
ISSN 0084-6198

Algol Bulletin no. 3 8
DgCEMBER 1974

CONTENTS

AB38.0

AB38.1

AB38.1.1

AB38.1.2

AB38.1.3

AB38.3

AB38.3.1

AB38.4

AB38.4.1

AB38.4.2o

AB38.4.3

AB38.5

AB38.5. I

AB38.5.2

Editor's Notes

Announcements

WG2.1 Future Work

Conference on "Experience with ALGOL 68"

International Conference on ALGOL 68

Working Papers

R.M. De Morgan, I.D. Hill, B.A. Wichmann,
A commentary on the ALGOL 60 Revised Report

Contributed Papers

D.C.S. Shearn, A View on Simulation in ALGOL 68

M.R. Levinson, Simulation with ALGOL 68

Harry Feldmann, An interpretation for making
references (in ALGOL 68)

Revised ALGOL 68 Report ERRATA-3

Questionnaire to Implementers on the proposed
Revision to ALGOL 60

PAGE

39

43

45

52

56

Important notice to LIBRARIANS

If this copy of the ALGOL BULLETIN is to be placed in a library, please first

detach pages 52-55 and put them with your copy of the "Revised Report on the

Algorithmic Language ALGOL 68" which was sent to you as a Supplement to AB36

(these are in addition to the similar errata which you received with AB37).

Better still, modify your copy in accordance with both sets of errata.

AB38 p I

The ALGOL BULLETIN is produced under the auspices of the Working Group

on ALGOL of the International Federation for Information Processing (IFIP WG2.1,

Chairman Professor J.E.L. Peck, Vancouver).

The following statement appears here at the request of the Council of IFIP:

"The opinions and statements expressed by the contributors to this Bulletin

do not necessarily reflect those of IFIP and IFIP undertakes no responsibility

for any action which might arise from such statements. Except in the case of

IFIP documents, which are clearly so designated, IFIP does not retain copyright

authority on material published here. Permission to reproduce any contribution

should be sought directly from the authors concerned. No reproduction may be

made in part or in full of documents or working papers of the Working Group

itself without permission in writing from IFIP".

Facilities for the reproduction and distribution of the Bulletin have been

provided by Professor Dr. Ir. W.L. Van der Poel, Technische Hogeschool, Delft,

TheNetherlands.

The ALGOL BULLETIN is published approximately three times per year, at a

subscription of ~7 per three issues, payable in advance. Orders and remittances

(made payable to IFIP) should be sent to the Editor. Payment may be made in any

currency (a list of acceptable approximations in the major currencies will be

sent on request), but it is the responsibility of each sender to ensure that

cheques etc. are endorsed, where necessary, to conform to the currency control

requirements of his own country. Subscribers in countries from which the export

of currency is absolutely forbidden are asked to contact the Editor, since it is

not the policy of IFIP that any person should be completely debarred from

receiving the ALGOL BULLETIN for such a reason.

The Editor of the ALGOL BULLETIN is:

Dr. C.H. Lindsey,

Department of Computer Science,

University of Manchester,

Manchester, MI3 9PL,

England.

Back numbers, when available, will be sent at ~3 each. However, it is

regretted that only AB32, AB34, AB35, AB36 and AB37 are currently available. The

Editor would be willing to arrange for a Xerox copy of any individual paper to

be made for anyone who undertook to pay for the cost of Xeroxing.

AB38.O EDITOR'S NOTES AB38 p 2

ALGOL 60

The Commentary on the ALGOL 60 Report, published in this issue, should come

as a reminder that Working Group 2.1 is responsible for a whole family of

languages, and not just for whatever may happen, at the time, to be its latest

product. There is a very real intention that the changes proposed, if they should

seem to be acceptable to the computing community, will be given official status.

We therefore need feedback, and to this end you will find a questionnaire on

the last page. Although primarily intended for implementers, ~t may be filled in,

so far as is applicable, by anyone with the interests of ALGOL 60 at heart.

It is difficult for us, however, to ensure that all implementers are made aware

of what is going on, and so we ask each one of you who uses the laguage to draw

the attention of whoever implements your local version to thisquestionnaire, and

to coerce him into filling it in. Never mind if this results in 500 separate

people trying to coerce IBM, so long as it also catches that lone implementation

in Timbuktu that nobody else knew about.

ALGOL 68

The Revised Report is due to be published in Acta Informatica, Vol. 4, issues

2/3. The text will be as already issued by the University of Alberta as TR 74-3,

as modified by ERRATA-2 (AB37.5), and as now further modified by ERRATA-3 contained

in this issue. We apologise for the fact that there are so many changes. Most

of them are quite trivial and do not affect the language defined, but nevertheless

it is our aim to make the final document as near perfect as we can get it. Please

elaborate them in your own copy.

Publication of the Revised Report does not imply that development of ALGOL 68

is now ended. The Working Group's Sub-committee on ALGOL 68 Support will be

meeting in Boston in January and topics scheduled for discussion include ISO-code

representations, independent compilation of program modules, partial parametrization,

modals, etc.

The ALGOL Bulletin

This issue of AB completes the first set of three isssues for which you have

been asked to pay. We now have over 500 fully paid up subscribers. If you are

one of those who have been with us since the start of the scheme, you will find

your reminder notice enclosed. Please return it promptly to save unnecessary

paperwork at this end. Regrettably, due to the increasing costs of paper and of

postage, we have had to increase the price to $7 per three issues.

It is still my hope to publish three issues per year. That this has not proved

possible during 1974 is principally due to lack of material, and the remedy for this

is in your hands.

AB38.1 Announcements

AB38.1.1 WG2.1 Future work

AB38 p 3

The following is the text of a resolution passed by WG2.1 at its meeting

in Breukelen, Holland, in August 1974.

According to its scope as contained in the bylaws of IFIP,

"WG2.1 is responsible for:

the continuing support of ALGOL 60;

the promulagation and development of ALGOL 68;

the exploration and evaluation of new ideas in the field of programming

languages, possibly leading to further languages . . ."

Whereas the Revision of ALGOL 68 is now complete, the pursuit of new ideas

in the area of algorithmic languages becomes the primary concern of the

group. To this end, WG2.1 strongly encourages contributions from a community

which is wider than the current membership of the Working ~roup.

It is now the intention of the Working Group to "explore the concept space"

in which new progrsmming languages should lie, rather than to embark immediately

upon the detailed specification of a new language. To this end, the next meeting

of the Group, in late 1975, will take the form of an informal working conference

at which papers will be presented and discussed. Anyone who feels that he has

ideas to contribute is invited to contact the organiser, who is Steve Schuman,

IBM Scientific Centre, Cedex 9, 92081 Paris La DEfense, France.

1! AI 38.1.2 Conference on Ex~erlence with ALGOL 68"

To be held at The Department of Computational and Statistical Science, The

University of Liverpool, 8th to IOth April, 1975.

i. Background and Purpose Until recently, the limitation in the availability of

ALGOL 68 to a few, mainly large, computer systems has inhibited the widespread

acceptance of the language amongst computer users. This conference aims to review

more recent attempts to make the language available on a wider variety of
<

computers, including minicomputers, and to assess experience gained in teaching

the language and in practical applications.

2. Scientific program The following llst of topics suggests the primary accent

of the conference. Invited and submitted papers on these topics will be presented.

Submitted papers which depart from this program may be accepted if they are thought

to be relevant to the general theme.

a) Algol 68 on minicomputers: the design of sublanguages, and implementation

problems.

b) Algol 68 in a user environment: providing facilities for users of Algol 68.

c) Teaching Algol 68: teaching methods and problems encountered in introducing

the language to both novice programmers and users of other languages.

d) Programming applications in Algol 68: The reaction of programmers.

AB38 p 4

3. Submission of Pa~ers 16 is expected that about 12-20 papers will be

presented, including some by special invitation. Panel discussions and workshop

sessions may be arranged to allow for the presentation of less formal pape~ for

which time cannot be allocated in the main program.

Participation in the conference does not require presentation of a paper,

but all intending participants are invited to submit papers on relevant topics.

The following schedule has been established: Submission of title and abstract

(500 words): lOth February, 1975; Notificaiton to authors of accepted papers: !st

March, 1975; Final version of paper due (2OO0-4000 words): 8th April, 1975. The

proceedings of the conference will be published.

4. Your reaction In order to proceed with arrangements for the conference and to

decide upon the final program, a preliminary indication of the likely response is

required. If you are likely to be interested, please write at once to: Dr. P.G.

Hibbard, The Department of Computational & Statistical Science, The University of

Liverpool, Liverpool, L69 3BX.

AB38.1.3 International Conference on ALGOL68

June 10-12, 1975; Call for Papers. The 1975 ALGOL 68 Conference will be

held at Oklahoma State University in Stillwater, Oklahoma. As in the past, this

Conference is designed to provide a forum for discussion of implementation prob-

lems for ALGOL 68 and related languages. In addition, users are encouraged to

attend and present their views at this Conference. Suggested topics for papers

at this Conference include, but are not limited to: ALGOL 68 implementation,

ALGOL 68 usage, Effects of ALGOL 68 on the design and/or implementation of other

anguages. Those wishing to submit a paper should send a working title to

G.E. Hedrick by January 31, 1975, and send an abstract by April 30, 1975.

for further information, contact:

G.E. Hedrlck,

Department of Computing and Information Sciences,

Oklahoma State University,

Stillwater, Oklahoma 74074. U.S.A.

AB38.3.1 A commentary on the ALGOL 60 Revised Report AB38 p 5

R.M. De Morgan, I.D. Hill, B.A. Wichmann

A draft of this document was produced for a meeting of the
IFIP Working Group 2.1 held in Breukelen, August 1974.
Changes have been made as a result of comments received at that
meeting.

The authors would like comments on whether the primitive
IFIP based input-output system is worth including in this document.
Comments would also be welcome on 5.2.4.3 which permits the
declaration of arrays containing no element.

The authors have failed to reach agreement on whether subscripted
controlled variables should continue to be allowed, or whether a
restriction should be made (as in the IFIP subset) to allow only a
variable identifier to be a controlled variable.

For the present this commentary has been written to make the
restriction, although under 4.6.4.2 an explanation is given of how
the operations on a subscripted controlled variable should be
defined if allowed. If it is to be allowed, various consequential
changes would be needed elsewhere in the document.

Comments on this issue would be welcomed.

Would AB readers please send comments to:
B. A. Wichmann, National Physical Laboratory,

Teddington, Middlesex, TW110LW U.K.

Owing to the limitations of the ISO-code printing device,
the following representations are used:

space
string quotes ()

or or

and and
not not

implies impl
equivalent equiv
not equals ne

integer divide ~'v
ten &

multiplication *

also syntactic brackets are not distinguished from
less than and greater than.

A commentary on the ALGOL 60 Revised Report

AB38 p 6

R.M. De Morgan, I.D. Hill, B.A.Wichmann

"For, as on the one side common experience sheweth, tha t
where a change hath been n~ade of th ings advisedly
es tab l i shed (no evident necess i ty so requ i r i ng) sundry
inconveniences have thereupon ensued; and those many times
more and grea te r than the e v i l s , tha t were intended to be
remedied by such change: So on the o ther s ide , the
particular Forms being things in their own nature
indifferent, and alterable, and so acknowledged; it is but
reasonable, that upon weighty and important
considerations, according to the various exigency of times
and occasions, such changes and alterations should be made
t he re in , as to those tha t are in place of Au tho r i t y should
from time to time seem e i t h e r necessary or expedient

And the re fo re of the sundry a l t e r a t i o n s proposed unto
us, we have re jec ted a l l such as were e i t h e r of dangerous
consequence or e lse of no consequence at a l l , but
u t t e r l y f r i vo l ous and vain

Our general aim the re fo re in t h i s undertak ing was, not
to g r a t i f y t h i s or tha t par ty in any t h e i r unreasonable
demands; but to do t h a t , which to our best understandings
we conceived might most tend to the p reserva t ion of Peace
and Unity

If any man, who shall desire a more particular account
of the several Alterations shall take the pains to
compare the present Book with the former; we doubt not but
the reason of the change may easily appear."

Preface to Book of Common Prayer 1662.

Over the past eleven years, var ious defects have been noted in the
'Revised Report on the A lgor i thmic Language ALGOL 60 ' . In genera l , these
defects are of l i t t l e consequence, but have resu l ted in unnecessary
va r i a t i ons in the var ious implementat ions of ALGOL 60 thus impai r ing the
p o r t a b i l i t y of ALGOL 60 a lgor i thms. The body responsib le fo r ALGOL 60,
Working Group 2.1 of the I n t e r n a t i o n a l Federat ion fo r In format ion
Processing, the re fo re asked a small group under the chairmanship of C.A.R.
Hoare to examine the maintenance of ALGOL 60. As a r e s u l t of an appeal by
Professor Hoare, about a dozen l e t t e r s were received expressing views on
the work tha t should be undertaken. Un fo r tuna te ly , the views were o f ten
c o n f l i c t i n g so i t has not been poss ib le to s a t i s f y them a l l .

Although ALGOL 60 shows signs of being swamped by the expanding use of
FORTRAN, and although ALGOL 68 e x i s t s , the remaining usage of the language
is s t i l l s i g n i f i c a n t and i t remains much loved by i t s users.

The constancy of the language over many years should be regarded as one
of i t s assets , not l i g h t l y to be d i s tu rbed . Changes should be kept to the
minimum of necessary c l a r i f i c a t i o n s . Any large extens ions, at t h i s stage,
would be doomed to be ignored, whereas we hope tha t the r e l a t i v e l y small
changes tha t we are suggest ing may be incorporated in to e x i s t i n g compi lers.

AB38 p 7

It would seem wrong, after the Revised Report has existed unchanged for
so many years, to try to force any changes by, for example, withdrawing
IFIP recognition from the 1962 version in favour of any new proposals.

The suggestion, therefore, is that these proposals should be taken as
defining a new language, to be called ALGOL 60.1, which, at least for
awhile, would exist in parallel with Revised ALGOL 60, and reactions would
be evaluated before reaching any final conclusion.

Two items that we have rejected, as being a little too radical, but
that we should regard as strong candidates for consideration if it were
decided to be bolder are (i) tile iterative statement: while <Boolean
expression> do <statement> (ii) the conditional string, e~ined by:

<simple string> ::= (<open string>) I (<string>)
<string> ::= <simple--string>~<if cTausexsimple string>else<string>

T

We believe that there would be general (though not quite universal)
rejoicing among ALGOL devotees if the extended input-output procedures of
Knuth et al. (1964), and of ISO/R 1538 Part II B, were to be repudiated.
In our commentary we have simply ignored them for the present.

We have not attempted to change the structure of the subsets, as
defined in the ISO Recommendation, but in some instances (as detailed
below) we believe that the present subset restrictions should apply to the
full language (level 0). Also, having only six significant characters in
an identifier at level 1 (ECMA subset with recursion) we feel is unduly
restrictive. At levels 2 and 3 (the ECMA and IFIP subsets), it may be more
difficult to ensure adherence to the additional restrictions than compile
the full language.

This paper is in the form of a commentary on the Revised Report
although most of these comments are expressed in the form of amendments. A
booklet containing this paper, the Revised Report and our amendments
applied to the Revised Report will be available[9].

A summary of our suggestions for language modification (as distinct
from changes of wording without any change of intention) is as follows:

1. own variables are to be regarded as static, own arrays may
only have fixed bounds. All own variables are to be
initialised to zero or false.

2. The for statement is to be dynamic, but a step expression
will'~ evaluated only once each time aroun~he loop. The
controlled variable cannot be a subscripted variable.

3. The controlled variable of a for statement will remain
defined after exit from the loop.

4. Comments and strings are to consist of characters, not of
ALGOL basic symbols, the characters allowed being
implementation dependent.

5. Some new standard functions and procedures are introduced,
including environmental enquiries and elementary transput.

6. Numerical labets are abandoned.

7. The effect of a~.ot_.ostatement leading to an undefined
switch designator is to become undefined.

8. All formal parameters must be specified.

9. The exponentiation operator is to become undefined if both
operands are of integer type, and the exponent is
negative.

AB38 p 8

Introduction

The Revised Report exp l ic i t ly notes in the Introduction that five
issues have been left unresolved and await further c lar i f icat ion. Our
views on these matters are as follows:-

Side e f f ec t s of func t ions

Side effects of functions should be permitted without restriction,
since it does not seem feasible to outlaw foolish uses without at the same
time outlawing sensible uses. It is the programmer's responsibility not to
employ the foolish uses.

It should be noted, in particular, that the Revised Report does not
always specify the order in which expressions, or primaries within an
expression, are to be evaluated. For instance, 3.3.5 specifies the order
of execution of operations, but leaves undefined the order of evaluation
of the primaries for those operations.

If different permitted orders of evaluation will produce different
results, due to the action of side effects, then the action of the program
must be regarded as undefined, in the sense of the footnote to the Revised
Report, section 1. It should be noted that in the evaluation of a simple
expression (e i t h e r Boolean or a r i t hme t i c) a l l the pr imar ies of the
expression must be evaluated unless a jump out of a func t ion is taken. A
primary may conta in express ions. The eva luat ion of a primary does not
necessar i l y requ i re the eva luat ion of a l l such expressions.

The 'call by name' concept

There appears to be a need to modify to onlya minor extent the
detailed description of the execution of a procedure statement in 4.7. The
exact effect of the call-by-name mechanism is there defined. See the
commentary on 4.7.3.2 for the detailed amendment.

Own: static or dynamic

The static interpretation of own is now accepted as standard. Ehat is
to say: an own variable behaves exactly as if it had been declared in a
block head immediately preceding the program, except that it is accessible
only within its own scope. An extra end, corresponding to this fictitious
block head, is assumed to follow the'~Tnal end of the program. Possible
conflicts between identifiers, resulting from this process, are resolved
by suitable systematic changes of the identifiers involved.

AB38 p 9

It follows that: (i) an own variable, declared in a block within a
procedure, which is called from different parts of the program, represents
the same variable every time, not a separate variable for each place of
call; (ii) an own variable, declared within a procedure that is activated
recursiv~ly, represents the same variable at every level of the recursion;
(iii) if a complete program is labelled, a go to leading to this label
does not affect the values of own variables'~----

Furthermore, we recommend that this fictitious block should serve not
only to declare any own variables, but also to assign initial values to
them. All integer an~'-~eal own variables should be assigned the value O,
while all Boolean own varia~'~s should be assigned the value false.

The bounds of an own array must be of the form <integer>. The second
example of 5.2.2 must therefore be regarded as incorrect.

For statement: static or dynamic

The dynamic interpretation of the for statement has become accepted as
,t

standard, to such an extent that to many ALGOL 60 users it comes as a
severe shock to be told that the Revised Report does not specify that this
is the required interpretation. Having accepted the dynamic version,
however, it still needs to be settled whether the step-expression has to
be evaluated more than once per cycle, when a step-until element is being
executed. The exact meaning of a subscripted controlled variable is also a
matter of difficulty. It is now to be regarded as standard that the step
expression should be evaluated once only per cycle, and that subscript~
controlled variables should be forbidden. See the commentary on 4.6 below
for the detailed amendments.

Conflict between specification and declaration

The Revised Report section 4.7.5 requires that the kind and type of
each actual parameter be compatible with the kind and type of the
corresponding formal parameter. This compatibility is defined by means of
a table which appears under tile commentary on that section.

In addition, the Introduction recognizes three different levels of
language, Reference, Publication and Hardware. We propose that these
should be reduced to Reference and Hardware Only.

Publication language

The concept of publication language should no longer be recognised. It
has become the universal practice that ALGOL 60 publications use reference
language, with occasional minor variations in representation. These
variations however (such as and forA, or * for ~)are rarely, if ever,
those recommended in the Revised Report for publication language.

Furthermore the wording of the Revised Report does not agree with what
was presumably the intention, since removal of the upward arrow, as well
as raising the exponent, was surely intended for exponentiation.

There is also an ambiguity introduced, since in reference language 2&5

AB38 p i0

is a number of real type, whereas 2,10f5 is an expression of integer type.
Yet both become 2,105 irl publication language.

1 Structure of the language

The environmental block

A program is always considered to be contained within an additional
level of block structure. This block is called the environmental block,
and contains declarations of standard functions, input and output
procedures, and possibly other procedures to be made available without
declaration within the program as well as the f i c t i t ious declaration of
own variables.

The environmental block includes declarations of at least the following
procedures :

abs, iabs, sign, entier,
sqrt, sin, cos, arctan, In, exp,
maxreal, minreal, maxint, epsilon,
fault, stop,
insymbol, outsynbol, inreal, outreal, ininteger,

outterminator, outinteger, outstring, length.

It should be noted that since the environmental block is simply an
ALGOL block, these identifiers may be redeclared within any other block if
desired, with the usual scope rules applying.

The penultimate paragraph of section I should be amended to read:

'A program is a block or a compound statement that is contained only
within a fictitious block, always assumed to be present, called the

environmental block, and that makes no use of statements not contained
within itself, except that it may invoke such procedure identifiers and
function designators as may be assumeG to be declared in the environmental
block.

The environmental block contains procedure declarations of standard
functions, input and output operations, and possibly other operations to
be made available without declaration within the program. It also contains
the fictitious declaration, and initialisation, of own variables (see
section 5).'

The fictitious structure surrounding the program is:
bet
<declaration of standard functions and procedures>;
<fictitious declaration of own variables>;
<initialisation of own variables>;
<program>;
It:
end
whereI'l is a label that is not accessible within the program but may be used
by standard functions or procedures. Note that with this amendment the
program 'sin: be~i n end' is no longer valid.

2 Basic symbols,identifiers,numbers and str ings. Basic concepts

AB38 p 11

2.5 Delimiters

Footnote concerning do

The footnote to 2.3, and the symbol that refers to this footnote (at
the end of the definition of <sequential operator>), should both be
deleted. It is unnecessary and confusing to readers who have no knowledge
of the preliminary report, and also causes unnecessary ambiguity in the
interpretation of the metalinguistic formulae. How can one tell that 'do "'
(in the Comp.J. version), 'do 7. (in the Comm. ACM. version), 'do ~' (i"~ the
Num. Math. version), or 'doT' (in the ISO version) is not the re--quired
basic symbol?

Space symbol

In line with the other modifications concerning strings (see 2.6),
there is now no need for the space symbol in the Reference Language. Hence
--'I can now be deleted from the l i s t of separators in 2.3. However, i t is
recommended that a v is ib le character is used to represent a space so that
typographical features are ignored throughout the language.

Characters in comments

Section 2.3 allows only basic symbols within comments, although most
compilers allow any hardware character and published ALGOL 60 often allows
anything except semicolon. Indeed, the Revised Report examples contain
several additional characters.

The relevant part of 2.3 should now read:
'The sequence is equivalent to

;comment <any sequence of zero or more
characters not containing ;>;

begin comment <any sequence of zero
or more characters not containing ;>; begin

end <any sequence of zero or more
basic symbols not con ta in ing end or
e lse or ;> end

This permits any characters after comment. It should be noted that the
third type of comment (following end) is still restricted, since seeking
for end or ; or else is more difficult for a compiler than merely seeking
for ; . '

2.6 St r ings AB38 p 12

2.6.1 Syntax

ALGOL 60 is not , and is not intended to be, a s t r i n g manipulat ion
language. The only use of s t r i n g s is in communication to and from fo re ign
media. I t must be recognised tha t such fo re ign media deal in charac ters ,
not in ALGOL basic symbols. To be use fu l , the concept of a s t r i n g must be
put in touch wi th r e a l i t y and be def ined in terms of charac ters .

Characters are already recognised as e x i s t i n g in sec t ion 2.1 which says
tha t the 'a lphabet may . . . be . . . extended w i th any o ther d i s t i n c t i v e
c h a r a c t e r ' . What characters are ava i lab le must be a matter of hardware
represen ta t ion and be l e f t undefined by the reference language j us t as
'code' is (see 5 .4 .6) , except in i n s i s t i n g tha t s t r i n g quotes must match,
so tha t the end of a s t r i n g can be detected.

To conform with the suggested change in s t r i n g s to a sequence of
characters and also to c l a r i f y the d e f i n i t i o n of <open s t r i ng> , the syntax
now becomes:-

<proper s t r i ng> : := <any sequence of characters not con ta in ing
(or) >l<empty>

<open st'F'ing>--:: = <proper s t r ing> l<open s t r i n g x s t r i n g x p r o p e r s t r i ng>

2.6.2 Examples

The character., which is not now a basic symbol, is used to represent
the position in a-string at which a space is required.

2.6 .3 Semantics

This sect ion should now read: -

' I n order to enable the language to handle sequences of characters the
s t r i n g quotes (and) are in t roduced.

The characters ava i l ab le within a s t r i n g are a quest ion of hardware
represen ta t ion , and f u r t h e r ru les are not given in the reference language.
However i t is recommended t h a t , in s t r i n g s as elsewhere, typograph ica l
features such as blank space or change to a new l ine should have no
s i g n i f i c a n c e , and tha t the charac ter . should be used to represent a
space.

St r ings are used as actual parameters of procedures (see Sections 3.2
Function des ignators and 4.7 Procedure s ta tements) . '

3 Expressions

In the i n t r o d u c t i o n to t h i s sec t i on , the l i s t of cons t i t uen ts of
expressions omit ted labels and swi tch des ignators . The second sentence
should the re fo re read: 'Cons t i t uen ts of these express ions, except f o r
ce r t a i n d e l i m i t e r s , are log ica l values, numbers, va r i ab les , func t ion
des ignators , labe ls , swi tch des ignators , and elementary a r i t hme t i c ,
r e l a t i o n a l , l o g i c a l , and sequent ia l ope ra to r s . '

3.1 Variables AB38 p 13

3.1.3 Semantics

Add to this section:

'The value of a variable, not declared own, is undefined from entry
into the block in which it is declared untfl an assignment is made to it.'

This brings variables into line with function values (see 5.4.4).

3.2.4 Standard functions

Replace the existing sections 3.2.4 and 3.2.5 by

°3.2.4 Standard functions and procedures

Certain standard funct ions and procedures are declared in the
environmental block wi th the fo l low ing procedure i d e n t i f i e r s :

abs, iabs, s ign, en t i e r , sq r t , s in , cos, arctan, ln , exp,
insymbol, outsymbol, length, ou t s t r i ng , ou t te rminator ,
stop, f a u l t , i n in teger , ou t in teger , i n rea l , ou t rea l ,
maxreal, minreal , maxint, and epsi lon.

For de ta i l s of these funct ions and procedures, see the spec i f i ca t i on of
the environmental block given as Example 3, at the end of the r e p o r t . '

The identifiers maxreal, minreal, maxint, and epsilon def ine funct ions,
not standard var iab les , pa r t l y to avoid in t roducing a new concept
unnecessar i ly , but mainly so as to make i t impossible to assign to them.

3.2.5 Transfer functions

As with the other standard functions 'entier' must be provided in the
environmental block and is not just a recommendation.

Section 3.2.5 should be deleted, since its purpose is now included in
the new version of 3.2.4 given above.

3.3 Arithmetic expressions

3.3.3 Semantics

The largest ar i thmet ic expression

The word 'Longest ' should be subs t i tu ted fo r ' l a r g e s t ' in ' (t he largest
a r i thmet i c expression found in th i s pos i t ion is understood) ' , since
' l a r g e s t ' might be taken as re fe r r i ng to the value of the expression.

Meaning of else AB38 p 14

The final sentence of this section should be deleted. It is incorrect
since

else <simple arithmetic expression>
must not be followed by a further else, whereas

else i f true then <simple arlthmetlc expression>
must be'~' [To~d'-~"a-- '~ther else. The two constructions are therefore
not equivalent.

It should be replaced by
'If none of the Boolean expressions has the value true, then the value of
the arithmetic expression is the value of the expression following the
final else'.

3.3.4.2 Division operators

Amend the first sentence by changing 'denote division, to be
understood' to read 'denote division. The operations are undefined if the
facter has the value zero, but are otherwise to be understood'.

It should be noted that the word 'mathematically', in the definition of
integer division, is intended to signify that the specified operations are
to be performed without rounding error.

The result of integer division can be given by means of a function.
Hence the words 'mathematically defined as follows:' to the end of the
section should be replaced by 'if a and b are of integer type, then the
value of a div b is given by the function:

integer procedure div(a, b); value a, b;
integer a, b;
if b = 0 then
-- fau~ (_div._by.zero)_ , a)
else

begin integer q, r;
q := O; r := iebs(a);
for r := r - iabs(b) while r > 0 do

q :=q+l;
div := if a < 0 equiv b > 0 then -q else q
end di

It should be noted that although real expressions could be used as
arguments to the procedure div, the operator div is permitted only with
operands of type integer. It also should be noted that div is not a
standard function.

3.3.4.3 Exponentiation operator

Rather than give a table of values given by this operator, it seems
more appropriate to define the values by means of algorithms. To achieve
this, the second half of this section starting 'Writing i for a number
...' can be replaced by :-

'If r is of real type and x of either real or integer type, then the
value of xfr is given by the function:

AB38 p 15

real procedure expr(x, r) ; value x, r ;
real x, r;
if X > 0.0 then

expr :=exp(r*In(x))
else if x = 0.0 and r > 0.0 then

expr := 0.0
else

fault((expr.undefined~ , x)

If n is of integer type and × of real type, then the value of xfn is
given by the function:

real procedure expn(x, n); value x, n;
real x; integer n;

= 0 and x = 0.0 then
-- fault((O.OfO) ,-'~-
else

begin
real result; integer i;
result := 1.0;
for i := iabs(n) step -I until 1 do

result := re~t*x;
expn := if n<O then 1.0/result else result
end expn

If i and j are both of integer type, then the value of ifj is given by
the function:

i n teger procedure e x p i (i , j) ; value i , j ;
in teger i , j ;
i f j < 0 or i = 0 and j = 0 then
-- fau~t((_expi,undefine_~, j)
else

begin
in teger k, r e s u l t ;
r esu l t := 1;
fo r k := 1 step 1 u n t i l j do

resu l t : = resu t ~ i ; - -
expi := r e s u l t
end expi

The ca l l of the procedure f a u l t denotes tha t the ac t ion of the program
is undef ined. The numerical accuracy of p a r t i c u l a r implementat ions of t h i s
operator should be no worse than tha t produced by the above a l go r i t hms . '

The Revised Report conta ins a d i f f i c u l t y wi th t h i s operator in tha t the
type of < in teger> f< in teger> depends upon the s ign of the exponent. The
above implementat ion is undefined i f the fac to r and primary are of type
in teger and the primary is negat ive. I f i t is des i red tha t a real r e s u l t
should be produced then i f j can be w r i t t e n as f l o a t (i) f j where f l o a t is a
func t ion which gives the real value as in the assignment f l o a t := i . I t
should be noted tha t f l o a t is not a standard func t ion .

In many ways a much neater s o l u t i o n would be to have two d i f f e r e n t
symbols, fo r real exponent ia t ion and in teger exponent ia t ion , in a s i m i l a r
manner to real and in teger d i v i s i o n , but the above Seems the best
compromise, as we do not consider tha t i t would be wise to in t roduce any
new basic symbol.

AB38 p 16
3.3.4.4 Type of a conditional expression

Since the type of a conditional expression is not specified in the
Revised Report, a new section is required thus:-

The type of an arithmetic expression of the form
if B then SAE else AE

does not-~epen~pon t ee~alue of B. The expression is of type real if
either SAE or AE is real and is of type integer otherwise.

3.3.5 Precedence of operators

I t should be noted that although the precedence of operators determines
the order in which the operat ions are performed, the order of evaluat ion
of the pr imaries fo r these operat ions is not def ined.

3.3.6 Arithmetics of real quantities

The reference to 'hardware representat ions ' should be replaced by
' implementat ions ' , since elsewhere in the Revised Report 'hardware
representat ion ' refers to the representat ion of basic symbols.

3.4 Boolean expressions

3.4.5 The operators

Inser t as the f i r s t sentence 'The re l a t i ona l operators <, <, =, >, >
and ne have t h e i r conventional meaning (less than, Less than ~r equal to,
equal to , greater than or equal to , greater than, not equal t o) . '

3.5 Designational expressions

3.5.1 Syntax

Numerical Labels

Numerical Labels add in no way to the power or usefulness of the
Language although providing difficulties for the compiler-writer. They
must now be regarded as obsolete in the full Language as well as in the
subsets. The syntax should now be

<Label> ::= <identifier>

3.5.2 Examples

To conform to the change in labels, in the first and Last examples,
replace 17 by L17.

3.5.5 Unsigned integers as labels

Delete this section.

AB38 p 17

4 Statements

4.1 Compound statements and blocks

4.1.3 Semantics

Replace the last sentence of the second paragraph by:

'A Label is said to be implicitly declared in this block head, as
distinct from the explicit declaration of all other local identifiers. In
this context a procedure body, or the statement following a for clause,
must be considered as if it were enclosed by be~and end a~-'treated as
a block. A label that is not within any blockofthe program (nor within a
procedure body, or the statement following a for clause) is implicitly
declared in the head of the environmental bloc."

4.2 Assignment statements

4.2.3 Semantics

Amend "the body of a procedure defining the value of a function
designator' to read 'the body of the procedure defining the value of the
function designator denoted by that identifier.' This ensures that an
assignment to a function can occur only within that function.

To conform to the requirement on access to a subscripted variable add
to this section:

'If assignment is made to a subscripted variable, the values of all the
subscripts must lie within the appropriate subscript bounds. Otherwise the
action of the program becomes undefined.'

4.2.4 Types

RepLace the wording "equivalent to ent ie r (E + 0 .5) ' by 'which is the
Largest in tegral quant i ty not exceeding E + 0.5 in the mathematical sense
(i . e . without rounding e r r o r) . '

' AB38 p 18 4.3 Go to statements

4.3.2 Examples

The Labels 8 and 17 be must replaced by L8 and L17 respect ive ly since
in teger labels are no longer permit ted.

4.3.5 Go to an undefined switch designator

Replace th i s sect ion by:

'A go to statement is undefined i f the designat ional expression is a
switch designator whose value is undef ined. '

4.4 Dummy statements

4.4.2 Examples

Amend the second example to read
be__~statements; John: end

This is necessary since '...' is not valid ALGOL 60.

4.5 Conditional statements

4.5.3.1 If statement

Reword th i s sect ion as fo l lows :

'An i f statement is of the form
i f B then Su

where B is"a Boo--an expression and Su is an uncondi t ional statement. In
execut ion, B is evaluated; i f the resu l t is t rue , Su is executed; i f the
resu l t is fa lse , Su is not executed.

I f Su contains a Label, and a ~ . o t o statement Leads to the Label, then
B is not evaluated, and the computatTon continues wi th execution of the
label led statement. '

4 .5 .3 .2 Condit ional statement

Reword th i s sect ion as fo l lows:

'Three forms of unlabel led condi t iona l statement ex i s t , namely:
i f B then Su

B ~ Sfor
TTB t ~ S u else S

where Su is a"n uncondi t ion- '~statement , Sfor is a fo r statement and S is a
statement.

The meaning of the f i r s t form is given in 4 .5 .3 .1 .

The second form is equivalent to
i...f. B the._..n begin Sfor en__.d

AB38 p lq

The third form is equivalent to
begin
iT B then begin Su; goto L4 en_.~;
S;

L4: end
If the use of L4 causes any clash of identifiers it must be systematically
changed to some other identifier - in particular, if S is conditional, and
also of this form, a different label must be used in following the same
rule.'

4.5.4 Go to into a conditional statement

Delete the last three words and substitute 'execution of a conditional
statement.'

4.6 For statements

The exact interpretation of the ALGOL 60 for loop mechanism is
controversial. The method given below has the advantage of being expressed
in ALGOL 60.

4.6.1 Syntax

Replace the syntax of <for clause> by

<for clause> ::= for <variable identifier> := <for list> do

4.6.3 Semantics

Replace this section by:

'A for clause causes the statement S which it precedes to be repeatedly
executed zero or more times. In addition it performs a sequence of
assignments to its controlled variable (the variable after for). The
controlled variable must be of real or integer type.'

4.6.4 The for list elements

Replace this section by:

'If the for list contains more than one element then

for V := X, Y do S where X is a for list element, and Y is a for
list (whi~ may consis't--of one element or more), is equivalent to

beg i n
procedure $I; S;
for V := X do $I;
o~V := Y~]~ $1

Repeated use of this rule enables any for statement with n elements to
be changed to n for statements with one element each. If the use of $1
causes any clash-N" identifiers it must be systematically changed to some
other identifier.'

4.6.4.1 Ar i thmet ic expression element

Replace t h i s sec t ion by:

'If X is an a r i t hme t i c expression

fo r V := X do S

is equiva lent to
begin
V := X;
end

where S is treated as

S

if it were a block
I

(see 4 . 1 . 3) .

AB38 p 20

4 .6 .4 .2 S tep -un t i l element

Replace t h i s sec t ion by:

'for V := A step B until C do S

i s equ iva lent to
begin <type of B> D;
V := A; D := B;

L l : i f (V-C)*s ign(D) < 0 then
be~in
S; V := V+D;
D : = B; goto L1
end

end
where S is t r ea te~ as i f i t were a block (see 4 , 1 . 3) .

In the above, <type of B> musk be replaced by real or in teger according
to the type of B. I f the use of D, or of L1, causes any Clash o f
i d e n t i f i e r s , i t must be sys tema t i ca l l y changed to some o ther i d e n t i f i e r . '

I f i t were decided to a l low subscr ip ted c o n t r o l l e d va r i ab les , the
method should be:

fo r V [i] := A s t A B u n t i l C d....o S

is to mean

L1 :

be. ~ in .< type of B> D; in teBer j ;
j := 1; V [j] := A; D := B;
i f (V [j] - C) * sign(D) < 0 then

m

be in
S; J := i ;
VEj] := V [j] + D; D := B;

e L!
end

and s i m i l a r l y wi th c o n t r o l l e d var iab les having more than one subsc r i p t .

4 .6 .4 .3 While element

RepLace t h i s sec t ion by:

' f o r V := E whi le F do S

is equivalent to

L3: V := E;
if F then

begi___._n
S; got. L3
end

end
where S is t reate ' -~as i f i t were a b lock (see 4 . 1 . 3) . I f the use of L3
causes any clash of i d e n t i f i e r s i t must be s y s t e m a t i c a l l y changed to some
o ther i d e n t i f i e r . '

AB38 p 21

4.6.5 The value of the controlled variable upon exit

Replace this section by:

'Upon exit from the for statement, either through a go to statement, or
by exhaustion of the fo~'['ist, the controlled variable'~t'aTns the last
value assigned to it.'

4.6.6 Go to leading into a for statement

Replace this section by:

'The statement following a for clause always acts like a block, whether
it has the form of one or not. Consequently the scope of any label within
this statement can never extend beyond the statement.'

In general the rules given above are merely a tidying operation,
removing certain ambiguities and uncertainties. However, there are some
minor changes in what is to be regarded as correct ALGOL 60, as follows:

(i) for viii := <for list> do becomes incorrect, since a
subscripted controlled variable is not allowed;

(ii) for j := A[i] while j=O do i := i+1; examine(j) becomes
correct, since j is- defineR'after the for statement;

(i i i) f o r j := k, m, n do q [j] := j ; i := j becomes c o r r e c t , j
h a s - ~ e value n a f te '~- the f o r s ta tement ;

(iv) begin switch m := a ,b ;
. o e m e a m m a e a e e . = = =

= . . = l e e m m e m n e a e m =

for do
b e g i n
. i o e e . . . = o

i i . o ,

a:
b:

end
end

becomes i n c o r r e c t , s ince the scope of a and b does
not extend to the swi tch d e c l a r a t i o n . The swi tch should be
declared a f t e r the second begin i ns tead o f a f t e r the

first; Am38 p 22

(v)

m :

• • • • • l e a

b e g i n
. l e m i .

• • m . . m m t

m; • . a . . . •

end;
• • • . m . • • • 0 . .

• . . e . . m m e . m

• 0 • • • . . • • m • •

becomes co r rec t , s ince the scope of the inner m does
not extend beyond the fo r statement;

(v i) I f the c o n t r o l l e d var iab le is a name parameter, then the
ru les fo r a procedure ca l l (see 4 .7 .3 .2) p r o h i b i t the
actual parameter from being a subscr ip ted va r i ab le . The
check fo r t h i s r e s t r i c t i o n need be performed only on
i n i t i a l ent ry to the loop and not every time round the
loop;

4.7 Procedure statements

4.7.3.2 Name replacement (call by name)

In the f i r s t sentence replace 'wherever s y n t a c t i c a l l y poss ib le ' by ' i f
i t is an expression but not a v a r i a b l e ' • This avoids the d i f f i c u l t y w i th
the e x i s t i n g wording tha t i f procedure A has a parameter, tha t is passed
to procedure B, procedure B may be unable to assign to i t , s i n c e i t may
have been s y n t a c t i c a l l y poss ib le w i t h i n A to put parentheses around i t .

4.7.5 Restrictions

Amend the second sentence of the second paragraph to read: 'Some
important particular cases of this general rule, and some additional
restrictions, are the following:'

4.7.5.4

Add to this section:
'A label may be called by value, even though variables of type label do
not exist.'

This facility is necessary at Level 3, to allow a switch designator to
be used as the actual parameter.

4 . 7 . 5 . 5 AB38 p 23

Add to this section:
'The correspondence between actual and formal parameters should be in
accordance with the following table:

FORMAL PARAMETER MODE VALID ACTUAL PARAMETERS
LEVEL 0 LEVELS 1,2 LEVEL 3

i n t e g e r v a l u e ae ae ae
name a e * i e * i s

real value ae ae ae
name ae* re* rs

Boolean value be be be
name be* be* bs

label value de de l,sd
name de de l

integer array+ value aa ia ia
name ia ia ia

real array+ v a l u e aa ra ra
name ra ra ra

Boolean array+ value ba ba ba
name ba ba ba

typeless procedure+ name ap,bp,tp

integer procedure+ name ap

tp tp

ip ip

real procedure+ name ap rp rp

Boolean procedure+ name bp bp bp

switch name sw sw sw

string name st st st

key:designational:d
arithmetic: a
integer: i
real: r
Boolean: b
typeless: t

exp res s i on : e
s i m p l e v a r i a b l e : s
a r r a y : a
p r o c e d u r e : p

label: l
switch designator: sd
switch: sw
actual string or string identifier: st

* Where an assignment is made to the formal parameter, either explicitly
in the body of the procedure, or implicitly by means of a further
procedure call in which such an assignment is made, the actual parameter
must be a variable.
+ With an array parameter, the number of subscripts appearing in any of

its subscript lists must agree with those of the actual parameter.
Similarly, the number, kind and type of the parameters of a formal
procedure parameter must agree with the actual parameter.

AB38 p 24

In a procedure call, for each corresponding pair of actual and formal
parameters, the actual parameter A must satisfy the rules in the above
table, depending on the type and mode of the formal parameter F.

If A is itself a formal parameter, it must satisfy the rules above
depending solely on its specification, irrespective of the nature of its
own actual parameter. Thus, if type conversion (e.g. integer-to-real) is
required by the parameter substitution, this process takes place
independent of the type of the actual parameter substituted for the formal
parameter which is itself the actual parameter in the parameter
substitution under consideration.'

The following example should make this clear:
begi n

real x, y;
procedure p(i); integer i;
- - q (i) ;

procedure q(z); real z;
y := z;

x := 6.2;
p(x)

end

The statement 'y := z' requires the evaluation of the actual parameter
' i ' in p. This in turn requires the evaluation of the actual parameter 'x'
in the outer block. A type conversion (real to integer) is invoked, giving
' i ' a value of 6, and a further conversion (integer to real), giving 'z'
the value 6.0. Hence, y is assigned the value 6.0.

4.7.9 Standard procedures

The Revised Report did not contain any procedures to handle input-
output. To rectify this, and to fac i l i ta te the handling of error
conditions, ten standard procedures are defined below. With the exception
of outternlinator, fault and stop, a l l these procedures appear in the IFIP
recommendations for input-output[5]. However the IFIP procedures inarray
and outarray have not been implemented, since their effect can be achieved
by means of the procedures inreal and outreal within suitable for
statements. The new section, defining these procedures i s : -

'Ten standard procedures are def ined, which are declared in the
environmental block in an i d e n t i c a l manner to the standard func t ions .
These procedures a r e : - insymbol, outsymbol, o u t s t r i n g , i n i n t e g e r , i n r e a l ,
ou t i n t ege r , outreaL, ou t te rm ina to r , f a u l t and stop. The inpu t -ou tpu t
procedures i d e n t i f y physicaL devices or f i l e s by means of channel numbers
which appear as the f i r s t parameter. The method by which t h i s
i d e n t i f i c a t i o n is achieved is outs ide the scope of t h i s repor t . Each
channel is regarded as conta in ing a sequence of charac ters , the basic
method of accessing or ass ign ing these characters being via the procedures
insymbol and outsymbol.

The procedures in rea l and ou t rea l are converses of each o ther in the
sense tha t a channel conta in ing characters from successive c a l l s of
ou t rea l can be re - i npu t by the sat,le number of c a l l s of i n r e a l , but some

AB38 p 25

accuracy may be lost. The procedures ininteger and outinteger are also a
pair, but no accuracy can be lost. The procedure outterminator is called
at the end of each of the procedures outreal, outinteger and outstring.
Its action is machine dependent but it must ensure separation between
successive output of numeric data.

These additional procedures are given as examples to illustrate the
environmental block at the end of this report.'

5 Declarations

Delete the last two sentences ('Apart from labels ... one block head')
and substitute the following:

'Apart from labels, formal parameters of procedure declarations, and
identifiers declared in the environmental block, each identifier appearing
in a program must be explicitly declared within the program.

No identifier may be declared either explicitly or implicitly (see
4.1.3) more than once in any one block head.'

5.1 Type declarations and 5.2 Array declarations

The syntax of 5.2.1 allows array, to be understood (5.2.3.3) as meaning
real array. Yet own real array must be written in full, the abbreviation
own array being~hi~e'~-'--

To allow own array the following amendments should be made.

In 5.1.1 delete the definition of <local or own type> and <type
declaration> and substitute:

<type declaration> ::= <typextype list>lown<type><type list>

In 5.2.1 delete the definition of <array declaration> and substitute:

<array declarer> ::= array<array list>l<type>array<array list>
<array declaration> ::= <array declarer>~own<array declarer>

5.1.3 Semantics

Because of the restrictions imposed upon exponentiation at level 3, a
real variable cannot always be replaced by an integer variable. There are
also difficulties at all levels with procedure parameters and hence, at
all levels, the second paragraph of this section should be omitted.

5.2.2 Examples

The second example should be deleted, as an own array may only have
constant bounds.

5.2.4 Lower upper bound expressions
AB38 p 26

Problems a r i se through the scope of i d e n t i f i e r s appearing in these
expressions which we hope are c l a r i f i e d by the fo l l ow ing changes•

Replace sect ion 5 .2 .4 .2 by:

'5.2.4.2 The expression cannot include any ident i f ier that is declared,
either expl ic i t ly or impl ic i t ly (see 4.1.3), in the same block head as the
array in question. The bounds of an array declared as own may only be of
the syn tac t i c form in teger (see 2 . 5 . 1) . '

Section 5.2.4.3 specifies the conditions under which an array is
defined. An undefined array, in the sense of this section, should not be
regarded as a f a u l t but merely as g iv ing an array of zero elements. To
ensure t h i s i n t e r p r e t a t i o n , add to t h i s sec t ion " I f any lower subsc r ip t
bound is g rea te r than the corresponding upper bound, the array has no
elements• '

The array i d e n t i f i e r may then be used (f o r example as an actua l
parameter, even i f ca l led by va lue) , but any reference to an element of
the array w i l l be i nco r rec t •

Thus:
begin array Al l :n] ; i n t e ~ i ;
• • • • • m e • •

• • m o m

for i := I step I unt i l n do
operate(A[i])~

• o i I i i • • •

• m m e o m e l .

end
is valid even i f n=O. The array wi l l not exist, but neither w i l l i ts
elements be accessed•

5.2.5 The i d e n t i t y of subscr ip ted var iab les

This sec t ion should be deleted• The second sentence is no longer
re levant , whereas the meaning, i f any, of the f i r s t sentence is unclear .

5 .4 .3 Semantics

Add to the end of t h i s sec t i on :

'No i d e n t i f i e r may appear more than once in any one formal parameter
l i s t , nor may a formal parameter l i s t conta in the procedure i d e n t i f i e r of
the same procedure heading. '

5 .4 .4 Values of func t ion des ignators

Modify 'in a Left part' (in each of two places) to read 'as a left
part'. This is necessary as a function designator can appear in a
subscript expression in a Left part.

A d i f f i c u l t y a r i ses wi th a ~ .o to leading out of a func t ion des ignator
since i f t h i s jump is executed, no'-~alue fo r the func t ion is def ined. To

AB38 p 2T

clarify that such jumps are permitted, at the end of the section add the
following words:
'If a go to statement within the procedure, or within any other procedure
activa~d"E~y it, leads to an exit from the procedure, other than through
its end, then the execution, of all statements that have been started but

_ L

not yet completed and which do not contain the label to which the go to
statement leads, is abandoned. The values of all variables that stTt'l-'FTave
significance remain as they were immediately before execution of the~.9 t_. ~
statement.

I f a function designator is used as a procedure statement, then the
resulting value is lost, but such a statement may be used, i f desired, for
the purpose of invoking side ef fects. '

Some examples of jumping out of a function are:

(i) j := 3;
j := p(L);
e . o o m e . m

L:
I f the jump is taken, j w i l l s t i l l have the value 3 when L is reached.

(i i) procedure q(k);
Value k; integer k;

m m m m o e m o e

i m m i m a . m .

end q;
. e . .

m . e

q(p(L));
. n l e .

L:
I f the jump is taken, none of the statements of q w i l l be performed.

(i i i) i := m[k] := n[p(L)] := set] := j := 3;
m m m m m a m .

L: i . • m m . . m

I f the jump is taken, none of the variables w i l l have the value 3 assigned
to i t . Any side effects due to evaluation of k w i l l have been performed;
any side effects due to evaluation of t w i l l not (see 4.2.3.1; 4.2.3.2 and
4.2.3.3).

(iv) L:
m m m m l m e l

M: begi n array a[I :p(L)] ;
m m e e m m m m

m m e m m m m .

end
I f the jump is taken, execution of the block labelled M is abandoned. Note
that, by 5.2.4.2, L can only be outside the block (thank goodness).

5.4.5 Specifications

Incomplete specif ication of parameters appears to be inconsistent with
the s p i r i t of ALGOL 60, since with declarations, exp l ic i t type indications
are required. Moreover, incomplete specif ication causes s igni f icant

AB38 p 28

de f in i t i on and implementation problems. The table given under 4.7.5.5
would no longer specify adequately the val id correspondence between formal
and actual parameters. Hence we believe section 5.4.5 should be replaced
by: ' In the heading a speci f icat ion part , giving information about the
kinds and types of the formal parameters must be included. In th is part no
formal parameter may occur mope than once.'

5.4.6 Code as procedure body

In the f ina l sentence change 'hardware representation' to
"implementation'.

E x a m p l e s

As a fur ther example of the use of ALGOL 60, the structure of the
environmental block is given in de ta i l .

EXAHPLE 3

begin

comment Simple functions;

real procedure abs(E);
value E;
" ~ ' E ;
" ~ - : =

i f E > 0.0 then
E

e l s e
- E;

integer p_rocedure iabs(E)
value E;
integer E;
iabs :=

i f E > 0 then
E

else
- E;

integer procedure sign(E);
value E;
rea~E;
sign :=

i f E > 0.0 then
1

else i f E < 0.0 then
- 1

else
O;

inte~ler procedure ent ier(E) ;
value E;
" ~ ' - E ;

comment entier := largest integer not greater
than E, i.e. E - 1 < entier < F;

begin
integer j ;
j := E;
en t i e r :=

i f j > E then
j - 1

else
J

end e n t i e r l

Fq~:~i$ f~ _tu

comment Mathematical funct ions;

real procedure sqr t (E) ;
- value E;

~["E;
< 0.0 then

f a u l t (n~a t i ve_ . sq r t~ . , E)
else

sqrt := EfO.5l

real procedure s in (E) l
value El
~ ' [' - E ;

comment
<body>;

sin := sine of E radians;

real procedure cos(E)l
value E;

comment cos := cosine of E radiansl
<-~ody > l'

real procedure arc tan(E) l
" " " ~ a t u e El

~ T ' - E i

comment arctan := p r i nc ipa l value, in radians,
- -~Of-arc tangent of E, i . e . - p i / 2 < arctan < p i / 2 ;

<body>l

real procedure ln(E) ;
va lue El

comment Ln := natura l logari thm of El

i f E < 0.0 then
- - f a - u L t (~ . n o t . p o s i t i v e) , E)
else

<statement>;

real procedure exp(E) l
'v'a'['~ El

J

rea l E; AB38 p 30

comment exp := exponent ia l f unc t i on of E;

i f E > ln(maxreal) then
fault((over f low.on.exp~ , E)

else
<statement>;

comment Input - output procedures;

procedure insymbol(channel , s t r , i n t) ;
value channel ; .
i n teger channel, i n t ;
s t r i n g s t r ;

comment Set i n t to value corresponding to the f i r s t
p o s i t i o n in s t r of cur ren t character on channel. Set
i n t to zero i f charac ter not in s t r , unless i t i s
a non -p r i n t i ng charac ter , in which case set i n t to a
negat ive in teger associated wi th the charac ter . Rove
channel po in te r to next charac te r ;

<body>;

procedure outsymbol(channel , s t r , i n t) ;
value channel, i n t ;
i n t ~ er channel, i n t ;
s t r i n g s t r ;

comment Pass to channel the character in s t r ,
corresponding to the value of i n t . I f i n t is
negat ive, pass the associated non -p r i n t i ng charac ter ,
where the assoc ia t i on is the same as fo r insymbol;

i f i n t = 0 or i n t > l e n g t h (s t r) then
- - f a u l t (~ h a r a c t e r . n o t ~ i n . s t r T ~ , i n t)
e lse

<statement>;

in teger procedure l e n g t h (s t r) ;
s t r i ng -st-r; -

comment length := number of characters in the open
s t r i n g enclosed by the outermost s t r i n g quotes;

<body>;

procedure ou t s t r i ng (channe l , s t r) ;
value channel;

• channel;
s t r ;

inteQer m, n;
n := l e n g t h (s t r) ;
fo r m := 1 step 1 u n t i l n do

o u t s y m b o ~ a n n e ~ , s t r ' 7 - m) ;
ou t te rmina to r (channe l)

end outst r ing; AB38 p 31

procedure outterminator(channel);
value channel;
integer channel;

comment outputs a terminator for use a f te r every
st r ing or number. To be converted into format
control inst ruct ions in a machine dependent
fashion. The termina~or should be a space or a
semicolon i f in integer and inreal are to be able
to read representations resul t ing from outinteger
and outreal ;

<body>;

pr,oced,ure stop;

comment [) . is assumed to be the label of a dummy
statement immediately preceding the end
of the environmental block;

procedure f a u l t (s t r , r) ;
value r;

nSte~nStr ;

comment sigma is assumed to be an integer
constant that denotes a standard output channel.
The fol lowing cal ls of fau l t appear:

integer divide by zero,
undefined operation in expr,
0.0 f 0 in expn,
undefined operation in expi,

and in the environmental block:
sqrt of negative argument,
In of negative or zero argument,
overflow on exp funct ion,
i l l ega l parameter for outsymbol,
inval id character in. in integer(twice) ,
inval id character in inreal (three times);

begin
outstring(sigma, (FAULT));
outstring(sigma, ~ t r) ; --
outreal(sigma, r) ;

comment Addit ional diagnostics may be output here;

stop
end fau l t ;

procedure inintegen(channel, i n t) ;
value channel;
integer channel, i n t ;

comment in t takes the Value of an integer, as defined

AB38 p 32

in 2 .5.1, read from channel. Any number of spaces
or other non-pr in t ing characters may precede
the f i r s t v i s i b l e character . The terminator of
the in teger may be e i t he r a space or other
non-pr in t ing character or a semicolon (i f other
terminators are to be al lowed, they may be added to the
end of the s t r i ng parameter of the ca l l of insymbot.
No other change is necessary);

begin
inteBer k, m;
Boolean b, d;
inte~eer procedure ins;

,pin
inte@er n;
]nsymbol(channet, (0123456789-+~;~, n);
ins := i f n < 0 teen 13 else n
end ins;

fo r k := ins whi le k = 15 do

i f k < 1 or k > 13 then
fau l t '~ ' - (inva l id .~c 'aracter) , k) ;

i f k > 10 then

d : = f a l s e ;
b : = l ~ T 2 ;
m := 0
end

else
begin

:= t rue ;
m := k - 1
end;

for " ~ ' = ins whi le k > 0 and k < 11 do
begin
m := 10 * m + k - 1;

d .'= true
end k'-'(~p;

if d"T~pl k < 13 then
fau--TT((inval'T-~'haracter) , k);

int :=
if b then

m

else
- m

end ininteger;

procedure outinteger(channel, int) ;
value channel, int;
integer channel, int;

comment Passes to channel the characters represent ing
the value of i n t , fo l lowed by a terminator ;

begin
procedure d ig i t (in t) ;

value int;
lint ege r int;

begin
i n t e g e r j ;
j-:='int d iv 10;
i n t := in't - Z 10 * j ;
i f j ne 0 then
-- dTgi t ('] '~ -
outsymbol(channel, (0123456789), in t + 1)
end;

AB38 p 33

i f in t < 0 then
beg i n
outsymbol(channel, (-), 1);
int := " int
end;

digit~nt) ;
out t ermi nato r (channe l)
end outinteger;

procedure inreal(channel, re);
value channel;
inte9er channel;
real re;

comment re takes the value of a number, as
d e f i n e d in 2 . 5 . 1 , read from channel . Except f o r
the d i f f e r e n t d e f i n i t i o n s of a number and an
i n t e g e r the ru les are e x a c t l y as f o r i n i n t e g e r .
Spaces or o t he r n o n - p r i n t i n g cha rac te rs may
f o l l o w the symbol &;

beg i n
• inte~,g'er j, k, m;
re-a-I r, s;
Boolean b, d;
integer procedure ins;

begin
in-t eger n;
in-symlool(channel, (_0123456789-+.&.;)_, n) ;
ins := i f n < 0 then 15 else n
end ins;

for k := ins while k = 15 do

i f k < I or k > 15 then
fault'T'-(invalid.c-'lTa'racter) , k) ;

b := k ne 11;
d := true;
m : : "~- - ' - -
j : :

i f k < 11 then
2

e lse
i a b s (k + k - 23) ;

r : =
i f k < 11 then

k - 1
e lse

0 .0 ;
i f k ne 1/,. then

•
:= i n s w h i l e k < 14 do

bey i n
i f k < 1 or k = 11 o r k = 12
- - o r k ~-"13 and j ' ~ 2 t h e n

' ~ ' u t t ((i n v a ~ i d . c h a r a ¢ l : e r) , k) ;
m

i f d t h e n

~ - ~ ' ~ = 13 t h e n
j : = 3 ~

e l s e

~ . J < 3 t h e n
r := t 1 ~ ' ~ * r + k - 1

e l s e
beg! n
s := l O . O f (- m);
m:=m+1;

r := r + s * (k - 1);

d :=rner+s
end;

i f j = 1 o r j = 3 t hen
- - j : = T " + 1 --
end

end
end " ~ ' o o p ;

i f j ' -~- ' l and k ne 14 o r j = 3 t hen
- - fa u l t '~"~' i n va'L'i d. c'h'ara c t e r) - ~ - ~ ')

m m

end;
i f k - ~ " 1 4 t hen

i n i n t e g e r (c h a n n e t , m) ;
r := (i f j = 1 o r j = 5 t hen 1 .0 e l s e r)

• -TO. o fm - - - -
end;

r e • =

i f b t h e n
r

e l s e
- r

end i n r e a l ;

AB38 p 34

p r o c e d u r e o u t r e a l C c h a n n e l ,
V a l u e c h a n n e l , r e ;
i n t e g e r c h a n n e l ;
r e a l r e ;

re) ;

comment Passes t o channe l t he c h a r a c t e r s r e p r e s e n t i n g
t h e v a l u e o f r e , f o l l o w e d by a t e r m i n a t o r ;

b e g i n

n := e n t i e r (1 . 0 - L n (e p s i l o n) /
i f re < 0 .0 t hen

o u t s y m b o l (c h a n n e t , (-) , 1) ;
re .= - re
end;

i f re 'T" minreaL t hen

L n (l O . O)) ;

begin
outs tring(channel, (0.0));

end
else

begin
Integer j, k, m, p;
Boolean float, nines;
m -;=-- O;
nines := false;
for m := ~ while re > I0.0 do

" re := re I ~ -- --
for r,1 := m - 1 while re < 1.0 do

- re := 10.0 * re~;
if re > 10.0 then

-- begin
re := 1.0;
m :=m+l
end;

if m > n or m < - 2 then
-- b ig i n - - - - -

f l o a t := t r u e ;
p : = l
end

e l se
b e e
f l o a t := f a l s e ;
p :=

i f m = n - 1 or m < 0 then
0

e l se
m+l;

if m < 0 then
begin
outsymbol(channel, (0), 1);
outsymbol(channel, "~'.~', 1) ;
if m = -2 then
-- outsymbol~hannel, (0), 1)
end

end;
for ~.= 1 step 1 until n do

IT nlnes then
-- k := ~---

e l s e

k := e n t i e r (r e) ;
i f k > 9 then

k := 9 ;
n ines := t r u e

_ _ _ L

end
e l se

re := 10.0 * (re - k)
end;

ou t sym~o l (channe l , (0123456789), k + 1) ;
i f j = p then
- - o u t s y m ~ (c h a n n e l , (.) , 1)
end j Loop;

i f f o ~ t then

AB38 p 35

begin
outsymboL(channeL, (&), 1);
out i ntege r (channe L ,"m'~
end

eLse
outtermi nator (channe L)

end
end out rea I ;

AB38 p 36

comment Environmental enqu i r ies ;

real procedure mexreaL;
maxreat := <number>;

real procedure minreaL;
m

minreaL := <number>;

in teger procedure maxint;
maxint := < in teger>;

comment maxreaL, minreaL, and maxint are, respect ive ly
the maximum al lowable pos i t i ve real number, the
minimum al lowable pos i t i ve real number, and the
maximum al lowable pos i t i ve in teger , such that any
va l id expression of the form

<pri ma r y x a r i thmet i cope rator><pr i mary>
w i l l be co r rec t l y evaluated, provided that each of the
pr imar ies concerned, and the mathematical ly correct
resu l t Lies w i th in the open in te rva l (-maxreaL,-minreal)
or (minreaL,maxreaL) or is zero i f of real type, or w i t h in
the open i n te rva l (-maxint ,maxint) i f of in teger
type.
I f the resu l t is of real type, the words ' c o r r e c t l y
evaluated' must be understood in the sense of
numerical analysis (see Revised Report 3 .5 .6) ;

real procedure epsi lon;

comment The smallest pos i t i ve real number such that the
computational resu l t of 1.0+epsiLon is greater than 1.0
and the computational resu l t of 1.0-epsiLon is Less than
1.0;

epsiLon := <number>;

comment In any p a r t i c u l a r implementation, f u r t he r
standard funct ions and procedures may be added here,
but no add i t i ona l ones may be regarded as part of the
reference language;

< f i c t i t i o u s dec lara t ion of own var iables>;
< i n i t i a L i s a t i o n of own va r i a~es> ;

<program>;

end

AB38 p 3T
Notes on the standard procedures and functions

The above coding is only to be taken as definitive in terms of its
effect on correct programs, ignoring those questions which are the domain
of numerical analysis. For instance, a call of the procedure 'fault'
indicates that the program is in error, and hence after detection of the
error, different action may be taken than that indicated by the above
coding. Actual implementations may produce better diagnostics than are
possible to express conveniently in ALGOL 60.

The procedures sin, cos, arctan, In, and exp have some coding omitted
because their definition is clear and this report is not concerned with
the methods used in the evaluation of these functions. The bodies of the
procedures insymbol, outsymbol, length, outterminator, maxreal, minreal,
maxint and epsilon are omitted because of their obvious machine
dependence. The procedures insymbol and outsymbol are used on the
assumption that the relevant 'ALGOL basic symbols' are single characters.
Appropriate changes must be made i f this is not the case, although the
only likely exception is the use of & in ' inreal ' and 'outreal'.

Naturally, implementations should gain significantly in performance
over the coding given above. In particular, the simple functions may be
performed by open code, the variable n in outreal can be assigned the
appropriate constant value, the procedure identifiers maxreal etc can be
replaced by a constant value and the recursive nature of the procedure
digit can be avoided. Also, the numeric properties of the procedures
inreal and outreal can be enhanced by the use of double length working,
although these procedures have been tested and found to be adequate
(within the constraints of single precision).

Index

The following corrections should be made to the index of the Revised
Report:-

. delete entry to conform with amendments.

<arithmetic expression> delete 'synt 3.3.1' as this appears
under def.

<array declarer> add entry containing 'def 5.2.1'

<local or own type> delete entry.

<procedure identifier> insert 4.2.1 under synt.

<simple arithmetic expression> insert 'synt 3.4.1'

space delete 'def 2.3'

<type> add 'synt 5.2.1'

<unsigned integer> delete '3.5.1.'

<variable> delete '4.6.1,'

<variable identifier> insert 'synt 4.6.1'

References AB38 p 38

The documents used to cons t ruc t t h i s commentary are too numerous to
l i s t , but the p r i n c i p l e references are:

[1] Naur, P (Ed i to r) Revised Report on the A lgor i thmic
Language ALGOL 60,
Comm ACM, Vol 6 (1963), pl
Comp J, Vol 5 (1963), p349
Num Math, Vol 4 (1963), p420

[2] Report on Subset ALGOL 60 (IFIP),
Num Math, Vol 6 (1964), p454
Comm ACM, Vol 7 (1964), p626

[3] ECMA Subset of ALGOL 60,
Comm ACM, Vol 6 (1963), p595
European Computer Manufacturers Association (1965) ECMA
Standard for a Subset of ALGOL 60.

[4] ISO/R 1538, Programming Language ALGOL (1972)

[5] Report on Input-Output Procedures fo r ALGOL 60 (IF IP) ,
Num Math, Vol 6 (1964), p459
Comm ACM, Vol 7 (1964), p628

[6] Knuth, D.E. et a l , A Proposal fo r Input-Output
Conventions in ALGOL 60,
Comm ACM, Vol 7 (1964), p273

[7] Knuth, D.E. The Remaining Trouble Spots in ALGOL 60
Comm ACM, Vol 10 (1967), p611

[8] Suggestions on the ALGOL 60 (Rome) Issues,
Comm ACM, Vol 6 (1963), p20

[9] A booklet on ALGOL 60,
Jo in t IFIP/NPL Pub l i ca t i on , to be prepared.

AB38.4.1 A¥iew on Simulation in Algol 68

D C S Shearn
University of Sheffield

AB38 p 39

A number of article~ have appeared recently whose motivation
has been in part the desire ~o carry out discrete event simulation
in Algol 68 (Levinson, AB 36.4.2; Lindsey, AB 37.4.2 and AB 37.4.3).
The purpose of this note is to comment on these articles, to mention
some of the features of a simulation package that has been implemented
in Algol 68, and to suggest a direction of development that would
be useful to simulators. The barber shop example of earlier
articles is used.

Requirements of a Simulation Package

The basic requirements of a simulation package in any
language are easily stated. In addition to the facilities normally
found in a good high level language, there should be easily used
features for

I. the description of entities (barbers, customers, etc.)
2. an executive to control the passage of simulated time

and the execution of events
3. list processing/queueing/set handling
4. random sampling from various distributions
5. data collection within the simulation, its analysis

and p r e s e n t a t i o n
6. monitoring the progress of the simulation

Items 4 and 5 are easily catered for in Algol 68. For item 6, it
must be up to the simulator to include specific monitoring statements
within his program, and to make the best use he can of the facilities
provided by the implementation.

It is items 1,2 and 3 and the inter-relationships between
them that are the main distinguishing features of the requirements
of a simulation package.

The Simulation Executive

There are basically four approaches to deslgning an executive
for a simulation package. These are

I. an event scheduling system (e.g. Simscript)
2. an event scanning system (e.g CSL)
3. a hybrid approach having features of 1 and 2 and sometimes

referred to as the three phase system
4. a process control system (e.g. Simula)

The first three can be implemented reasonably satisfactorily in Algol 68,
and the author has done this within a single package (I). However,
from the simulator's point of view, these approaches lack some of
the elegance and power inherent in the process control approach
whereby related events can be Joined together to form a single process
or activity. Levinson's ingenious approach to the process control
method using parallel processing must therefore be viewed with
considerable interest. However, even if there were to be compilers

AB38 p 40

available which had implemented parallel processing, there would
still be serious practical problems in using his procedures. These are

I. The parallel nature of the events within processes can produce
different results for the same program even when all the data and
random numbers are the ~me. For instance, if a barber finishes
smoking at the same instant of simulated time that a customer
enters the shop, there being no other waiting customers, on some
occasions the barber would start another smoke, and on others he
would serve the customer. This type of randomness, which is outside
the simulator's control, can make debugging particularly difficult.

2. Difficulties arise when the barbers do not smoke, but merely sit
around waiting for customers. One can get round this by making
each idle barber have a "pseudo" smoke lasting just one time unit,
after which they must all go through the ritual of seeing if there
is a customer for them to serve. There are other ways of trying
to get round this difficulty, but they all seem to lead to the
same type of inefficiency.

3. In some simulations, it may be desirable to start new processes
during the course of the simulation. For~instance, if the length
of thecustomer queue becomes rather large, the manager may decide
to hire another barber. One solution to this would be to include
the additional barber from the beginning, but to keep his process
suspended by a suitable semaphore until required. This is a
cumbersome solution, and if the number of new processes that might
be required during a run of the simulation is not known with any
certainty, and a reliable upper bound is large, there are more
serious problems.

4. A further problem with parallel processing is the need to use
semaphores. To some extent the simulation package procedures can
deal with them, but not in all cases, and it is undesirable to
have to inflict this additional burden on the simulator.

The truth of the matter is that the simulator does not want
true parallel processing. Although a simulation model can be
regarded as a set of interacting activities carried out in parallel,
the events which change the state of the simulated system are
regarded as taking place instantaneously. Indeed, if two events
are to take place at the same instant of simulated time, the
simulator may have a preference as to the actual order of execution,
and will write his program accordingly.

If one wants to use the process control approach in Algol 68,
and it has many attractions for simulation, the obvious way is to
extend the language and use the concepts of quasi-parallel processing
that have been developed in Simula. Research would have to be
undertaken to determine a fox~, of quasi-parallel that was consistent
with the spirit of Algol 68, but there appears to be no reason in
principle why this should not be done.

~.eues
There arm Clearl3 problems in providing a general list processing/

queueing package that can be placed, once and for all, in a library
prelude. Lindsey has discussed possible extensions to the language

AB38 p 41

to cater for such facilities, but it remains to be seen if these
ideas can be developed to deal with rather more complicated
operations than he illustrated, and at the same time to do this in
a way which the simulator will find convenient.

One reasonably satisfactory way of providing list processing
facilities depends on the simulator being able to create his own
private library prelude. In (I), the simulator must declare the
modes of all variables that may be in a list (apart from ints etc.),
and then declare a new mode setmem as the union of these. The
list processing procedures, which depend only on the mode s etmem, can
now be compiled to form a library prelude for a particular simulation,
and generally there will be a goodly number of runs as the program
is debugged and developed. In the barber shop example, one might have

begin
mode barber = struct(bool smoking, int haircuts),

customer = struct(int call, arrive),
setmem = ~uion~ref barber, ref customer);

the list processing procedures $
end

Provided that one has a good compiling system, this can be
a fairly painless business. The cost on an ICL 1907 using the Algol 68-R
system is about 10 seconds of mill time for a fairly large set of
list processing procedures.

There are certain disadvantages with this approach, such as
not being able to detect at compile time that a ref customer is being
attached to a queue that is supposed to be reserved for ref barbers.
However, when one takes an element from a list one has to use the
conforms-to-and-becomes operator (::=), and so a check is done then.
Use of a union is clearly inefficient in the use of space, but this
can be minimised if all elements that may be members of lists are
declared as int, real, bool, or ref ..., and as Lindsey has pointed
out this is no great inconvenience.

An advantage of the approach is that it does allow for the
declaration of procedures and operators that are reasonably
straightforward to use, and at the same time are quite powerful.
For instance, to create a new customer, and place a reference to him
on a list called "waiting", one can write

(hea p customer := (time,O)) joins waiting

As a more complicated example, suppose that one wished to remove
a reference to a barber in a list called "free barbers", making sure
that he is a barber and is not smoking, and if there is a choice to
take one who has completed the smallest number of haircuts so far.
In (I), one could write, using proceduring to aid intelligibility,

setmem sm; ref barber rb;
remove s~ within free barbers

saris (rb::=sm] not smoking of rb] ~ error @)
minim (haircuts ofT);

if none found then . . . f i;
rb is now a reference to the required barber

AB38 p 42

Practical experience, though limited, suggests that this
approach is actually quite efficient when used in a simulation,
though if one's program contained very little but llst processing,
it might be less so.

General Comments

It is clear that Algol 68 is not ideally suited to simulation in
the sense that one cannot build a set of general list processing
procedures that can be placed in a library prelude, and one cannot
produce a satisfactory process control executive. ~one the less,
one can design a reasonably satisfactory package along the lines
discussed earlier, and those who use Algol 68 for other aspects of
their work should be able to write simulations without difficulty.
Whether or not one should learn Algol 68 Just in order to carry out
simulations is a different matter, given the many other simulation
languages available. Extensions to Algol 68 in this direction will
therefore be viewed with considerable interest.

Reference

I. D C S Shearn, Algosim: a Simulation Language based on Algol 68,
Division of Economic Studies, University of Sheffield (1973)

AB38.4.2 SimuLat ion w i th ALGOL 68. AB38 p 43
M.R.Lev inson. HOSCOW,

Leninsky Prospect I4 KoPp.7,
CEMI AS USSR.

{ E d i t o r ' s note -
This paper i s gleaned from var ious L e t t e r s which have passed

between me and FIr Lev inson s ince h is paper on the same t o p i c i n
AB36.4.2 (see also c o r r e c t i o n s t h e r e t o i n AB37.1ol and f u r t h e r
proposals by O.H.L indsey i n AB37,4.2 and AB37.4 .3) ° }

The L ib ra ry -p reLude presented in AB36 aLLowed a ~ = ~ to
~ j , ~ fop an i n a c t i v e per iod o f some f i x e d number of t ime i n t e r v a l s .
I t i s a lso necessary fop a I ~ _ o ~ & to be able to wa i t f o r the
comple t ion of some event happening at & f u t u r e unforseen moment.
For example, s u p p o s e t h a t a barber has one smoke when h i s queue of
customers i s exhausted and then, i f the re ape s t i L L no customers
iTI the queue, goes to sleep u n t i l a customer appears. FoP t h i s , I
propose a new opera to r .:.~,Z,..~:

(t e s t :
i~ ~D sire sema; A~=i a > 0
I~D ~_o~D a ; .tiP. sim sema
~ L ~ ~P. sire sema; ~_a~I 1; ~D 1o t e s t
t.i.) ;

However, a l though t h i s o p e r a t i o n i s use fu l i n some cases, I did
not f i n d i t appLicabLe to an easy (f o r an o rd i ana ry user) s o l u t i o n
o f the problem about the smoking and sLeePing barber . 1 got such a
s o l u t i o n w i t h the aid o f a dyadic v e r s i o n of t h i s opera to r :

£~ ~ & ~ = (~eB~ a, b) ~ o ~ :
(test :

~b~D ~D a ; ~D b; ~ sim sema
~ ~ sim sema; ~iI 1; g£ $~ t e s t
:ti) ;

~ both semaphores are ~e&~d if both are avaiLabLe; i f
e i t h e r i s unavaiLabLe, both are Lef t ~ dur ing the ~a&$ ~

Now, i n the smoking barbers program (AB36 v e r s i o n) , you can
dec la re ~e~ga w a i t i n g = L ~ & O (i t should have beeh &DI w a i t i n g
:= 0 b e f o r e) , and rep lace aLL occurrences of w a i t i n g +:= 1 (- : = 1)
by ~ (~ED) w a i t i n g . The 9 ~ a ~ barber then becomes:

1 2 ~ ~ barber = (~LDt_ number) ~oj.~j:
~£ ~_f DIJ~t__o~ c l i e n t ;

J,_f ~ . ~ queue sema;
~ I ~ o ~ (c L i e n t := next p lease) : / = : D&JJ

~13~_n next please := next ~$ next p lease;
~.Q~_n waiting;

BI2. queue sema
~J~e ~ queue sema;

~ smoke ~£ ~ poisson (smoke t i m e) ;
~ s leep ~ queue sema ~ & ~ w a i t i n g ;

client := next p lease;
next please := next 9~ next p lease

c a L L o~ c l i e n t : = t ime ;
~ i t po isson (h a i r c u t t i m e) ;
p r i n t (. . .)

AB38 p 44

NOw, if the baPbeP is sleeping and a new customeP entePs, waiting
is uged and, when next this a~ is inspected afteP the ~g&$ in
~i~, the baPbeP takes him from the queue and pPoceeds to cut his
haiP. This may happen in the same time intePvaL as that in which
the customeP entePedo oP in the foLLowng one, accoPding to the
mannen i n which the new customen and baPbeP ~ g ~ e s ape
mePged. HoweveP, in simulation wi th an integPaL time axis, one time
pePiod must be negL ig ibLy smaLL as compaPed w i th the whole
simulation time and so aLL coLLisions of simultaneous actions can
be PesoLved by " d i s t P i b u t i o n " on a numbeP of t ime pePiods.

I f the Language wePe to be extended by the "ModaLs" pPoposaL
(AS37 .4 .3) , then the ~ & & ~ i n g could be in tegPated i n t o the queue
hand l ing . PLease make the foLLowing aL tepa t ions to AB37 P29:

1. The Length of the queue becomes a ser~aphoPe:
g ~ ~ i i ~ Length => ~ Length
i; lcLude+3 ~ Length o_1 q +:= 1 => u~ Length ~ q #
Pemove+5 ~ Length ~ q - : = 1 => ~£~j3 Length ~ q
inltiate+2 ~ 1, 0 => I, J.~E~& 0 #

2. The use of se~la ~ q is protected by sip serum:
incLude+l, Pe~ove+1

TINED se~a ~i q =>
d£~D si;~ se~;ia; d~D serna ~I q; ~ sip sema #

3. A new subPoutine is added:
~ seize = (~ ~, C_e~ ~(Z) q) ~ ~:

(serum ~I q ~ e ~ Length ~ q;
~ Z o b j e c t = f i P s t ~ q;
f i P s t ~ q := next ~ f i P s t ~ q;

~ serna £~ q;
object) ;

which d i f f e P s fPom Pe~ove on ly i n t ha t i t guaPantees the s e l e c t i o n
of some element fPom the queue (pePhaps at the scope of w a i t i n g) .
4. A new f i e l d appeaPs in ~ , being the pPoceduPe se ize :

g ~ £ + 1 # outpPoc => outpPoc, getpPoc
i n i t i a t e + 2 ~ pemove (~, q) =>

Pemove (~, q), se ize (~, q)
5. With the i n c l u s i o n o f these aL tePa t ions , the ~ E ~ baPbeP,
ppov id ing smoking and s l eep ing , has the foPa:

(~_el f~J~J~B~ client;
d£ client := outpPoc ~I waiting Poom;

i_f (~I .GUE.,.O~ (cLient) :=: ~

~g smoke g~ E_a&I poisson (smoke t ime)
G£ sleep ~ c l i e n t := getppoc ~ w a i t i n g Poo~,~

caLL £~ cLent := time;
~iI poisson (haiPcut time);
ori~t (...)

AB38.4.3 AB38 p 45

An interpretation for making references (in ALGOL 68)

by Harry Feldmann

University of Hamburg

Computing Reviews Category: 4.12
m m

Key words and phrases:

Algol 68, to refer to, to assign to, slice, field selection,
object, graphical interpretation.

Summary :
- - - - - - m - - - - m

This paper gives a graphical interpretation for making
references between objects which is both cenvenient in use
and of high precision. The number of independent primitive
concepts used in the interpretation has been minimized.
One may consider it as an advantage for compilation and
didactical aims or eventually as a loss of generality (in
the future) that this interpretation-model makes use of the
present computer-concept of "address and content of storage
cell or cells" (R 2.1.3.2.a).

1. Graphical interpretation

The "Revised Report" [~ , cited "R", does not contain any

graphical interpretation for (external and internal) "object"s,

although it is allowed to use some (R 2.1.5.2.a). Every ALGOL 68 -

compiler would give an (graphical representable) interpretation.

We choose a simple interpretation-model in which each internal

object (R 2.1.1) is represented by a graphical object composed

of two parts, the "address" and the "content" (and of a third

part, the "MOID", which could be put together with the "content).

Let us explain the interpretation-model in an example:

external (...corefco ref real xx :=...) TAX
object xx

object
R 2.1.1.

(NAME)

internal object Nvv
especially a valu~ -
especially a name
(it contains an address)

internal object N_
especially a valu~
especially a name
(it contains an address)

internal object Wy
especially a valu~
not a name
(it contains the internal
representation of the
real number 2.72)

address(Adresse)

content(Inhalt)

MOID (~RT)

AB38 p 46

This model is slightly more detailed and more dependent

to present machine-concepts than the comparable interpretation

choosen in Lindsey, van der Meulen [2].

For better understanding we give some German translations

in brackets used in Feldmann [3] •

0--

address(Adresse)

content(Inhalt)

MOID (~RT)

address(Adresse)

content(Inhalt)

MOID (WRT)

The name Nxx is newly created by the elaboration of the

sample generator corefco ref real and is different from all

other names (R 2.1.3.2.a).

"Creation" is not always necessary for "ascription" (see below).

The example real e = 2.72 (see part 2) shows, that e is ascribed

to an internal object W e which is already existing (created for

2.72). See "identity declaration" (R 4.4.2.a) or others

("call" , "formula", "cast", "yield of assignation" etc.).

The name Nxx is ascribed to the reference-to-

reference-to-real-defining-indicator -with-

letter'x-letter-x (R 4.8.2.a).

The name Nxx is the yield of the reference-to-

reference-to-real-applied-indicator-with-

letter-x-letter-x (R 4.8.2.b).

The name Nxx is accessed by the ~eference-to-

AB38 p 47

"as cript ion"
or "yield"
or "access"
represented

reference-to-real-letter-x-letter-x (R 2.1.2.c). by a line

The name Nxx is a value which is made to

refer to the value N x and the name N x is a

value which is made to refer to the value W x

(R 2.1.3.2.a). The mode of the name Nxx is

reference-to-reference-to-real and the mode

of the value N x which is referred to by Nxx

is reference-to-real. The mode of the name N x

is reference-to-real and the mode of the value

W x which is referred to by N x is real

(R 2.1.3.2.b). The name Nxx (resp. N X) refers

to the value N x (resp. Wx). This relationship

is made to hold when Nxx (resp. N x) is made

to refer to N x (resp. W x) and ceases to hold

when Nxx (resp. N x) is made to refer to some

other value (R 2.1.2.e).

"reference"
represented
b y a n a r r o w

2. Making references by assigning

We consider the semantic term "is assigned to" of the

assiEnation (R 5.2.1.2.b) respectively of the variable-declaration

AB38 p 48

(R 4.4.2.b) in the case NONSTOWED (to which all other cases

can be reduced):

"N and W are the yields of the destination

(Verweisender) and the source (Verwiesener).

fJ. i, mad. to ~.f,~ to W ,' (. ~.2.1.b)
and interprete the semantic term "N is made to refer to W" as

II "The content of the internal object to which

N refers is superseded by the content of W" .

"Superseding" which is not to be found in the Revised Report

can be represented by a dotted arrow in our graphical model

(if desired).

The following example shows that the so interpreted

"assigning" makes "references between internal objects" only

if the mode of the destination has at least two ref s, like

co refco ref real xx := x , otherwise it makes only "unconnected

copies" like corefco x : = e ,

2 ;corefs.O /.~i~ ~ : = e ;.q~ref~ ref = ...)

N_x_~~ super=

s e d e d

s u p e r =

seded

~838 p ~o

(Tne autilor could give another inDerpre~aSion of the

seman$ic term "N is made to refer to W" as

I "The content of N is superseded by the address of W"

according to which "assigning" would always make a "reference

0etween internal objects" including the case that tile mode

of the destination has only one ref ,

but hhis interpretation could violate the ':new creation" or

the "ascription or access or yield" of N . Surely it would

lead into ambiguities concerning the identity relation, because

then (real x,y ; x:=y:=2.72 ; x:=:y) would yield true.)

3. Making references by slicing and field-selection

Slicing can generate a new name (R 5.3.2.2.a). The name M

generated by a ~rim T from a name N which refers to a multiple

value V is a {fixed~ name of the same scope as N,{not necessarily

newly created} which refers to the multiple value W selected

by T in V (R 2.1.3.4.j). In the following example there is made

a "reference between the internal object M and W" by slicing :

(9_Q goethe faust 1 , kitchen of the witch co

mQde sa~are = [1 : 3 , 1 : 3] , i n ~ , ~ine = [1:33 / / ~ ;

9_Qreff~ ~/Dl~2_~,magic,:= ((lo,2,3),(o,7,8),(5,6,#)) ;

print(,maglcE2]j))

auare~

• o23

;-;-2
Isauare

AB38 p 50

In order to keep the graphical representation easily to be

surveyed and to avoid redundances, information about descriptors

is only given in the MODE of the internal object. Different

graphical MQDE-parts indicate different descriptors. Identical

graphical content-subparts indicate the same subcontent without

m a k i n g c o p i e s .

S e l e c t i o n t o o c a n g e n e r a t e a new name (R 5 . 3 . 1 . 2 .) . The

name M generated by a ~field-selector~ TAG from a name N which

refers to a{multiple~value V each of whose elements is a struc-

a Ifixed~ name of the same scope as N, ,not tured v a l u e i s

necessarily newly created~ which refers to the multiple value

selected by TAG in V (R 2.1.3.4.1). In the following example

there are made three"references between internal objects" by

field-selection:

(~ ~ = ~truct(char letter , ref quart next);

quart w,n,s,e; :=("w",n), ~:=("n",e), L:=C"s",w), ~ :=("e" ,s);

r e f

T . ! ,

print(letter o_/_ 'next of next of e"))

AB38 p 51

In order to keep the graphical representation easily to be

surveyed and to avoid redundances information about the

MODE s of the field-elements of internal objects is only given

in the MODE of the whole internal object. The "reference

between an internal object and a field-element E of another

internal object 0 " is graphical represented by an arrow

running through the address-part of 0 to the border adjacent

to the content-subpart of 0 belonging to E. Identical graphical

content-subparts indicate the same subcontent without~making

copies.

Literature

[I] A. van Wijngaarden et al.: "Revised Report on the

Algorithmic Language ALGOL 68" , to appear in

Acta Informatica.

[2] C.H. Lindsey, S.G. van der Meulen: "Informal Introduction

to ALGOL 68" , North Holland Publishing Company,

Paperback Edition, 1973.

[3] H. Feldmann: "EinfUhrung in ALGOL 68"

Lecture script, University of Hamburg,

complete edition to appear 1975.

0

! - i

c3

, ~ . . , ~ ~ o

.+. t . .4

. n ~ ~ ,~ .~ - - o . , ~ . -

1~4a O 0
I II~I tl-I ,,la

411
tO,la • IKI 'el ~01

2 + " " + o . v • , , : = - , o • "=o. : o ,

A B 3 8 p 5 2

A

E~

0 V

• e-I ~1 H
q-I ~ •
0

U .,..t 0 ~

• V
A~ U l..t
#.,4 4) ~ V

,.~ 4a W=IA

~ 0 N ~ *
~I I,.4 @ .,-4 4a ~ q k

h 4a,-I @ *

f-I U • OI n ~-~.~-I 4 ,.t 0

IP ~ ~¢1 4 a ~ ~ ~ ,Q ~- I+~
O l . l O O l l i .el ~ .+.1 h ,~-1111

0 ~ , - I ~.L N O M ~ O

41, q k l O . ~ I:11.11. 11,,41,11 111,,4 I~ ~kv l l~ !-~ @ III. 41. ~. ql, ~ 41, IIII, ~lil~ ~ ql. * * 4 ,,I..~ ql, lO ,kv ql, SI~ V I~,.e.I
41 0

,4. 0 U 4.

Psi ~ 4..I I-I 11.4 ~ ~S" ..-I ~ ~
• * ~ ,,.4 @ "1"1 + @ ~=" 4, ÷ 4,

0 0 ~ . r l ~ t-4 ~ ICl , q U . ~ ~1
~ a l ~I 0 ~ ~ U'~ ~" • . ~ ~ ~ ~ + + . ~ ~ ~ , - , -

~ " • o o ~ ~ ~ ~ d ~ , - , - , - o , , - , - . - • • • • • • @
• - ~ ~ ~ o o o . - , - ~ u ~ ~

I.,I
0

¢0 0 ~ ~ ~o 0 e - ~ r n ~r

÷

4.

• 4*

G,

qr
r ~

4a

U m e e
t 4 0
is a:l ~

*,4
¢s o ,.4

I ~ D ~

I . - I @ II,,,~ I ' ~

I - - U ~ . I m

0 ~

0 .,.4 *e4 I ~
I¢1 'e'~ I 4 J

~ 113 ,+..I e..4 C.~

,,~ 0 *,.4

O ~

I0 . I . a ~

i i m

O O
I-I 1.4

~ O
W,.,@ o

IC ICl ~.1 , 0 ~

- I I 1 +

• ,.4.1-1 -.4 ,,,4
• .t~ *e,4 , ~

o o , - I • ¢:1

,e"- IN i W.4 ~.~ IIII ~ ~k
m ~ ~ .,.'1 IB

iIIk

A ~ -4" 10.- I I~ I:1 I~

q-I

m m m

,10 h r r , .m:
II II ~,4 I P

H , , II
+ * . *o ' " II I-I I

co k~ ~ m .la ~0

m 0 0 O I L + _.~ m ~

.;a ~ 0 0

X ~ ~ o = o o . . . u h
® @ •

h
h II

U

0

~ O

• r.I - e 4 0 l

) 1 1 . 14 ~ ...I U)

N O ~ * O O ~11-1 ,i-~ ~far } h i I~ I l l v 4'a

I , I ~ O 10

¢1

U
*,r.I
11.,4
• 1=1 **

0

0 ~-1 ~.~1 ~ ~,1 f - I ~

tt~

** o~* @

, ~ • ~ • .

- - o o o o o

~o o

a ~

0 O
• ~ .el
-IJ 4- b

O O

U U
lel • cl

~ ~ O ~
O'1 .,,4 I~

O

T . . ® T

O

i I h - I i~ ,,..s I~1

• Q , I~1 o'~ ~
¢ - , o l . I

• IJ .0-.~ •
I,,.I P%[-* ~ . , .4

m
+

@ +

~ P

o g d

IM • ~ 0

~ ~ ~ V

~ * - , - I

~ 0 •~ .=~

.,'1 0 i I ~ ~ .~
M4
• H ,el t 0 ~ A l l I .
U @ ~ • n

~k ~ ~ ~- I A ~ ~ R I l l

0~, ,-'1 O A ~ I H @ • ¢.-¢ E-*

A U • • A I I II H

0 ' ~ 0 • • • 0 . • D ~ 1 1
.H ~4 H

I I [] []

I I w'
,--I
0 =

• • 4 . •

o , - . - : g ~ ~4
o o 4-) r o 0 o

AB38 p 5 3

~e

A 0 4a

0 ~ ,IJ ~ . 4 {,b ~ ~ ~ . . I

÷ • 11= ~ ~e 0 ~ ~ 0

A A ~ - ~ IN~ ~ I • e~ All ~14.,~ 14 ~ *~ u u ° ,,.-I~ 014

~ A IIZ : A A e - ~ A II = RI e a
~ " ~ ~ - 9 ~ - " " +o ,, • 14 '~ '~ . ,,

D ~ 0

@ " ~ ,,Cl

I.I

P

• ~ •

• e,-

~ •

0 ~I ÷

~ •
÷ A ÷ , - , -

+ 4. 4. + 0 0 0 0 * ¢~ •

D . H

®

0 0

. G * H
4J

4~

14

1 4 U N
~ m O

I/} .~=

P i t 4
U 0
l

0 I
O O

~*4 O ~

.¢.-).H - @

'C~ @ 14

1 4 ~ O
* ~ ~ I: l
, 0 1 4
* U @ O

@ 4 @
N O I m @

• ~ r - I O
O ~ • ~
U , - 4 U •

A ~ ,
II

O

" ' 2
-,.4

~ ~ O O ~
. - I ,!-) .H ~ e~.l .=: ~-I • @ L

, * @ @ o ~ 14 ~ A
" " • £I + ~ 0 ~ 0 • II

II 4 J , . • f J H I J I~l 14

,m, U :~ ~,le•

• .~ ~

.4 g ~ =

+
U

@

U

l:r

®

g
,g

t J1

U

0 *H E.¢

A,m
II

~ O O

• H • U
• IJ ~ 14.H

0 .O ~
I I: ¢ I *H

4e ~ U ~
• 0 . H

0 ~ @ I • - H

14 q) ~ 0 ~ Oil

0 • 14 ~ ~ q 0

I A

• H .H A ~ ~ O
ID ~ • I I • ¢1 II~

0 I U) II q ~) @ ~ ZI . r , I II

~--I I1~ n • 14 • A I I ~ • (' i
• ~ o O o~ II ~ ~ ~

I l l I B @ l i e I I h H ~ I :

m

• ~ o

IO
t~

¢~I " • *
• . - - • • • •

• • • . • •
= = ~ d d d ,o r- ~ ®

4a

D •

~ 4o

O
0)

e

e O
el
N O II ~ I I

II • '4 ~ III

! • A
ll~ • A • O~ I! A

• ~ ~ II 0 ~ U

N 0 • ~ 0 ¢ o

I

H • •

A
II

I

oH

O.,

d

I
e le

-,4

,e4

ell
el

I

A

!

T'
0

114

0 0

~ B 3 ~ p 5 4

h
II o

r~ .lla

qe • - A qe ee q 4 e ~ ~4 . H O

• • ~ o e . d ~ . ~ a ~ n • O •

= ~.1 = ¢.,~1 A e.. it . ' ~ ' 0 0 " " ~ I ~4 = = ~ ¢1{
• e m z ~ A l¢ • ~ ~ 0 ~ • n . 4 A • • - 4 e

r ~ • A ff ¢g ~ O ~ q ~ e - ~ 0 H I M ~
~r " q A I~ ~ ~ ~ l ~ , o~r ,Q H ~I ~ ~__ 0 .t J ~ ~ ~ ~

N 4.1 A N .- h N • ~" A ~ {~ ,~ M 0 4) ¢I II h

• "~ ~ ~ -.4 u • ,"; ,..-, • ® o , - , ~ ~ ,~ ~® ® ^ ^ ~ . . .

. - I

T

•

' - ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ r: ~ ~ ®" ~" o~ ~ ~

e-

¢N

• . . ~ g

qlll

I.I I.i

II II

0

E~ ¢~ ~ 0

=l ~ H d. ~ e- ~ ' - - • A
0 ~ A ~

II MH ~ N N all , , ~ ~ . H

00 A I e- • • AI 0

A v e - • • 0
f~IH ~ l A A fl ~ e ~l~"
@ • " ~ " ~ # ~ u ~ , ' - m e,'~

.la

• 1~ 4.1 ~ el m

. H

e - e - e.-

d " ~ ~ " " " g "

CD CD CO 0 " 0

~ O, ~ ~ ~ ~ ~ ~ ~ ~+I

.H
I-I

1,4
0

m 0

@

0 -,-~
, ~

e

~le o

• ~ -,'1 I~1 I..I

• ,,4 ~ ~ •

II U ¢l 0 e - @
,I~ A 0

n A A A
A 1O n II

I-I ~ II

qk

=

I,,-i

• 4

e~ • 4

I II
A 0
Ig ^ ~

@ kl ~I @ A

O ~ • ~ ..la
• .,.4 .,'4 0 ~'~ • • f"l g=l • ,OJ

0 ~ ~ 0 ~ Co

0 0 0 t - ~ W 0 ¢

qk qk ql~ qk qk ~, ~ 4t ~

4. e-

÷

• - - o • ,

• • , •

~ ~ g

M

ABe8 p 55

14 1,4 ~ 1.4 ~ ~ l o
,.-O

- . . ^. ^ . . .~ , , , . :
m o m . , . , . ~ - . m 4,

m m m I m ~ m , H ,,., m m ,- . ,

H l,-I i - I A i - I I A II A i,-I ~ II - U A

,4.~ ~ ~ O
~ . , ' g ~ ~ 1,4 1,4

+ '2 ,~
m , M M

• • •

4,.
M U 14

0 0 o

~ o @ • M . ~ ~ o

o

- - M ÷ 0

o u o o o ~ o o ~

, .o

AB38.5.2 AB38 p 56

QUESTIONNAIRE TO IMPLEMENT|RS ON THE •PROPOSED REVISION TO ALGOL 60
, , L

Official Name of the Implementation
(include ~. nos, etc., as appropriate)

• , ,, • ,, ,

Computer or Computer Family
on which it runs

Manufacturer~
I

I

Model No.

Name of Company or organisation responsible for this implementation:

If the Company is responsible for more than one implementation of ALGOL 60,
please fill in a separate questionnaire for each one.

, - - . . , L _ _

Name of person making this Report i Are you making this Report as:
i I. The person responsible for

the implementation within i !

the company mentioned above?
2. An interested user of that I I

implementation?
3. Other?(please specify) I I

J

Address f o r C o r r e s p o n d e n c e

The answers to the questions overleaf are intended to help the IFIP Working
Group 2.1 to decide whether to press ahead with the proposed revision and,
if so, which specific changes to include. They are not intended to bind
your company to any particular viewpoint, or to commit it to implementing
any change that might be made.

Completed questionnaire should be returned to:
B.A. Wichmann

Division of Numerical Analysis & Computing
Department of Trade and Industry

National Physical Laboratory
Teddington
Middlesex
TWII OLW

Each of the following four questions should be answered, i n t h e appropriate
column, f o r each of the changes proposed.

1. Does your implementation already include t h i s f ea tu re (whether by design
o r by accident)? Poss ib le answers Y , N o r ? (Please explain i f ?).

2. Would t h e implementation be inva l ida ted by the change (or fu r the r inval idated
i f already inva l id by the present Revised Report)? Possible answers Y , N
o r ? (explain ?).

3. Do you approve of t h e proposed change (i r r e spec t ive of whether your
implementation does, . o r may i n t he fu tu re , include i t) . Poss ib le answers
Y , N o r ? (explain ?).

4 . I f t he proposed change were made o f f i c i a l , i s i t probable t h a t your imple-
mentation would be brought i n t o l i ne . Possible answers Y, N , ?, - o r blank.
P lease answer "-" i f you answered "Y" t o quest ion 1. "Blank" implies t ha t you
a r e afi i n t e r e s t ed user , r a t h e r than a person qua l i f i ed by an o f f i c i a l connec-
t i o n with t he implementation.

Change

s t a t i c own var iab les -
only f ixed bounds f o r own arrays -
own va r i ab l e s i n i t i a l i z e d t o zero o r f a l s e -
Step expression of <for statement> t o be evaluated only once
per cycle

cont ro l led va r i ab l e of < fo r statement> not t o be subscr ipted

cont ro l led va r i ab l e t o remain defined on e x i t

comments t o cons i s t of characters r a t h e r than ALGOL b a s i c
symbols

s t r i n g s t o cons is t of characters r a t h e r than ALGOL b a s i c
symbols

no in t ege r l abe l s

< in teger> 4 <negative in teger> undefined

goto undefined switch designator undefined

<spec i f i ca t i on pa r t> f o r a l l <formal parameter>s

environment enqui r ies maxreal, minreal, maxint and eps i lon

IFIP input /output procedures insymbol, outsymbol, e t c .

add i t i ona l s tandard procedures out terminator , f a u l t and s top

-

Please i nd i ca t e any f u r t h e r comments o r suggestions.

