displays,

and does in fact embody more layout control. A fairer

equivalent would be:

printf(($1ddddd,zzd.ddddddddd,zzd.ddddddddd$,
i,x,y))

or print((newline, whole (i, 5),fixed(x,-12, 7),fixed(y,-12, 7)))

AB41 p. 29

There is ample scope for discussion about the default

action on things such as zero suppression and signs. The

system shown in appendix 1 suppresses leading zeros and

the + sign. The character positions thus suppressed are

left unchanged. This gives the user freedom to initialise

the field with the zero suppression character. Others may

argue for space filling.

Appendix 2 shows an example of a program to print

solutions to an ordinary differential equation. The

procedure 8pr produces the output which includes a simple

graph in addition to numerical values.

4. Layout control for real numbers

The facilities already proposed include control of

the field width of number output. For output of reals we

commonly need to control the presence or absence of an

exponentand the number of digits after the decimal point.

In addition, for both ints and reals we may wish to control

printing of signs and leading zeros.

It seems inevitable that increasingly fine control

of layout will involve increasing amounts of detail. One

option is to head straight for an all-embracing system.

However, there seems to be genuine value in a means of

controlling precision of output for reals while still

taking default action for signs and zero suppression. We

therefore introduce two new modes eformat and fformat

AB41 p.30

(with deference to FORTRAN) whose ref[]char fields select

the fields within a line which are to be used for different

parts of the• number:

mode eformat = struct(ref[]char mantissa, exponent)

mode fformat = struct(ref[]char ipart, fpart);

If we now wish to enhance the example of section 3

to print x in fixed point with 5 decimal places and y in

floating point with 4 decimal places we would write:

clear line; line[:5]repr i;

eformat yform = (line[18:23],line[24:27]);

fformat xform = (line[7:lO],line[ll:16]);

in practice the above 2 statements

would be outside any loop

xform repr x; yform repr y;

outp line;

Appendix 3 shows a modified version of 8pr of

appendix 2 which utilises the above facilities.

The templates xform and yform play a role analogous

to that of PICTURE's in COBOL, and repr is acting in a way

similar to the MOVE verb.

5. General layout control

Clearly one can go on introducing increasingly

complex structures, or have global variables to control

the options such as zero suppression. Another option is

to •offer a general structure most of whose fields are unions.

AB41 p.31

This is perhaps the most attractive solution as the definition

of this structure would be a formal (nearly) description of

the layout facilities available, and any particular structure

would be a syntax tree for the particular layout required.

The initialisation of all the fields in such a structure

would be tiresome, and a system would therefore provide

some default skeletons (with nil for the ref[]char fields)

into which a user could overwrite his own choices. Of

course, we are now back to a large amount of run time

analysis, but we have not introduced any special purpose

syntax.

6. Efficiency

In the examples of appendices 1 and 3 we have

manually selected only those declarations of repr and outp

which our program invoked. This corresponds to a system

where invokation of system library routines is automatic

(as in Algo168-R). The appendix 2 version using outp and

repr is i000 words (24-bit) smaller than the standard

version. The appendix 3 version is 5000 words smaller than

its standard formatted i/o counterpart. Comparison of run

times also favours the outp/repr version. This program

was not created for the purpose of these examples but was

originally written as a student exercise in Algol 60.

AB41 p.32

7. Extension to cover input

The extension to cover formatted input is fairly

straightforward and involves an inp operator and possibly

rper (?). The notion of a general layout control which

specifies a syntax tree is interesting in the context of

input. However, the more common requirement is for free-

format input. Perhaps in this case we could have rper

take the required input from the beginning of the []char

operand, assign the value to the other operand and deliver

as a result either the number of characters used, or a row

consisting of the rest of the input string. However, this

lacks some of the essential simplicity that we sought to

introduce for teaching purposes. (The languages does contain

a precedent in the very useful '/:=' .) Appendix 4 shows an

example where a matrix is input using this system after

first reading bounds from a single line.

8. Conclusion

We have produced a blueprint for an output system

for Algol68 without use of syntactic or semantic extensions

to the language. We deal only in output of basic types,

but the system makes easy the definition of user-defined

repr's which will output any of a user's structures. The

necessary looping for handling arrays is already provided

in the language by the do constructs. It is suggested that

the concepts involved in this output system are valuable

to DP students, computer scientists and mathematicians alike.

AB41 p.33

There seems to be an obvious disadvantage of

greater verbosity, but this is no bad thing if greater

clarity and readability are a result. As to teachability

-the system is untested in this area.

One facility which has arisen by accident, is the

ability to print a row of reals with all the integral

parts on one line and all the fraction parts below byAuse
e

of formats of the form:

fformat splitter (line i[?:?], l~e 2[?:?]).
Q

We also have the ability, to edit the character

output before printing by normal manipulation on the row

of characters.

From a purely pedagogic poin t of view the separation

of data transfer from character conversion seems valuable

in a language which offers rows of characters. As an
L

illustration of the minimal nature of semantic extension

we may observe that the implementation ioseg (appendix I)

uses only 2 code patches (each one instruction) and each is

very system dependent - the peripheral transfer extracode

(in outp) and the paper feed field (pfcc). The last one

could be eliminated by use of []char, but with some loss

of efficiency.

Finally, let us compare the repr operator with the

conversion operators of §10.3.2.1 of the Algol68 report@

While these routines offer the capability to deliver a

string as a result of conversion they do not give the same

feeling of mapping values into fields within a line; nor do

we have the uniformity of syntax for different modes of

AB41 p.34

values, a syntax which may be extended to cover user-defined

modes by further declarations of repr.

REFERENCES

I. Designing a Beginner's Prograrmning Language,

L. Geurts and L. Meertens - Maths Centre Amsterdam

preprint IW 46/75 - also in "New Directions in Algorithmic

Languages 1975", edited by Stephen A. Schuman - IRIA.

2. Reliability, Portability, Teachability: Three Issues for

New Programming Languages, O. Lecarme - "New Directions in

Algorithmic Languages 1975".

3. Revised Report on the Algorithmic Language Algol68,

A. van Wijngaarden et al - Springer Verlag 1976.

4. Algo168-R Users Guide, P.M. Woodward and S.G. Bond - H.M.S.O.

5. AlgoI68C Reference Manual, S.R. Bourne, A.D. Birrell,

J. Walker. Computer Laboratory, Corn Exchange St.,

Cambridge.

N.B. the single bracket on printS5.4.4.

AB41 p.35
Appendix 1

i l z 1.24]CHAR b u f f 1
REF BYTES pfcc - REF BYTES CODE 100el/buff[I] EDOCI
pfcc s- "000A"I C pfcc for next record C

INT ca ss 8r200000, rep, nchars;

C setting up a control area for ip C
REF CHAR addr ~- buff[4] ; C get chars 3 pos C
[lz60]CRAR errorlinel

errorline[:44] z = "OUTPUT ERROR ~ 00 DIGIT FIELD WILL NOT HOLD "!

OP OUTP - ([]CHAR llne) z
BEGIN

buff[5zUPB line + 4] ~ffi line;
nchars z- ~YPB line + 11
CODE 157,0/ca EDOC; C transfer to ip C
pfcc z = "000A" C reset pfcc to default C

ENDs

MODE PFC - BYTESI C mode for paper feed control C
PFC newllne = "O00A"w newpage ffi "000I", sameline ffi "0001"I

OP OUTP ffi (PFC control) z
BEGIN

pfcc ~= control
END;

OP R~PR - (REF[]CHAR ch, I~T i) z
Converts integer held in i into a row of chars in ch.

Leading zeros are suppressed the resulting character
positions are left unchanged. Plus signs are suppressed
and any minus sign is placed before the most significant
digit.

C
BEGIN

INT end xffi UPB ch + I, rest z- ABS i~
C end is the most sig end of the chars output so far

rest is integer which remains to represented to the left of end
C
INT minend - ABS (i<0) + 11

WHILE
IF end > mlnend
THEN

ch [end MINUS I]
rest # 0

ELSE
FALSE

FI
DO

SKIPI

C minimum allowed value of end
- allows for minus sign C

z- REPR (rest'/sst10) I

C stop when only zeros to left C

IF i ~ 0 C minus sign needed C
THEN

ch [end MINUS I] zs "-"
PI;

IF rest # 0 C if integer was too big for layout C
THEN

errorline[16] ~- " "~ Clear Ist char because of sero sup C
errorllne[16z17] REPR UPB ch~
(errorline[45s] z= " ") REPR i~
OUTP .trotline C error report on standout C

FI
END;

AB41 p.36

MODE EFORMAT - STRUCT(REF[]CHAR m, e}j
MODE FFORMAT - STRUCT(REF[]CHAR i, f)!

OP REPR ~ (FFORMAT ch, REAL x) =
C Fixed Format Decimal.

sign (if -re) and integer part go into IOFch,
and decimal point and fraction part go into fOFcho

C
BEGIN

INT sign - SIGN x;
INT i ~ ENTIER ABS x;
REAL f z = ABS x - i;
INT w; C working variable C

iOFch REPR sign*il C handle integer part C

(fOFch)[I] :- "."; C decimal point C
FOR i FROM 2 TO UPB fOFch C produce requird no of fraction digi

ts C
DO
BEGIN

f :- f*10/ C i part of f is next digit C
w :i ENTIER f;
(fOFch) [i] :- REPR w;

f :- f - w
END

END;

OP REPR i (EFORMAT ch, REAL X) :
C put real no in x into floating decimal in ch
BEGIN

C any appropiate algorithm for conversion C
END;

C

OP REPR = (REF[]CHAR ch, REAL x) :
C Represents x in the given field as appropriate.

The format within ch is chosen so to give the most
readable representation which fits the field
without loesof accuracy.

C
BEGIN

C any appropriate conversion routine C
END;

OP REPR = (REF[]CHAR ch, BOOI, b) :
C bool to chars C
BEGIN

IF UPB ch < 5 C use 0 I rep for short strinqs C
THEN

ch[1] :- (b ! "1" ! "0") C other chars unchanged - bad idea ? C

ELSE
ch[1:5] :- (b ! "TRUE " ! "FALSE")

FI
END;

AB41 p.37 Appendix 2

BEGIN
REAL a, b, ya, y, h, hJ, fs, x, nf;
INT i, j, nJ, ns, nhalf;

[I:66]CHAR llne; C output line - used in spr C
REF[]CHAR yform - line[12:20]l
REF[]CHAR xform - line[:9]; ~ ' ~ - ~ ~

PROC spr = VOID s
COMMENT prints one llne output for one x value C
BEGIN

INT yn; i _ 1 1 set line to spaces

CLEAR llnel
xform REPR x; yform REPR Yl
IF ABS y ~ fs C if graph in scale C
THEN

yn :- ENTIER(nf*y);
line[41] =ffi "I";
line[41+yn] = = "+"

FI;
OUTP line

END;

convert x and y

C scaled onto integer C

C point to mark value C

transfer to output

PROC stepint - VOID :
COMMENT do one step of ode integration C
BEGIM

REAL yl, y2, y3, y4;
yl := x*x + y'y;

y2 := (x + y'y1) * 2.0;
y3 :m (yl*yl + y'y2 +1) * 2.07
y4 :m 6 * yl*y2 + 2*y'y3;
y := (((y4*h/4+y3)*h/3+y2)*h/2+yl)*h+y;
x :- x+h

END;

a := 0; b :- 0.9; ya :ffi 1.0;
nj := 5; ns :ffi 5; nhalf := 1; fs := 15.0~

nf := 20.0/fs; C scale for printer graph C
region (a, b, (fs < 0 ! fs ! 0) , ABS fs) ;

CLEAR line;
line[zS] REPR nj; line[6:10] RRPR ns; OUTP line1
axessi (0.1, 1.0) ~
TO nhalf
DO
BEGIN

ns :- ns + ns;
hj :- (b - a)/nj; x := a;
h := hj/ns; y :- ya;

point (x, y);
TO nJ DO
BEGIN

spr;
FOR i TO ns DO

(stepint;
END;
spr;
frame;
OUTP "
OUTP " "

END ,

RND

Join (x, y); plotas (x, y, "I

--..--.-";

-)

AB41 p. 38

A p p e n d i x 3

EFORMAT yform ffi (line[10:16], line[17:20]) ;

FFORMAT xform = (line[:3], line[4:9]) ;

PROC spr = VOID :

COMMENT prints one line output for one x value C
BEGIN

INT yn;

CLEAR line;

xform REPR x; yform REPR y;

IF ABS y < fs C if graph in scale C
THEN

yn := ENTIER(nf*y)';
line[41] := "I";

line[41+yn] := "+"
FI;

OUTP line
END;

C scaled onto integer C

C point to mark value C

Output from above procedure

5 5

0.00000 1.0000E 0

0.18000 1.2216E 0

0.36000 1.5829E 0
0.54000 2.2651E 0

0.72000 3.9516E 0

0.90000 1.4293E I

I+

I+
I+

I +
I

I

Output from program as given in Appendix 2

5 5
0.00E 0

O.180O0O0

0.3600000

0.5400000

0.7200000

0.9000000

1.0000000 I+

1.2216790 I+

1.5829401 I +

2.2651024 I +

3.9516723 I

14.293022 I

+

AB41 p.39

Appendix 4

C ****** INPUT (TENTATIVE) ********** C

OP RPER ~ (REF INT i, []CHAR ch) INT :
C takes an integerfrom the row ch regarding any character

which cannot form part of an integer as terminator.
Leading spaces are ignored. The value Of the resulting
integer is assigned ~to i and the result of the operator
is the number of characters read.

0 • U 0 • • • • O • D 0 • 0

[I:120]CHAR line;

INT m, n, C matrix bounds C
i; C character pointer used in reading C

INPline; C read a line of input C

C

i := m RPER line;
n RPER line[i:];

C reads value of m and leaves i so that .. C
C .. it can be used to read the rest of the line

[l:m, I:n]REAL a;

FOR j TO n
DO
BEGIN

i := 0; IN? line; C initialise pointer and read input C
FOR k TO m
DO

i PLUS (a[k,j] RPER line[i:])
END; C converts into a[k,j] and increments the char pointer C

C We do seem to have lost some of the desired simplicity Ill C

Afterthought: User-defined conversions from []CHAR to a user-defined
mode cound be used by languages such as Alphard and CLU (see same book
as references I and 2 } to define the format of llterals in program
text.

This would mean that these routines would need to be executed
at compile time.

AB41 p.40

AB41.4.4

THE SYNTAX OF AN ALGOL PROGRAM

A. N. Walke r

, [D e p t o f) k a t h e m t i c s , The U n i v e r s i t y , N o t t i n g h a m SO~ 2PJ).]

A b o r T e r : ' ~ r ea . l x ; x := I .end' i s p r o v e d t o be a s y n t a c t i c a l l y

. c o r r e c t A l g o l ~ p a r t i c u l a r - p r u ~ m a .

The f o l k - l o r e o f A l g o l ~ h a s i t t h a t t h e R e p o r t and t h e R e v i s e d

R e p o r t a r e s t m h f o r m i d a b l y o b s c u r e d o c t m e n t s t h a t i t i s q u i t e i m p o s s i b l e

a c t u a l l y t o f o l l o w t h r o u g h t h e s y n t a x f o r a n y r e a l p r o ~ m w . D e s p i t e

d i s o m v e r i n g t h a t a t l e a s t one o f t h e R e v i s e d E d i t o r s - who s h o u l d p e r h a p s

r e m a i n n a m l e s s - t h o u g h t s o t o o , l a t t e m p t e d t h e t a s k f o r t h e (h o p e f u l l y)

p a r t i o u l a r - p r o ~ a n e b e g i n ~ & l x ; x := 1 end e and was p l e a s a n t l y s u r p r i s e d

t o d i s c o v e r t h a t i t i s n ' t r e a l l y a l l t h a t b a d .

F i g (i) g i v e s t h e c o m p l e t e p r o d u c t i o n t r e e . e x c e p t t h a t

(a) t r e f e r e n c e t o r e a l ' i s a b b r e v i a t e d t o ' R R ' , (b) p r e d i c a t e s a r e g i v e n

s e p a r a t e l y - s e e f i g (l l) - , and (c) p r o d u c t i o n s o f 'NEST' a r e a b b r e v i a t e d

t o t N 2 ' , 'N2 new ' o r eN 4 ' a s a p p r o p r i a t e . °N2t c o r r e s p o n d s t o a l l t h e

d e c l a r a t i o n s o f t h e s t a n d a r d and p a r t i c u l a r p r e l u d e s and i s r a t h e r l o n g i f

w r i t t e n o u t i n f u l l . IN2 new t i s t h e n e s t w h i c h a l s o i n c l u d e s t h e l a b e l s

b e f o r e t h e i ~ t (t h e r e a r e n t t a n y l) , and i N S t , w h i c h i s iN2 new new RR

l e t t e r x ' a l s o i n c l u d e s an entr~v f o r ' r e a l x ; ' F i g (i i i) l i s t s a l l t h e

s m t a p r o d u c t i o n s a c t u a l l y u s e d i n d e r i v i n g t h e p r o d u c t i o n t r e e f r o m t h e

s y n t a x r u l e s q u o t e d . (No te t h a t f i g (i i i) d o e s n o t i n c l u d e m e t a p r o d u c t i o n s

u s e d o n l y i n d e r i v i n g f i g (i i i) : f o r e x m s p l e , i n o r d e r t o d e r i v e '~RYrlON:

gO on t °NOYl(~f: KS o , g o , g . t and tALPHA: g , n . o . t a r e r e q i r e d , b u t a r e

n o t g i v e n i n f i g (iii) o)

F i g (i) c o n t a i n s 35 p r o d u c t i o n s , w h i c h i s , a s i t h a p p e n s , e x a c t l y

as many a s a x e r e q u i r e d i n t h e A l g o l 60 s y n t a x f o r t h e same p roL~am. How-

e v e r p A l g o l ~ h a s v e r i f i e d (a s A l g o l ~O c a n n o t) t h a t t h e t x ° i n *x := 1 '

i s t h a t d e c l a r e d i n t r e a d x t . t h a t l x t i s s u i t a b l e t o have t l t a s s i g n e d t o

i t , and i n d e e d t h a t I l t m u s t be w i d e n e d i n t h e p r o c e s s . A d m i t t e d l y , t h e

A l l o l ~ r u l e s a r e s l i g h t l y l o n g e r .

F i g (i) c o n s t i t u t e s a p r o o f t h a t e . ~ g i n r e a l x ; x := 1 end* i s a

p a r t i c u l a r - p r o g r a m p r o v i d e d t h a t 'we v e r i f y t h a t each o f the p r e d i c a t e s i n

f i g (i i) h o l d s . (We s h o u l d a l s o v e r i f y f i g (i i i) , wh ich i s l e f t a s an

AB41 p.41

81
. o I

, , , I ~j
0 I J U I ,, m |

I I I ~ I • I h w

o I t ! : t 43 ~

I ~ | v

0 131 ~ ~ i ~ ~ ~

! _ _ v v ,.....,IV k V 0 ~ - ,_.

I = ~tI ,,.., " 1 ~ ~. ~ t1"
I 'el ~iI I t :~1" I . A ~ A .P~ A
I . ~ ~.~ I ~ ~t; i ~
I o k j . - 0 .~.~ ~1.4 I I

' ~'~ ~ I I ~ I I I l l ! ~ e o e, , ~ . ' o ~ r " "q- ' ~ ' ~v -
8 ~ ~ I • • | ~ l _ v O V ",-I V

I A 4,~ A

~' I ~ g ! i o v u v - -/- m" ' - , o , . _ _ _

• ! ~ ! : ~,! :

• / ,,.I ,,.11 I ~ ~ I ~ ID

' " "i "8, - - - - o i ~ " - - , - ~ ~ - - • .~-

! =-I ~
eql

AB41 p.42

FII

9 "t--~--'I, u 0 ~ i
Q I ~ k I • Q

Cl o o ~ o I Ill N- k ~ o
o i~ .,,4 i • Ill o ~ ~I i=

V 0 ~ • 0 A ~ A I A ~ A

I I *. Cl I ~ ~ I
| ~ ~ !
, .~ ~I • I ,
I o ~ I .~ I

I " O I

I * ~ I 0
I Cl I
I 0 l< I
I .~ • I
I ~ • I,I I) A I II 0 III I "

/ 4~w4 ~ •

e~ x

0 ~ ~ "~

l,l
• I¢ 1~ i ,,.

I #,i A .,~A OA l ®® ~ ~ ~ ~

II

r-I

~ ®E-, 0 ~ . ~
I~ o o O ! I
I ~ • I O
• ~ ' ~ 0 IN I ~ A

• ,...++.++ . .-.)

" + + " +" " ° ° ° ° + -+ ~t~: • ,+~ ++
I=, I ~ * ¢ ~ ' ~ . , ~ I~.~ I:I I

= + I:ll l,i:l + ¢: = k m m " ~ O v
0 I

AB41 p.43

[A]:
In]:
[C]:
[D]:
[Z]:
[F]:
[01:
[W]:
IX]:

• [j] :
Ix] :
ILl:

where
where
where
where
where
where

() i s ()
(r e f e r e n c e to r e a l l e t t e r x) i s (r e f e r e n c e to r e a l l e t t e r x)
(l o c a l) is (l o c a l)
(r e a l) i s (r e a l)
r e a l i r e a l i d e n t i f i e d i n N 4
r e f e r e n c e to r e a l l e t t e r x independent

where (N~ a s s i g n a t i o n) i s (N 4 a s s i g n a t i o n)
t m l e s s (v o i d e d t o v o i d) i s (d e p r o c o d u r e d t o v o i d)
w h a ~ r e f e r e n u e t o r e a l l e t t e r x i d e n t i f i e d i n N 4
where r e a l d e f l e x e s t o r e a l
Whare (N 4 d e n o t o r) i s (N 4 d ~ n o t e r)
u n l e s s (widened to r e a l) i s (d e p r o o e d u r e d t o v o i d)

f i g (i i) - t a b l e o f p r e d i c a t e s u sed i n f i g (i)

e x e r c i s e . None o f i t w i l l take you v e r y f a r a f i e l d e x c e p t t he e x p a n s i o n s

f o r t lq lTFI~ t and 'NOYETY' wh ich g e t v e r y t e d i o u s u n l e s s you use theorem

1, be l ow .)

Theorem I Any n o n . 4 m p t y s e q u e n c e o f s m a l l s y n t a c t i c marks o t h e r t h a n , (t

and t) , ~ t~ o f l e t t e r s ' a ' , t b ' , . . . , ' z ' ; s ee s e c t i o n 1 . 1 . 3 . 1 . a i n

the Revismd R e p o r t ~ i s a t e r m i n a l z m t a p r o d u c t i o n o f 'NOTICM'.

I ~ o o f O t h e r w i s e , n o t e • t h a t any s i n g l e s u c h mark i s a t e r m i n a l m t a p r o d u c t i o n

o f tALPHAt, and l e t S be a s h o r t e s t c o u n t e r e x a m p l e . Than S c o n t a i n s

more t h a n one mark , and can t h e r e f o r e he w r i t t e n a s t he c o n c a t e n a t i o n

o f a s h o r t e r non .~mpty s e q u e n c e Sl and a (s i n g l e) mark , M s a y . But

81, by h y p o t h e s i s , i s a 'NOTI tN ' and M I s an 'ALPHA', so S may be

p r o d u c e d f rom tNOTltZq ALPHA'. T h i s c o n t r a d i c t i o n e s t a b l i s h e s t he

r e s u l t .

C o r o ! l a z 7 Any (p o g s i b l y empty) s u c h s e q u e n c e i s a t e r m i n a l m e t a p r o d u c t i o n

o f t NDTLTf ° .

Theorem 2 The p r e d l o a t e ' w h e r e (NOTETY) i s (NtYYETY)' h o l d s .

P r o o f We use t he f o l l o w i n g l e z m a .

Lomma twhere (] ~ L ' Y) b e g i n s w i t h (}K)TE'I'Y) e h o l d s .

P r o o f ~ l e f t a s an e x e r c i s e e . Use c o n t r a d i c t i o n on a s h o r t e s t c o u n t e r -

example , by r u l e s 1 . 3 . 1 . a , 1 . 3 . 1 . i , 1 . 3 . 1 . j a n d 1 . 3 . 1 . k , and theorem

Theorem 2 f o l l o w s i m d t a t e l y f rom 1 . 3 . 1 . g , 1 . 3 . 1 . c and the lemma.

AB41 p.44

C ~ O N : r e f e r e n o ~ t o r e a l v a r i a b l e .
COMDRF: N 4 a s s i g n a t i o n ; N 4 d e n o t e r .

DBCS: r e f e r e n c e t o r e a l l e t t e r x .
DECSF/'Y: .

DIGIT: d i g i t o n e .

ENCIDSED. ; l o B e d o
FORM: N 4 a p p l i e d i d e n t i f i e r w i t h l e t t e r x ; N 4 a s s i ~ n a t i o n ;

INDICATOR:
IABSETY:

LATER:
LEAP:
MEEK:
MODE:

MODINE:
MOLD:
NEST:

.o~rs.rY:

N ~ I ~ :

PACK:
PROP:

PROPS ETY:
QUALITY:

REF:
SIZETY:

SOFT:
SOLD:
SOME:

STR~qG:
STYLE:

TAB:
TAG:

TALLY:
TAX:

T~TIARY:
UNIT:

VIRACT:

N~ denotor •
identifier; mode Indlcation•

new r e f e r e n c e t o r e a l l e t t e r x .
l o o a l .
unchanged f r o m .
r e a l ; r e f e r e n c e t o r e a l .
r e a l .
i n t e g r a l ; r e a l ; r e f e r e n c e t o r e a l ; v o i d .
N2; N2 new; N 4 .

(See f i g (i) .
N2: new new D1 new D2 l a b e l l e t t e r s l e t t e r t

l e t t e r o l e t t e r p .
N 4 : N 2 new new r e f e r e n c e t o r e a l l e t t e r x .
DI: < d e c l a r a t i o n s o f s t a n d a r d p r e l u d e > •
D2: < d e c l a r a t i o n s o f p a r t i o u l a r p r e l u d e > .)

s t r o n g v o i d N2 new s e r i a l c l a u s e d e f i n i n g new r e f e r e n c e
t o r e a l l e t t e r x ,

b e c o m e s ; b o l d b e g i n ; b o l d ~nd ; d i g i t o y p h e r ; go o n ;
l e t t e r x ; p raRment s e q u e n c e .

b o l d paoko
r e f e r e n c e t o r e a l l e t t e r x ,
r e f e r e n c e t o r e a l l e t t e r x ; ,
r e a l i ; r e f e r e n c e t o r e a l .
r e f e r e n o e .

unohanL~d f r o m .
s t r o n g v o i d .
S t a ~ g r e a l N4; s t r o n g v o i d N4.
v o i d e d t o ; w i d e n e d t o .
b o l d .
r e a l •
l e t t e r x .
i .
l e t t e r x ; r e a l .
a p p l i e d i d e n t i f i e r w i t h l e t t e r x o o e r c e e .
a s o t E n a t i o n o o e r ~ e e ; d e n o t e r o o e r c e e .
a c t u a l ,

fig (iii) - ~tapr~uoti~e ~sed in fig (i)

AB41 p,45

A p p l i c a t i o n o f t heo rems I and 2 shows t h a t p r e d i c a t e s [A, 8 , C,

D, O, K) a l l h o l d . P r e d i c a t e s [H, L] r e q u i r e a s o r t o f c o n v e r s e :

Theorem ~ Le t 51 and $2 be t e r m i n a l m s t a p r o d u c t i o n s o f ' I ~ r E T Y ' o f d i f f e r e n t

l e n g t h s . Then ' u n l e s s (81) i s ($ 2) ' ho l ds .

Proof Aga in . we need a l e n a .

L e e I f 51 i s s h o r t e r t h a n $2 , ' u n l e s s ($1) beE ins w i t h (6 2) ' h o l d s .

P r o o f ~ a g a i n , l e f t a s an e x e z ~ i s e t. Use c o n t r a d i c t i o n on a c o u n t e r -

example having SI as short as possible, and rules 1.3 .I .e, 1.3.1 .h

and 1.3.1. j.

Theorem 3 now follows immediately. A more general result can be proved

w i t h o u t enormous d i f f i c u l t y , b u t would t a k e us t h r o u E h the o b s c u r i t i e s

o f 1 . 3 . 1 . 1 and 1 .3 .1 .m .

Theorem 3 e s t a b l i s h e s [H, L] . PTediea tem [F , J] y i e l d i m m e d i a t e l y

to r u l e s y . l o l . b and 4 o 7 . 1 . a r e s p e c t i v e l y . U n f o r t u n a t e l y , the r e m a i n i n g

p r e d i c a t e s , [E , I] , t a k e us t h r o u g h 8cme r e m a r k a b l y o b s c u r e s y n t a x . Take

f i r s t [I] . From ' w h e r e RR l e t t e r x i d e n t i f i e d i n N2 new new RR l e t t e r x e ,

we produce (7 . 2 . 1 . a) 'where RR l e t t e r x r e s i d e s i n RR l e t t e r x t e and hence

(702 .1 . c) ewhere re fe rence to r e a l e q u i v a l e n t r e fe rence to r e a l e . However.

t h l s - d o e s n o t - ' o b v i o u s l y ' h o l d , a s you w i l l soon d i s c o v e r i f you s t a r t

f o l l o w i n E the s y n t a x f rom 7.3.1 . a . There i s no g e n e r a l t heo rem 'whe re ~ D E

e q u i v a l e n t g e e , b e c a u s e the s y n t a x a l s o c h e e k s t h a t 'MDDE' i s w e l l - f o r m e d .

Th i s i s , o f c o m e , e x a c t l y the s o r t o f s i d e - e f f e c t t h a t many o f us c o m p l a i n

a b o u t when i t i s p e r p e t r a t e d by o u r s t u d e n t s . Theorem 4 , be low, d e a l s w i t h

t h i s p a r t i c u l a r e a s e , bu t I s h o u l d h a t e t o have t o p rove a mode e q u i v a l e n t

t o i t s e l f i f t h e r e were a c o u p l e o f (p e r f e c t l y i n n o c e n t ?) s t r u c t s and u n i o n s

a r o u n d .

Now c o n s i d e r [B]o The i n t e n t i o n i s c l e a r l y t o a r r i v e a t t he mode-

d e c l a r a t i o n o f 10°2 .2odp and i ndeed i t i s n o t t o o h a r d t o v e r i f y t h a t 'whe re

r e a l i r e a l i n d e p e n d e n t p l l~olds f o r P b e i n g t r e f e r e n c e t o r e a l l e t t e r x I ,

empty m and t he tPROPSETYe o f the p a r t i c u l a r - p r e l u d e (s e c t i o n 1 0 . 5 . 1 ; n o t e

the s e n t e n c e b e g i n n i n g 'Howeve r , o° .* and t h a t e a c h d e c l a r a t i o n in 10°5 .1

i s an i d e n t i f i e r - d e c l a r a t i o n and i s t h e r e f o r e i n d e p e n d e n t o f any m o d e - d e c -

l a r a t i o n) p me t h a t p r e d i c a t e [E] i s r e d u c e d t o ' w h e r e r e a l i r e a l i d e n t i f i e d

in N1 t where aN1 t i s anew new D1 t i n t he n o t a t i o n o f f i g (i l i) . CHL arKues

t h a t 1 0 0 2 . 2 . d p r o v e s t h a t t D l t i s o f form *DECSETY r e a l i r e a l PROPSETY t

and t h a t t o e n q u i r e f u r t h e r i s m e t a p h y s i c a l s p e c u l a t i o n ° T h i s seems t o be

a weakness i n t he d e f i n i t i o n o f pseudo-comments (1 0 . 1 ° 3 , s t e p 7) , becaume

~ AB41 p.46

t h e r e i s a u n i v e r s a l p a n a c e a f o r n a s t y c l o s e d c l a u s e s (e g ' (p r a g n m t cod.__e

m a c h i n e - c o d e f o r some h o r r i b l e o p e r a t i o n p r a g m a t s k i p) t) , b u t no way o u t

f o r i n d e s c r i b a b l e d e c l a r e r s . (The d e v i c e tmode r e a l = s t r u c t (i n t e x p o n e n t ,

l o n g i n t m a n t i s s a) t a v o i d s some b u t n o t a l l o f t h e p r o b l e m s .) A n y w a y , i f

we accept CHLts argument, [E] reduces quickly to twhere real i real resides

i n r e a l i r e a l t , w h i c h i n t u r n r e d u c e s t o t w h e r e r e a l e q u i v a l e n t r e a l t .

T h i s t o o i s e a s i e r t o p r o v e f r o m t h e o r e m 4 t i t a n d i r e c t l y .

Theoz~m 4 twhere SAFEI PREFSETY PLAIN equivalent SAFE2 PREFSETY PLAIN t

h o l d s .

P r o o f O t h e r w i s e , l e t M be a s h o r t e s t t e r m i n a l m e t a p r o d u c t i o n o f 9PREFSETY

PLAIN t w h i c h p e r m i t s (f o r s u i t a b l e t S A F E l e , tSAFE2P) a c o u n t e r e x a m p l e .

By hypothesis, and the firmt production of y.3.l.b, lunless (SAFE1)

contains (remember M M) or (SAFE2) contains (remember M M) t holds.

If M is tPLAINt, then tw]mre (M) is (H) and remember M M SAFE1

e q u i v a l e n t SAFE2 t h o l d s b y t h e o r e m 2 a n d 7 . 3 . 1 . q , a n d t w h e r e SAFEI M

d e v e l o p s fawnn SAFEI M a n d SAFE2 M d e v e l o p s f r o m SAFE2 M t h o l d s , b y

7 . 3 . 1 . c , t h e o r e m 2 a n d 7 . 4 . 1 . a . I f , a l t e r n a t i v e l y , M i s tPREF PREFSETY

PLAIN t , t h e n t w h e r e (PREF) i s (PREF) a n d r e m e m b e r y i n SAFEI PREFSETY

PLAIN e q u l v a l e n t y i n SAFEZ PREFSETY PLAIN t h o l d s b y t h e o r e m 2 a n d t h e

hypothesis, and tw)~re yin SAFE1 M develops from SAFEI M and yin SAFE2

M develops from SAFE2 M e holds by y.3.1.c, theorem 2 and y.4.1.b. In

e i t h e r c a s e , t h e r e i s a c o n t r a d i c t i o n , w h i c h e s t a b l i s h e s t h e t h e o r e m .

C o r o l l a r 7 e w h e r e PREFSETY PLAIN e q u i v a l e n t PREFSETY PLAIN I h o l d s .

Proof y.3.1.a and theo~m 4.

The c o r o l l a r y e s t a b l t s l m s t w h e r e r e f e r e n c e t o r e a l e q u i v a l e n t

r e f e r e n c e t o r e a l t a n d e w h e r e r e a l e q u i v a l e n t r e a l t a n d h e n c e c o m p l e t e s t h e

v e r i f i c a t i o n o f a l l p r e d i c a t e s . Thus e b e g i n r e a l x ; x : = 1 e n d t i s i n d e e d

a p a r t i c u l a r - p r o g r a m . I t e v e n a p p e a r s t o be a m e a n i n g f u l p a r t i c u l a r - p r o g r a m

p r o v i d e d t h a t t m a x i n t * i s a t l e a s t o n e .

AB41 p.47

AB41.4.5 A Token Recognizer For The Standard Hardware Representation

of Algol 68.

by

R. Bell, Department~of Computer Science,
Teesside Polytechnic,
Middlesbrough,
England.

0 Xntroduct ion

This token-recognizer is designed to scan texts which
p u r p o r t to be Algol 68 ~ i ~ ~ s in the s tandard
hardware r e p r e s e n t a t i o n de f ined by Hansen and Boom I .
It will seek to parse each given text into a sequence of
language tokens, digestible by, for instance, the syntax
analyser of an Algol 68 compiler.

As the word "token" bears a specialized meaning in Algol 68,
this docmnent will instead speak of "words", which are, broadly
Algol 68 ~_.~_~.9.~, denotations o r other NOTIC~-symbols 2.
Each activation o ~ e recognizer will deliver a representation
of Just one such "word" to the superior routine that drives it.

This recognizer may serve, it is hoped, as a general purpose
front-end component, not only for full compilers but also for
syntax checkers or preprocessors.

The algorithm is presented in Algol 68. Readers are warned
that it has not been machine-checked directly (because the
author has no access to Any c~piler for canonical Algol 68).
However, an analogous program in Algol 68R has been written
and compiled and is being tested.

Hansen W.J. and Boom H.

i eport on the Standard Hardware Representation for Algol 68,
AB 40.5) in Algol Bulletin 40 (pp 24 - 43), 1976.
hereinafter designated by "HR").

The o t h e r fundamental d o c ~ e ~ t i s , o f course:

Wi~ngaarden A.v. and o t h e r s ,
Revised Report cm t h e Avgoritlnulc Language
Spr inge r Verlag,~ 1976 (and e lsewhere) .
(de s igna t ed by RR).

Algol 68,

Z In t h i s docmnent, Algol 68 pa rano t ions a r e l~vphenated where
n e c e s s a r y stud (except in s e c t i o n 2) underscored.

AB41 p.48

! worn

This recognizer does not deal with the following contexts
in particular-programs :-

interiors of ~ragme~ts (and by implication, their terminators);
interiors of format texts (and by implication, their
terminators), except that it is applicable to closed-clauses,
CHOICE-clauses, units or denote rs discovered inside
~omat,t,~x~s •

This recognizer may encounter, where it is applicable, six classes
of "words". The initial character of a word implies its class.

It is assumed here that the set of "base characters" which occur
in texts is identical to the set of "worthy characters" defined
in HRI, and may include both upper and lower case letters.

The six classes of words are:-

(i) Tags, i.e. TAG-s2mbols, which are identifiers,
!@bel, identifiers or field-selectors ;

Bold-words :
There are 61 specified bold-words which are
fixed as representations of certain NOTION-symbols
(see Appendix). Any other bold-word must be a
bold-TAG-symbol, and as such either a
mode-indication (TAB, symbol) or an operator
(AO-symbol) ;

I~23.5 explains how tags and bold-words are differentiated:
mainly by "stropping", of which there are three alternative
standard regimes, "point", "upper" and "res".

(S) inteBer-denotations , real-denotations, bits-denotatlons
(also digit-symbols in p rior'~t~-definiti,ons) ;

(4) character-denotations, string-denotations ;

(5) operators which are not bold-TaK-symbols,
i.e. DOP-BECOMESETY-s~mbols ;

also the is-defined-as-symbol ;

(6) 8ome other NOTION-symbols (e. g. ~, I, ~:) .

Outside character- and string-denotations, "point" and "res"
stropping do not distinguish between upper and lower case letters
(a and A are regarded as the same character); "upper" stropping
does distinguish (indeed, requires both cases to be used), and
confines upper case letters to bold-words.

AB41 p.49

The classifying powers of initial characters of words are
as follows :-

CHARACTER SIGNIFICANCE

a letter

. (point)

a digit

" (~.tote)

%+ -<>I*

,J

: (colon)

I (stir)

"point" stropping : start of a tag

"upper" stropping :
lower case letter : start of a tag
upper case letter : start of a

bold-word

"res" stropping : start of a tag
or of a reserved

b o l d - w o r d
or of a tag followed
by a reserved

b o l d - w o r d

if followed by a letter :
start of a bold-word

if followed by a digit :
start of a real-denotation

otherwisean incorrect character at
this level

start of an integer, or real- or
b i t s - d e n o t a t i o n ,
or a digit-symbol (priority)

start of a character- or
,,, ,, ,|

string-denotation

start of an operator

start of an operator,
or is-defined-as-symbol

i r • b u • O r colon- or up-to- or
e-symbol, or start of becomes-

or is- or isnt-symbol

 rlef-then/in//else ut- Ol or

various NOTION-s~nbols
, ;@C]

' incorrect characters at this level

CLA88

i

i

I

2

1,2

I

2

S

S

4

5

5

6

6

6

Spaces and newlines are of no significance at this level.
Loglcal-end-of-text might be treated as a fault, as Algol 68
part$cular-Dmo~Tams are supposed to be well-closed.

AB41 p. 50

_2 A Reri

Th is is presented in an "upper stropped" representation o f
A l g o l 88, e x c e p t t h a t , as i n RRIO, t h e r e a r e c e r t a i n p a r t i c u l a r
constructs whose precise forms are left to the discretion of
impleBem~rs: these are informally described by "paeudo-c~e~ts"
which are b~ed bT the marks C .., ~ .

The algori~ is given in two parS:
the recognizer p r o c e d u r e , called "get word"
and (preceding ~get word")
declarations necessary to create the enviro~ent for "get word".

Two details of the algori~ should b e particularly n o t e d .

~ader "res" stropping it may be f~md that a reserved bold-word
follows a tag. This possibility must be resolved during one
activation of the recognizer: the tag is delivered and the
reserved bold wars is held in a (non-local) variable until it
(and ~o subsequent word) is delivered on the next activation of
the recognizer.

Certain concatenations of characters starting with DOP-symbols
are ambiguous until more information about the context is known
(which thn recognizer in itself cannot provide). In concat6nation~
such as <= , <=:= , the final "=" might be part of the
operator or a separate is-~efined-as-s bol. The latter is the
case if it is a defining oceurrence~of the operator (i. e. in an

• or a ~riorit~-definition and the next "wora"
1 these Miguous concatenations are split

into two word~ by the algorithm.

AB41 p. 51

{ 8 . _ I • nvi~onment I

COMMENT

COMMENT

The following declarations are to be made in ranges
embracing the declaration of the recognizer procedure

I : Forms dealing with character classification, cf HR C6

INT upletter = max abs char + 1,
adlglt = max abs char + 2,
another = max abs char + 3 ;

[:]INT chartype

C
m

A row of integers with bounds [0 : max abs char]
having the property #implementation-dependent#

c h a r t y p e [i] =
IF REPR i is neither a letter nor a digit
THEN another
ELIF REPR i is a digit
THEN adiglt
ELIF REPR i is an upper case letter
THEN upletter
ELSE #(REPR i is a lower case letter)#

ABS the corresponding upper case letter
FI

C

PROC(REF CHAR)BOO[,

PROC(REF CHAR)BOOL

uletter = (REF CHAR c)BOOL :
chartype[AB.S c] = upletter ,

sletter = (REF CHAR c)BDOL :
IF INT tl = chartype[ABS c]

THEN

ELSE

FI ;

tl <= max abs char

(c refers to a lower case
letter, which is replaced by
.the corresponding upper case

letter) #
c := REPR tl ;
TRUE

FALSE

letter = (REF CHAR c)BOi]L : uletter OH sletter ;

PROC(CHAR)BOOL digit = (CHAR c)BOOL :

STRING emptystring = "" ,

chartype[ABS c] = adigit ;

CHAR underscore = " " space = " " _ , , quoto = """"

apostrophe = _C The denotation off the apostrophe character C ;

AB41 p.52

COMMENT

COMMENT
R: Forms dealing with reading the input text

REF CHAR char = LOC CHAR := space
#(to hold the character in hand)#,

REF BOOL eol = LOC BOOL := FALSE #(see below)# ;

PROCIREF CHAR)VOID get next character
= (REF CHAR ch)VOID
• C

-- A routine which reads the next available character from~the
input text and assigns it to ch
(and perhaps also transcribes the input text to a listing
(into which warning and fault messages etc may be
interpolated)).

Event routines for whichever file is currently accessing the
input text should behave as follows :-
(a) On logical file end - resort to the operating-system,

whlch may either (if commanded and able to)
mend the file so that reading can continue from
another input text (book)
and make eol (see above) := TRUE ,
or abort the run ;

Icbl On page end - call newpage and make eol := TRUE ;
On llne end - call newline and make eol := TRUE

#(hence if an event occurs and is cleared,
eol = TRUE and the character from the next good position
is assigned to ch I#

c;

#(".point" stropping will be the default regime;
Stropping regimes are switched by pragmats, see HR3.5)#

REF ~30L upperstrop = LOC BOOL := FALSE ,
resstrop = LOC BOOL := FALSE ;

If the fixed-polnt-numeral of an INTREAL-denotatlon is followed
by a point, it is necessary to look ahead to see if the point is
followed by a letter, in which case INTREAL- is integer- and the
point must be deemed to be the strop for a following bold-word #

REF 8OOL Intpolntletter = LOC BOOL := FALSE ;

AB41 p. 53

COMMENT

COMMENT

3: Forms associated with information generated by the
rec ogni ze r

Each time it is called the recognizer generates a "word",
which is a Structured value consisting of a string and a
procedure. The procedure will depend on what the word is
that has been recognized in the input, and on the use to
which the recognizer is • being put.
The routines to be ascribed to these procedures are
therefore left undefined here; provision is made for
these routines to have parameters various in numbers and
modes, by proposing that all the "word" procedures have
one parameter whose mode is a union of a sufficient set
of modes (left undefined here)

MODE WORDPARAMS : UNION (~ of a sufficient set of modes ~) ;

MODE •WORD =

STRUCT (STRING repstring ,

PROC(WORDPA~AMS)V,3iD

PROC(WORDPARAMS)VOID wordproc) ;

!/ definitions of procedures with the following identifiers :-

atproc, boldbeglnproc, bitsmodeproc,
~ ~ and similarly for all the reserved bold words

...... ,~nionproc, voidproc, whileproc,

and #

boldtagproc, tagproc, bit sdenproc, badbit sdenproc,
intdenproc, tea idenp roc, badrea idenproc, chardenpr oc,
s tringdenproc, es tringdenproc, tadproc, taoproc,
badtaop roc, e qualsproc, colonproc, become sproc,
badisntproc, brie fthine lseoutproc, brie fe lifouseproc,
hashc ommentproc, formatte rproc, lparenproc, rparenproc,
andalsop roc, goonproc, brie fsubproc, brie fbusproc,
badcharproc

_C ̧ ;

COMMENT
In two instances (as will be seen) the recognizer has to
look one word ahead in the input text

COMMENT

REF h~3OL word held = LOC BOOL := FALSE ,
~EF WORD held word = LOC WORD ;

AB41 p.54

2.2 = eo-i t-:-}

PROC (REF WORD) VOID get word

= (REF WORD w) VOID

: W :=

IF word held

THEN
word held :=
held word

FALSE ;

ELSE

read and ignore any typographical features
preceding a word #

WHILE char = space
DO get next character (char)

eol := FALSE ;
OD ;

I F #i#

BOOL ul = uletter(char I,
ii = sletter[char),
dgt = digit(char),
pt = char = "."
only one of these can be TRUE

IF pt THEN get next character (char)

FI

BOOL ptsameline =

intpoint letter : =

• pt AND N.DT eol
OR.intpointletter
FALSE ;

BOOL pul = ptsameline AND uletterlchar I ,
pll = ptsameline AND sletter(char) ,
pdgt = ptsameline AND dlgit(char)
and only one of these can be TRUE

pt AND NOT(pul OR pll OR pdgt)

;

THEN #]#

_C emit a fault message (impermissible character) _C ;

(" " badcharproc)

ELIF #1#

ul OR II OH pul OR pll

AB41 p. 55

THEN #1#

a bold word o~ a tag #

PROC iPROC VOID) VOID break in tag
= (PRoc VOID p) VOiD
: iqHILE

BOOL le = eol ;
eol := FALSE ;
BOOL u = char = underscore ;
IF u
THE.W ~ ,~ emit a warning

-- (unwanted underscore in tag) _C
FI ;
IF u OR char = space
THEN get next character (char) ;

TRUE
ELSE le
FI
DO p OD ;

BOOL polntstrop = NOT (upperstrop OH resstrop) ;

IF #2#

polntstrop AND NOT pt OR upperstrop AND ll

THOr #2#

a tag (for tags under resstrop see later) #

PROC IPROCIREF CHARI.BU3L) WIleD tagscanner
= {PROC{REF CHAR]BOOL charbool) WORD
: BEGIN

REF STRING tagstrlng = LOC STRIN<~
: = char ;

WHILE
get next character (char) ;
IF NOT e o l

AND char = underscore
THEN get next character (char)
FI ;
break in tag (VOID:SKIP) ;
one underscore is allowed

after each taggle,
newllnes and spaces between
taggles are immaterial #

charbool (char)
DO

tagstrlng PLUSAB char
OD ;

(tags£rlng, tagproc)

END ;

A841 p.56

ELSE

IF
uppers t top

THEN.
tagseanner ((REF CHAR c lPDOL

: sletter(c) OR digit(c))
ELSE

FI

tagscanner ((REF CHAR c)BOOL
: letter(c) OH digit(c))

a bold word if pointstrop or u p p e r s t r o p ,
either (or.both) if resstrop #

PROC (STRING, REF WORD) 80Oi, matchres
= "~(STRIN~ charstring, REF.WORD 7-word) BOOL
: BEGIN

tests if charstring matches any
reserved bold word #

[:]WORD testable
= ("AT" , atproc),

"BEGIN", boldbeginproc),
"BITS" , bitsmodeproc),

C and so on
for all the reserved
bold words
• o • e D I ~ • • .~ . ~ .9

"UNION", unlonproc
"VOID" , voldproc
"WHILE", whlleproc) ;

[:]STRING resstrlngs
= repstring OF testable ;

INT top = UPB resstrlngs ;
"STRING firstres = resstrings[]]

lastres = resstrings[topl ;
FALSE ; REF BOO1, found = LOC BOr+l[, : :

IF

THEN

charst rlng>= fi.rs tres
AND
c ha rs t.rl n~< = la s t re s

REF INT I :
IF found :=
THEN I :]
ELIF found :~
THEN i : top

LOC IN'? ;
charst rlng ftrstres

charst rln~ lastre~

AB41 p . 5 7

IF

THEN

END ̧

pt OR

#3#

ELSE
seek a match by binary chop #
REF INT s = LOC INT

:= (top + I) OVER 2 ;
i := S ;

WHILE
STRING ent~. = resstrings[i] ;
NOT (found .= charstring=entry)
AND s > I
DO

s :-- (s + I) OVER 2 ;
IF charstring < entry
THEN i MINUSAB s
ELSE i PLUSAB s
FI

OD
FI ;
IF found

THEN rword : =
FI

FI ;
found

testable[i]

upperstrop AND ul

PROC IPROCIREF CHA~IBOOL) WORD boldscanner
= PROC(REF CHAR)BOOL charbool) WORD
: BEGIN

REF STRING boldstring -- LOC STRING
: = char ;

WHILE
get next character (char) ;
NOT sol AND charbool(char)
DO

boldstring PLUSAB char
OD ;

IF

THEN

ELSE

FI
END

REF WORD rbw = LOC WORD ;
matchres(boldstring, rbw)

rbw

(boldstring, boldtagproc)

AB41 p.58

ELSE

IF

THEN

ELSE

FI

upperstrop

IF
THEN

ELSE

FI

ul OR pul

boldscanner ((REF CHAR c)BOOL
: uletter(c)

oR dlglt(c))

#point followed by lower case#
boldscanner ((REF CHAR c)BOOL

: sletter(c)
OR digit(c))

boldscanner ((REF CHAR c)BOOL
: letter(c) OR dlgit(c))

#3#

resstrop and word does not
begin with a point #

REF BOOL tag held =
resposs =
resfound =

LOC BOOL :=
LOC BOOL :=
LOC BDOL :=

FALSHi,
TRUE ,
FALSE ;

REF STRING~ tagstring = LOC STRING
:= emptystring ,

.taggle = LOC STRING ;

REF WORD rbw = LOC WORD ;

WHILE

taggle := char ;

WHI.LE
get next character (char) ;
NOT eol
AND
(letter(char) OR digit (char))

DO
taggle PLUSAB char

OD ;

AB41 p.59

IF

THEN

ELSE

FI ;

NOT eol AND char=underscore

resposs := FALSE ;
get next character (char)

an apparent taggle may be a
reserved bold word if it is
bounded by disJunctors and
not adjacent to an underscore #

IF resposs
THEN resfound :=

matchres (taggle, rbw)
FI

break in tag (VOID: resposs := TRUE) ;
if there are typographical display

features then resposs is reset ready
for the next apparent taggle #

NOT res found
AND
(BOOL 1 = letter(char) ;
resposs := resposs AND 1 ;
1 OR dlgit(char))

a taggle may start with a letter or
a digit, but every reserved bold
word starts with a letter #

DO

OD

tag held := TRUE ;
tagstring PLUSAB taggle

the input may contain a tag followed by
an object recognized firstly as an
apparent taggle and secondly as a
reserved bold word; i.e. two words may
be recognized in one activation of the
recognizer; alternatively, the first
apparent taggle may or may not be a
reserved bold word #

tag held
THEN

IF resfound
THEN

word held :=
held word :=

FI ;

TRUE ;
rbw

(tagstring, tagproc)

ELSE

rbw

FI

AB41 p.60

ELIF

THEN

FI #3#

FI #2#

finished with tags and bold words #

#i#

dgt g~pdgt

#I#

an INTREAL-denetation or a blts-denotatlon
(or a dlgit-symbol in a priorlty-deflnitlon) #

REF STRING denstring = LOC STRING :=
IF pdgt THEN "0." ELSE emptystring FI + char ;

PROC VOID get digits
= VOID : WHILE get next character (char I ;

NOT eol AND digit(char)
DO denstring PLUSAB char OD ;

PROC BOOL aletterproc
= BOOL : IF eol

THEN FALSE
ELIF upperstrop
THEN sietter(char)
ELSE letter(char)
FI ;

get digits ;

BOOL aletter = aletterproc ;

IF #2#

dgt AND aletter AND char = "R"

THEN #2#

a bits-denotation #

denstring PLUSAB "R"
REF BOOL radixright

digits =
= LOC BOOL := TRUE ,

LOC BOOL := FALSE ;

[:] CHAR

ELSE

FI ;

bltsdiglts
= IF denstrlng = "2R" THEN "01"

"4R" ELIF denstring = "8R" THEN 0123" .
ELIF denstrlng = THEN "01234567
ELIF denstring = .]6R.
THEN "01R3~56789abcdef"

+
IF uppe rstrop
THEN emptystring
ELSE "ABCDEF"
FI

radixright := FALSE ;
SKIP

AB41 p.61

IF

THEN

ELSE

FI

radixright

WHILE
get next character (char) ;
NOT eol
AND

char in string (char, LOC INT, bitsdiglts)
DO

digits := TRUE ;
denstring PLUSAB (sletter(char) ; char)
changes any lower case letters

to upper case #
OD ;

IF dlgits
THEN

ELSE

FI

(denstring, bitsdenproc)

C emit a fault message
- (no digits in bits-denotatlon)
(denstrlng, badbitsdenproc)

C ;

C emit a fault message (wrong radix
-- in supposed blts-denotatlon) C_ ;
WHILE

may maul the next word #
get next character (char) ;
NOT eol
AND
(IF upperstrop THEN sletter(char)

ELSE letter(char) FI
OR

digit (char))
DO

denstrlng PLUSAB char
OD ;

(denstrlng, badbltsdenproc)

#3#

ELIF

THEN

ELSE

AB41 p.62

#2#

BOOL

BOOL

dgt AND

intpoint = dgt AND NOT eel AND char ="." ;

intandfracpart = IF intpoint
THEN
get next character(char) ;
intpointletter :=

letter(char) ;
NOT Intpointletter

ELSE
FALSE

FI ,
Intandexpart = dgt AND aletter

AND char = "E' ;

NOT(intandfracpart OR intandexpart)

an integer-denotation or a digit-symbol #

(denstring, intdenproc)

#2#

a real-denotatlon #

REF BOOL fracright = LOC BOOL ;

BOOL expart = IF pdgt
THEN fracright := TRUE ;

aletter AND char = "E"
ELIF intandfracpart
THEN IF fracright := digit(char)

THEN
denstring PLUSAB "."+ char ;
get digits ;
aletterproc AND char = "E"

ELSE
FALSE

FI
ELSE #intandexpart#

denstring PLUSAB ".0" ;
fracright := TRUE

FI ;

IF

THEN

FI

#3#
expart
#3#

denstring PLUSAB "E" ;
get next character (char)
IF char = "+" OH char = -"
THEN denstring PLUSAB char ;

get next character (char)
ELSE denstring PLUSAB "+"
FI ;
get digits

#3# ;

AB41 p . 63

ELIF

THEN

IF

fracrlght AND digit (denstrlng[UPB denstring])

THEN

(denstring, realdenproc)
integral-part and fractlonal-part

of denstrlng will contain
at least the digit 0 #

ELSE

_C emit a fault message
(ill formed real-denotatlon)

(denstrlng, badrealdenproc)

c ;

F I

FI #2#

#1#

char = quote

#1#

a character- or string-denotation #

PROC VOID eol in string
= VOID : IF eol

THEN~ emit a warning # see HR C4 #
(string-denotation
broken by end of llne)

eol := FALSE
FI ;

c ;

REF STRING denstring = LOC STRING := emptystring ;

AB41 p.64-

WHILE

get next character (char) ;
eol in string ;

IF
THEN

char = apostrophe

get next character (char) ;
eol in string ;
IF char ~ apostrophe

_C # see HR A3.1 # a routine to deal
with the situation where a single
apostrophe in a string-denotation
is used as an escape character,
otherwise a fault condition

(two apostrophes form
the apostrophe-image) #

FI ;
TRUE

ELIF char = quote
THEN

get next character (char) ;
IF NOT eol AND char = quote
THEN# quote-image #

TRUE
ELSE WHILE char = space

DO get next character (char)
eol := FALSE ;
IF char = quote
THEN # string-break, see HR 3.1 #

get next character (char) ;
TRUE

ELSE # end of string #
FALSE

FI
FI

TRUE
ELSE

FI

OD

DO
denstring PLUSAB char

OD ;

CASE] + UPB denstring

IN (emptystrlng, estringder~roc)
, (denstring, chardenproc)

OUT (denstring, stringdenproc)

ESAC

C

AB41 p. 65

ELIF

THEN

#i#

REF INT dyadnum : LOC INT ;

char in string (char, dyadnum, "%+-<=>/*")

#1#

DOP-BECOMESETY-symbol (operator)
and/or is-defined-as-symbol #

PROC (WORDPARAMS) VOID opproc
= IF dyadnum <= 3

THEN taoproc # operator could be monadic #
ELSE tadproc # operator must be dyadic #
FI ;

REF STRING opstring • = LOC STRING := char ;
get next character (char) ;

BOOL colon2 = char = ".'" , equals2 = char = "-"- ;

IF #2#

THEN

eol
OR

NOT
(colon2 OR char in string(char, LOC INT, "<=>/*"))

#2#

ELIF

one character only e.g.

(opstring, IF opstring =

#2#

,%" or "=" #

"=" THEN equalsproc
ELSE opproc FI)

PROC WORD
= WORD : IF

c olonequals

THEN

ELSE

FI

opstring PLUSAB " :" •
get next character (char) ;
eol OR char ~ "="

_C emit a fault message
(ill formed operator) _C

(opstring, badtaoproc)

opstring PLUSAB "=" ;
~et next character (char) ;
t opstring, opproc)

colon2

THEN

ELSE

AB41 p.66

#2#

colonequals # e.g. "%:=" #

#2#

second character not ":" #

opstring PLUSAB char ;
get next character (char) ;

BOOL colon3 = char = ":" , equals3 =

I F #3#

eol OR NOT(colon3 OR equals3)

THEN #3#

char- "-" ;

IF

THEN
equals2 # n.b. second character #

have we a DYAD-c~m-equals-symbol
e.g. "<="

or

DYAD-symbol, Is-defined-as-symbol ?
Assume the second, think again when
the context is determined #

ELSE

FI

word held := TRUE ;
held word := ("="
(opstring[1] , opproc qualsproc)

(opstring, opproc) # e.g. "%<" #

ELIF

THEN

#3#

equals2

#3#

AND colon3 # e.g. "%=:" #

opstrlng PLUSAB " :" •
get next character (char) ;

. .
IF c h a r . = =
THEN # Assume DYAD-cum-assigns-to-symbol,

is-deflned-as-symbol #
word held := TRUE ;
held word := ("=" , equalsproc)

FI ;
(opstring, opproc)

ELIF #3#

colon3

THEN #3#

colonequals # e.g. "%<:=" #

,AB41 p . 6 7

ELIF

THEN

ELSE #3#

opstring PLUSAB ":" •

get next character (char)
IF

THEN
eol OR char # ":''

DYAD-c urn-NOMAD- s ymb ol,
is-defined-as-symbol,
e,g. "%<", "=" #

word held := TRUE ;
held word := ("=" e , qualsproc) ;
(opstring[1:2] , opproc)

ELSE
DYAD-cum-NOMAD-cum-ass igns-to-symbol,

e.g. "%<=:" #

opstring PLUSAB ":" •
~et next character (char)
(opstring, opproc)

F I

FI #3#

FI #2#

#i#

char = "'."

#1#

get next character (char) ;

BOOL eq = char = "=" , slash = char = "/"

IF #2#

eol OR NOT(eq OR slash)

#2#
f l I!
• , colonproc)

ELIF #2#

eq

THEN #2#

get next character (char)
IF

eel OR char ~ ":"
THEN

ELSE

FI

("'-".- , becomesproc)

next character (char)
e~:=:,, isproc)

AB41 p.68

ELIF

THEN

ELSE #2#

get next character (char)
IF

eol OR char ~ "="
THEN

ELSE

FI

C emit a fault message
-- (ill formed isnt-symbol) C

I I , / n
. / , badisntproc) •

get next character (char) ;
IF

eol OR char ~ ":''
THEN

ELSE

FI

C emit a fault message
- (ill formed isnt-sym,bol)
(":/=" , badisntproc)

get next character (char)
(":/=:" , Isntproc)

FZ #2#

#i#

char = "I"

#1#

get next character (char) ;

IF

THEN

ELSE

FI

eol OR char ~ ":"

(" I" , briefthinelseoutproc)

~et next character (char) ;
("I :" , briefelifouseproc)

c ;

AB41 p.69

FI

ELIF #I#

REF INT i = LOC INT ;
char in string (char, I, "#$(),;@[]")

THEN #I#

get next character (char) ;

[:]WORD ("#" , hashcommentproc
"$" , formatterproc
"(" , lparenproc
)." , rparenproc

• andalsoproc
HJI!
.~. , goonproc
,v[,, ' atproc

, brle fsubproc
"]" , briefbusproc

ELSE #I#

C emit a fault message
-- (impermissible character)
CHAR c = char ;
get next character (char) ;

(c , badcharproc)

C ;

FI #I#

3

J
) [i]

COMMENT end of PROC get word COMMENT

COMMENT end of token-recognlzer algorithm COMMENT

AB41 p. 70

Appendix ~ Reserved Bold ,WQrds

(The algorithm assumes a well-behaved letter eollating sequence)

AT, BEGIN, BIT8, B00L, BY, BYTE8, CASE, CHANNEL, CHAR, CO,
GO~T, C0~L~ DO, ELIF, ELSE, ~APTY, ~D, ESAC, EXIT, FALSE,
FI, FILE, FLEX, FOR, FORHAT, FROH, GO, GOTO, HEAP, IF, IN, INT,
I8, XSNT, LOC, LONG, MODE, NIL, 0D, 0F, 0P, 0USE, OUT, PAR, PR,
PRA@NAT, PRI0, PROC, REAL, REP, 8E~A, 8HORT, 8KIP, 8TRING,
8TRUCT, THEN, TO, TRUE, UNION, V01D, WHILE

(Total : 61)

~pilo~ue

The author will be pleased to hear from anyone who has queries
or finds mistakes, and will undertake to inform the Algol
Bulletin and any individual correspondents of necessary
amendments. Enquiries about the analogous Algol 68Rprogram
are aleoinvited.

Please write to:

Mr. R. Bell,
Department of Computer Science,
Teesside Polytechnic,
Borough Road,
Middlesbrough,
Cleveland,
T81 3BA,
England.

AB41 p.71

r ~ yD

O
_~ .r-I

,-~ ~ I ~ ~ . ~ r~ ~ E
"~ E C~ ~¢. .~ O

~ O ~ U O

~ 3 . 0 • .I..~ .H f-I

" 0 U -la 0
~ Q) /m 0 ") O O • (D

E c 0 0 - H
o 0~

~ aa

g~ 0 .,,IJ .r-I
E . ~ ~ - - Co

O E ~ C0 -~

O J ~ O - 0 a ~
Z F - - - C . . C ~

. . J • ID ..C

O'~ ,....t 01 ~ C | C l

O . - - 4 ~'1
O E • E

"O O ~ O E

~- .C ~,O .aa E
aa
~ . J 0) O

O g - N . C

O) a'~ .,-I ~

0~ ~ E O . J

.C 0 -,-I Oh

~ r-.I ..C C~ '~' '
C -IJ (9 .,IJ O

• ,-I cO ~ .H

ID 0) (D I~ C ~ ~

C O ID I1~ O . ~

~ "O -I-~ ,.I-~ "r'l O
o o o

C ~ .H C .~ ~ •

C3 -I-~ "O O 0 ~ -H

OD O~ tO O~ .,-I 00 . H I .H ¢-I
~0 . ~ ~ ~ O~ ~ C ~ ' ~

.--I ~ O ~ • 0) "" '
0 O) .C ~ "0 'm'l

• ~ ~ 0 - ~ • ~

0~ E ~ ~ - ~ -C 0~
O ~ • • aa O~J|

C ~ C 0 ~ ..C ~
00 .,-I ~ .C (~ O -0a
..C O) Ol..IJ 00~

C~E ~ ~ ~(~
C O O O O

O ~ ' H CO ~J
C ~ •

• H O O O ~ a~

0 O ~ ~ ~ ~ O ' ~
• r-I ~ r ' l O , - - I

.C C O ~ ~
aa ~ O ~0 ~ E ~

OI
"O
.H

.O
E

E
O

4a

O
O.
(0

C~

tr)

E
00
I-4

O

f~

O

"O
O

O.

O.
O
O.

O

.H

O-
E
O
O

C0

O

fJ

01
IIl

O

~9 ,~1" r--I

O0 C..~ C l ~C
~.-.~ 0--0 C1. C..~

O
O

C)
O

O

C l

O O
O O
~ O~
--I C4

. . J d
01

- J

a~
O

O.O

~Oy0
O~ ~
00

OC

kO

[--
I--
Oh O~

~0

Oh
t'-
Oh Ch

~°

[,.
O~

0

Oh
Ch O~

~0

O~

iCY

rH
[,.
0% O~

,-I

01
~>,, " 0

.,-I

CO.,O
E

O~ CO

-r'l
(~ o,-

0

(0 r~

0) O
• ,Y E

• ,-I ~

.C O ~ C C0
~ 0 ~ •
O~ CO E t.~ c~C

E

0
~ Z

C~
C
-,-4
~.,-I

O= (D

P..I

O : : E

o r n C J ~ - i
0 ~ m

 AdA 3 C

E

E
0
0

aa
a~
0
C

d

0

,4a_~. - I

0) ~ .4a
F - - P - O

0
. ,- I
~a

I . i .
e-I..~

m ~ - 0
,--I ~ P I
3

"O IE O.
O m

E H O .
i

,...4 r..I
09

f-I ,--I
~ . . O 0

E ~ (/1

09 ~ H
O e - - I " - - I

E c r D.

~0 ~O
[~- b - r--

,H ,--t ,H

"O

.O

.O
, - I

O

E
O

.H

.H
- - I
m C 0
E ~
(O H
~ - I - - I

E

130

U

..J
cE
U

cE
O.

,-I

I11

,-I
-,-I

0

I--

0

0

,-4

E
UJ

I---

X
W

p -

.o

.r.l

(0

0

O)
E ~
0 ~
f.-I •

C I . ~ -

m 119

0 E

m E

I11

0
0 0
~0 O~
tr~ ,"-I

E . J
m

C

"13
E

0 .

"10
E

e
C

.H

. E
O
(0

E
i i

e
O1
{
:3
O1
E

, - I

H
H
:3

~D

~ . , . ~
O~4-~

O (~ r-~
O E ,-~ - - I

• ,~ " o E
,-4 o~ o

-,-I

E 0 ~ O.
• ,-I O O ~ I~
U 1 0 . . Z I..6 U3

AB41 p.72

U1
O 0

CO 0 I b -

O ~ ' g E E b J
• ,-I _(J1 bJ

E : ~ COO::
(Z] O . > -L~J

f-I
IB

, - I
.O
E

O)

c~

0
~0
tr~

Oh

- J
O
(_1

+

tO W

t~
~o

v
.J + +

E E) LiJ ~.~

• .IJ t~3 O . O .
• -J ~ E E
E) > ~ - - I 0-~ (:D
U I ~ O . . (.ll'~ U

"13
e
3
E

.,-I

E U

Lr}

t h
r..I

O~
,-.I

Oh

0~
r" .
0~
f - I

, - I
r -
Ch
P.I

b -

P I

O~ t ~m
,H Oh

,-4
O

> ~ O ~ > , . E
.I.~ Q. -I-~ E I ~ 13~
• H f..I . ~ tTI W . - I
0) Q) U)~.E .,-I G)

• H .H ~ ,--I .H
E q - E ~1- W ~ E .H

O ::3 O U E :::) D .

• H . E ~ .H O -H 09 -H

~ I E . E ~ I E • "O m ~ I E

O I . . - : : 3 O 0:: cE CD : ~ O

r - I
¢0
U

• ,-I E
AJ (0
W "t3
E • ~

(0 m E
IE U ,~t

. . P . O
• ,-I 0

E

m

.H
E ¢ . l -

0

bJ
m

Q~.3
t~v

. .0

.H

0

E

E

"O
f-I
m

. o

. o
. , t
=E

0)
"O
E

.,-I
- - I

£
U

f..I
(D
E: ,--I

• H O -I1-~

0~

• ,-.f G9
3
O "'-J

- - I .,-I
Q=

m

r -
--I
. - I

• m

• ,,i.~ QA
E
W
E

m4a
E 09 C

C 3 E 0
• H ~00 ~
C,-I E',-I
3 W'~ O
(.) C] ¢0 ~

Ol
E

. E
(3

.,-.I

L 6 . E
r) U
r 3 U)

t r)
13o
E)

CO E)

E

I m
00

Oh

O0

,=E

CO
kO
cE ,:E

CO CO
kO

AB4i p.73.

O

O

.,.~

g
O

QI

.,...I

O

(I)

~ O

v

...I
v

t ~

0
0
O0

0
fO

0

0

0
. 0

O0

1 O. ~ r-.t

C • O

0
0

..0

0

C
-,-I
.C
0
0
0

I - -

X
X

~K

Z

0
0

.--I

0
0

. J

0

0

0 ~

...1

W
I---

0
00

0
fO~

N

Z

O~
I--
O~
0
b-

OC~ O~
CO
tO

C)
D--

O_
._I

C)
D'-

O.
-.I

LO
D'-
O~

0-. e-.
Oh
,-I

tO

O~ O~

O~

D'-

,--I

D"-

,--I ~o O-. O'.

0
" 0

~ X ~ 0
-~ ~ .C

E
0

.C
O~
C

• ~ -,-I

• 0
Z

C Q.-
0

• ,-I •
0 C

C
• •

C ~ -
0

0

0 C
• ~ C

• •
01 ~
• .,-I

C
O. ~ 0

C

0
I - -

d

0
.,-I

O

0 0 .4-~

C O f . ~
~ 0 1 0

::~ C E
.,-I

o d

C

C~

0
E

a

0

C

O0 •

0

0

(:I. •

AB41 p.74

AB41 • 5.1 Errata
The following errata appeared in the published
version of 'A Supplement to the ALGOL 60
Revised Report' (The Computer Journal), Vol, 19,
276-288.

1. Page 277, col 1, line 12: 'Level (IFIP)' should read 'Level 3(IFIP)'.

2. Page 280, section 4.2.4: 'e.~tier (E + 0"5)' should read "entier
(E + 0.5) where E is the value of the expression'.

3. Page 282, section 4.7.5.5: 'Add to this section' should read
'Replace this section by'.

4. Page 282, section 4.7.5.5: After 'string identifier' the following
should appear (starting on a new line) 'If the actual parameter is
itself a formal parameter the correspondence (as in the above
table) must be with the specification of the immediate actual
parameter rather than with the declaration of the ultimate actual
parameter'.

5. Page 283, section 5.4.2: After the first sentence the following
should appear: 'In procedure Absmax insert "value n, m;" before
the specifications of formal parameters. After 'y := 0; ' insert
'i := k := 1:'.'

6. Page 283, section 5.4.4: There should be no comma following ' I f
a function designator'.

AB41.5.2 E r r a t a to the Rev ised Repor t 15 M a r 1977

The following correct ions should be m a d e to,the Revised Repor t on the Algori thmic
Language ALGOL 68, as published in the following editions:

Acta In format ica , Vol. 5, pts 1, 2 and 3, Dec 1975.

Springer-Verlag, 1976.
Mathemat i ca l Centre T rac t s 50, Mathemat i sch Centrum, Ams te rdam, 1976.

M i s p r i n t s

p.108 8.0.1.a +2 # (94d) => #
p.llO 8.1.4.1.d # i tem => i tem' #
p.l16 9.3.e +5 # B E G I N =>BEGIN, #

p.l18 9,4 .1 .b+13 # m => m \ #
p.132 i0.2.3.4.a # a) ffi> a) #
p.173 10.3.4.1.1.A -4 remove spurious line
p.194 10.3.5.h +15 # (f)); ffi> (f)) #
p.196 10.3.5.l.a " edit L reaF -2 # L O ffi> L O #

p.197 10.3.5.1.a "edit L compl" -8 # a; => a); #
p.199 10.3.5.1.a " gpattern" +13 # L I n t i): i~, ~ L real r): => (L I n t i): i~, ~(L nm! r): #

p.201 10.3.5.2.a+3 #In => x [k] / n #
p.207 10.3.6.2.a " c a n y[j]" +1 # f rom => (from #

10.3.6.2.a "cmNy [j]" +9 # f rom =>.(from #

