
Revised Report
on the Algorithmic Language

Algol 68

Edited by

A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck,
C.H. A. Koster, M. Sintzoff, C.H. Lindsey,
L. G. L. T. Maertens and R. G. Fisker

This Edition, which is issued as a Supplement

to ALGOL Bulletin number 47, includes all errata

authorised by the ALGOL 68 Support subcommittee

of IFIP WG2.l up to the end of 1978.

..

This Report has been accepted by Working Group 2.1, reviewed by
Technical Committee 2 on Programming and approved for publication by
the General Assembly of the International Federation for Information
Processing. Reproduction of the Report, for any purpose, but only of the
whole text, is explicitly permitted without formality.

CONTENTS

Acknowledgements ... 6
0. Introduction 8

0.1. Aims and principles of design... 8
0.1.l. Completeness and clarity of description................................. 9
0.1.2. Orthogonal design.. 9
0.1.3. Security... 9
0.1.4. Efficiency.. 9

0.2. Comparison with ALGOL 60 10
0.3. Comparison with the language defined in 1968............................... 13
0.4. Changes in the method of description.. 15

PART I

Preliminary definitions

l. Language and metalanguage . 17
l.l. The method of description .. 17

l.l.l. Introduction .. 17
l.l.2. Pragmatics 18
1.1.3. The syntax of the strict language .. 19

l.1.3.l. Protonotions .. 19
l.l.3.2. Production rules and production trees 21
l.l.3.3. Metaproduction rules and simple substitution 23
l.l.3.4. Hyper-rules and consistent substitution 25

l.1.4. The semantics .. 26
l.l.4.l. Hypernotions, designation and envelopment 27

2 van Wijngaarden, et al.

1.1.4.2. Paranotions .. 27
1.1.4.3. Undefined ... 30

1.1.5. Translations and variants .. 30
1.2. General metaproduction rules ... 31
1.3. General hyper-rules 33

2. The computer and the program 35
2.1. Terminology .. 36

2.1.1. Objects .. 36
2.1.1.1. Values, locales, environs and scenes 36
2.1.1.2. Modes 37
2.1.1.3. Scopes .. 38

2.1.2. Relationships ... 39
2.1.3. Values ... 39

2.1.3.1. Plain values ... 39
2.1.3.2. Names .. 41
2.1.3.3. Structured values ... 42
2.1.3.4. Multiple values 42
2.1.3.5. Routines 45
2.1.3.6. Acceptability of values ... 45

2.1.4. Actions 46
2.1.4.1. Elaboration .. 46
2.1.4.2. Serial and collateral actions ... 47
2.1.4.3. Initiation, completion and termination 48

2.1.5. Abbreviations .. 49
2.2. The program ... 51

PART II

Fundamental constructions

3. Clauses ... 53
3.1. Closed clauses ... 53
3.2. Serial clauses .. 54
3.3. Collateral and parallel clauses 57
3.4. Choice clauses ... 59
3.5. Loop clauses ... 63

4. Declarations, declarers and indicators 66
4.1. Declarations .. 66
4.2. Mode declarations 67
4.3. Priority declarations ... 68
4.4. Identifier declarations 68
4.5. Operation declarations .. 70
4.6. Declarers 71
4.7. Relationships between modes .. 74
4.8. Indicators and field selectors 76

ALGOL 68 Revised Report 3

5. Units .. 77
5.1. Syntax .. 77
5.2. Units associated with names ... 78

5.2.l. Assignations 78
5.2.2. Identity relations ... 79
5.2.3. Generators ... 80
5.2.4. Nihils 82

5.3. Units associated with stowed values 82
5.3.l. Selections 82
5.3.2. Slices 83

5.4. Units associated with routines 86
5.4.l. Routine texts ... 86
5.4.2. Formulas 87
5.4.3. Calls 88
5.4.4. Jumps 89

5.5. Units associated with values of any mode 90
5.5.l. Casts 90
5.5.2. Skips ... 90

PART III

Context dependence

6. Coercion 91
6.1. Coercees ... 91
6.2. Dereferencing ... 93
6.3. Deproceduring .. 94
6.4. Uniting 94
6.5. Widening 95
6.6. Rowing 96
6.7. Voiding ... 97

7. Modes and nests 98
7 .l. Independence of properties .. 98
7.2. Identification in nests 101
7.3. Equivalence of modes ... 103
7.4. Well-formedness .. 107

PART IV

Elaboration-independent constructions

8. Denotations 108
8.1. Plain denotations ... 108

8.1.l. Integral denotations 108

4 van Wijngaarden, et al.

8.1.2. Real denotations ... 109
8.1.3. Boolean denotations .. 110
8.1.4. Character denotations 110
8.1.5. Void denotation 111

8.2. Bits denotations 111
8.3. String denotations .. 112

9. Tokens and symbols .. 113
9.1. Tokens ... 113
9.2. Comments and pragmats 114
9.3. Representations ... 115
9.4. The reference language 116

9.4.1. Representations of symbols ... 118
9.4.2. Other TAX symbols ... 122

PARTV

Environment and examples

10. Standard environment ... 124
10.1. Program texts 124

10.1.2. The environment condition .. 125
10.1.3. The method of description of the standard environment 126

10.2. The standard prelude ... 128
10.2.1. Environment enquiries 128
10.2.2. Standard modes .. 129
10.2.3. Standard operators and functions 130

10.2.3.0. Standard priorities 130
10.2.3.1. Rows and associated operations 130
10.2.3.2. Operations on boolean operands 131
10.2.3.3. Operations on integral operands 131
10.2.3.4. Operations on real operands 132
10.2.3.5. Operations on arithmetic operands 133
10.2.3.6. Operations on character operands 133
10.2.3.7. Operations on complex operands 133
10.2.3.8. Bits and associated operations 135
10.2.3.9. Bytes and associated operations 136
10.2.3.10. Strings and associated operations 137
10.2.3.11. Operations combined with assignations 137
10.2.3.12. Standard mathematical constants and functions 138

10.2.4. Synchronization operations 139
10.3. Transput declarations .. 140

10.3.1. Books, channels and files 140
. 10.3.1.1. Books and backfiles ... 140
10.3.1.2. Channels ... 141
10.3.1.3. Files .. 143

ALGOL 68 Revised Report 5

10.3.1.4. Opening and closing files ... 147
10.3.1.5. Position enquiries .. 152
10.3.1.6. Layout routines ... 154

10.3.2. Transput values .. 158
10.3.2.1. Conversion routines ... 158
10.3.2.2. Transput modes ... 163
10.3.2.3. Straightening 163

10.3.3. Formatless transput 164
10.3.4. Format texts .. 172
10.3.5. Formatted trans put 191
10.3.6. Binary transput .. 205

10.4. The system prelude and task list .. 208
10.4.1. The system prelude .. 208
10.4.2. The system task list 208

10.5. The particular preludes and postludes .. 208
10.5.1. The particular preludes .. 208
10.5.2. The particular postludes ... 209

11. Examples .. 209
11.l. Complex square root .. 209
11.2. Innerproduct 1 ... 210
11.3. Innerproduct 2 ... 210
11.4. Largest element ... 210
11.5. Euler summation ... 211
11.6. The norm of a vector ... 211
11.7. Determinant of a matrix .. 212
11.8. Greatest common divisor ... 212
11.9. Continued fra·ction .. 213
11.10. Formula manipulation .. 213
11.11. Information retrieval ... : 214
11.12. Cooperating sequential processes .. 217
11.13. Towers of Hanoi ... 217

12. Glossaries ... 218
12.1. Technical terms ... 218
12.2. Paranotions 224
12.3. Predicates .. 227
12.4. Index to the standard prelude 227
12.5. Alphabetic listing of meta production rules 231

6 van Wijngaarden, et al.

Acknowledgements

(Habent sua fata libelli.
De litteris, Terentianus Maurus.)

Working Group 2.1 on ALGOL of the International Federation for
Information Processing has discussed the development of ""ALGOL X". a
successor to ALGOL 60 [3]. since 1963. At its meeting in Princeton in May
1965, WG 2.1 invited written descriptions of the language based on the
previous discussions. At the meeting in St Pierre de Chartreuse near
Grenoble in October 1965, three reports describing more or less complete
languages were amongst the contributions, by Niklaus Wirth I 8 J, Gerhard
Seegmueller l 6]. and Aad van Wijngaarden I 9]. In l 6] and I 81. the
descriptional technique of l3J was used, whereas l9 I featured a new
technique for language design and definition. Other significant
contributions available were papers by Tony Hoare [21 and Peter Naur
[4, 5 J.

At subsequent meetings between April 1966 and December 1968, held in
Kootwijk near Amsterdam, Warsaw, Zandvoort near Amsterdam, Tirrenia
near Pisa and North Berwick near Edinburgh, a number of successive
approximations to a final report, commencing with [10 I and followed by a
series numbered MR 88, MR 92, MR 93, MR 95, MR 99 and MR 100, were
submitted by a team working in Amsterdam, consisting first of A. van
Wijngaarden and Barry Mailloux, later reinforced by John Peck, and
finally by Kees Koster. Versions were used during courses on the language
held at various centres, and the experience gained in explaining the
language to skilled audiences and the reactions of the students influenced
the succeeding versions. The final version, MR 101 I 11 J, was adopted by
the Working Group on December 20th 1968 in Munich, and was
subsequently approved for publication by the General Assembly of I.F.I.P.
Since that time, it has been published in Numerische Mathematik I 121,
and translations have been made into Russian I 13 J, into German [14 J, into
French l 15 j, and into Bulgarian [16 J. An ""Informal Introduction··, for the
benefit of the uninitiated reader, was also prepared at the request of the
Working Group [18].

The original authors acknowledged with pleasure and thanks the
wholehearted cooperation, support, interest, criticism and violent
objections from members of WG 2.1 and many other people interested in
ALGOL. At the risk of embarrassing omissions, special mention should be
made of Jan Garwick, Jack Merner, Peter lngerman and Manfred Paul
for [l]. the Brussels group consisting of M. Sintzoff. P. Branquart, J. Lewi
and P. Wodon for numerous brainstorms, A.J.M. van Gils of Apeldoorn,
G. Goos and his group at Munich, also for [7]. G .S. Tseytin of Leningrad,
and L.G.L.T. Meertens and J.W. de Bakker of Amsterdam. An occasional
choice of a, not inherently meaningful, identifier in the sequel may
compensate for not mentioning more names in this section.

ALGOL 68 Revised Report 7

Since the publication of the Original Report, much discussion has taken
place in the Working Group concerning the further development of the
language. This has been influenced by the experience of many people who
saw disadvantages in the original proposals and suggested revised or
extended features. Amongst these must be mentioned especially:
I.R. Currie, Susan G. Bond, J.D. Morison and D. Jenkins of Malvern (see
in [17]), in whose dialect of ALGOL 68 many features of this Revision
may already be found; P. Branquart, J.P. Cardinael and J. Lewi of
Brussels, who exposed many weaknesses (see in [17]); Ursula Hill,
H. Woessner and H. Scheidig of Munich, who discovered some unpleasant
consequences; the contributors to the Rapport d"Evaluation I 19); and the
many people who served on the Working Group subcommittees on
Maintenance and Improvements (convened by M. Sintzoff) and on
Transput (convened by C.H. Lindsey). During the later stages of the
revision, much helpful advice was given by H. Boom of Edmonton,
W. Freeman of York, W.J. Hansen of Vancouver, Mary Zosel of
Livermore, N. Yoneda of Tokyo, M. Rain of Trondheim, L. Ammeraal,
D. Grune, H. van Vliet and R. van Vliet of Amsterdam, G. van der Mey of
Delft, ~nd A.A. Baehrs and A.F. Rar of Novosibirsk. The editors of this
revision also wish to acknowledge that the wholehearted cooperation,
support, interest, criticism and violent objections on the part of the
members of WG 2.1 have continued unabated during this time.

ll) J.V. Garwick, J.M. Merner, P.Z. Ingerman and M. Paul, Report of the
ALGOL-X - 1-0 Subcommittee, WG 2.1 Working Paper, July 1966.
[2) C.A.R. Hoare, Record Handling, WG 2.1 Working Paper, October 1965;
also AB.21.3.6, November 1965.
[3 J P. Naur (Editor), Revised Report on the Algorithmic Language
ALGOL 60, Regnecentralen, Copenhagen, 1962, and elsewhere.
[4) P. Naur, Proposals for a new language, AB.18.3.9, October 1964.
[5) P. Naur, Proposals for introduction on aims, WG 2.1 Working Paper.
October 1965.
[6) G. Seegmueller, A proposal for a basis for a Report on a Successor to
ALGOL 60, Bavarian Acad. Sci., Munich, October 1965.
[7 J G. Goos, H. Scheidig, G. Seegmueller and H. Walther, Another
proposal for ALGOL 67, Bavarian Acad. Sci., Munich, May 1967.
[8) N. Wirth, A Proposal for a Report on a Successor of ALGOL 60,
Mathematisch Centrum, Amsterdam, MR 75, October 1965.
[9 J A. van Wijngaarden, Orthogonal Design and Description of a Formal
Language, Mathematisch Centrum, Amsterdam, MR 76, October 1965.
[10 J A. van Wijngaarden and B.J. Mailloux, A Draft Proposal for the
Algorithmic Language ALGOL X, WG 2.1 Working Paper, October 1966.
[11 J A. van Wijngaarden (Editor), B.J. Mailloux, J.E.L. Peck and
C.H.A. Koster, Report on the Algorithmic Language ALGOL 68,
Mathematisch Centrum, Amsterdam, MR 101, February 1969.
[12) idem, Numerische Mathematik, Vol. 14, pp. 79-218, 1969.

8 van Wijngaarden, et al.

[13] Soobshchenie ob algoritmicheskom yazyke ALGOL 68, translation into
Russian by A.A. Baehrs, A.P. Ershov, L.L. Zmievskaya and A.F. Rar,
Kybernetica, Kiev, Part 6 of 1969 and Part l of 1970.
[14] Bericht ueber die Algorithmische Sprache ALGOL 68, translation into
German by I.O. Kerner, Akademie-Verlag, Berlin, 1972.
[15] Definition du Langage Algorithmique ALGOL 68, translation into
French by J. Buffet, P. Arna!, A. Quere (Eds.), Hermann, Paris, 1972.
[16] Algoritmichniyat yezik ALGOL 68, translation into Bulgarian by
D. Toshkov and St. Buchvarov, Nauka i Yzkustvo, Sofia, 1971.
[17] J.E.L. Peck (Ed.), ALGOL 68 Implementation (proceedings of the
I.F.I.P. working conference held in Munich in 1970), North Holland
Publishing Company, 1971.
[18] C.H. Lindsey and S.G. van der Meulen, Informal introduction to
ALGOL 68, North Holland Publishing Company, 1971.
[19 J J.C. Boussard and J .J. Duby (Eds.), Rapport d'Evaluation ALGOL 68,
Revue d'Informatique et de Recherche Operationelle, B2, Paris, 1970.

o. Introduction

0.1. Aims and principles of design

a) In designing the Algorithmic Language ALGOL 68, Working Group
2.1 on ALGOL of the International Federation for Information Processing
expresses its belief in the value of a common programming language
serving many people in many countries.

b) ALGOL 68 is designed to communicate algorithms, to execute them
efficiently on a variety of different computers, and to aid in teaching them
to students.

c) This present Revision of the language is made in response to the
directive of the parent committee, I.F.I.P. TC 2, to the Working Group to
"keep continually under review experience obtained as a consequence of
this (original) publication, so that it may institute such corrections and
revisions to the Report as become desirable". In deciding to bring forward
this Revision at the present time, the Working Group has tried to keep in
balance the need to accumulate the maximum amount of experience of the
problems which arose in the language originally defined, as opposed to the
needs of the many teams at present engaged in implementation, for whom
an early and simple resolution of those problems is imperative.

d) Although the language as now revised differs in many ways from
that defined originally, no attempt has been made to introduce extensive
new features and, it is believed, the revised language is still clearly
recognizable as "ALGOL 68". The Working Group has decided that this
present revision should be "the final definition of the language ALGOL 68",
and the hope is expressed that it will be possible for implementations at
present in preparation to be brought into line with this standard.

ALGOL 68 Revised Report 9

e) The Working Group may, from time to time, define sublanguages
and extended capabilities, by means of Addenda to this Report, but these
will always be built on the language here defined as a firm foundation.
Moreover, variants more in conformity with natural languages other than
English may be developed. To coordinate these activities, and to maintain
contact with implementers and users, a Subcommittee on ALGOL 68
Support has been established by the Working Group.

f) The members of the Group, influenced by several years of
experience with ALGOL 60 and other programming languages, have
always accepted the following as their aims:

0.1.1. Completeness and clarity of description

The Group wishes to contribute to the solution of the problems of
describing a language clearly and completely. The method adopted in this
Report is based upon a formalized two-level grammar, with the semantics
expressed in natural language, but making use of some carefully and
precisely defined terms and concepts. It is recognized, however, that this
method may be difficult for the uninitiated reader.

0.1.2. Orthogonal design

The number of independent primitive concepts has been minimized in
order that the language be easy to descril>e, to learn, and to implement.
On the other hand, these concepts have been applied '"orthogonally'" in
order to maximize the expressive power of the language while trying to
avoid deleterious superfluities.

0.1.3. Security

ALGOL 68 has been designed in such a way that most syntactical and
many other errors can be detected easily before they lead to calamitous
results. Furthermore, the opportunities for making such errors are greatly
restricted.

0.1.4. Efficiency

ALGOL 68 allows the programmer to specify programs which can be
run efficiently on present-day computers and yet do not require
sophisticated and time-consuming optimization features of a compiler: see,
e.g., 11.7.

0.1.4.1. Static mode checking

The syntax of ALGOL 68 is such that no mode checking during run
time is necessary, except when the programmer declares a n~ITEU­
variable and then, in a conformity-clause, explicitly demands a check on
its mode.

10 van Wijngaarden, et al.

0.1.4.2. Mode-independent parsing

The syntax of ALGOL 68 is such that the parsing of a program can be
performed independently of the modes of its constituents. Moreover, it can
be determined in a finite number of steps whether an arbitrary given
sequence of symbols is a program.

0.1.4.3. Independent compilation

The syntax of ALGOL 68 is such that the main-line programs and
procedures can be compiled independently of one another without loss of
object-program efficiency provided that, during each independent
compilation, specification of the mode of all nonlocal quantities is
provided; see the remarks after 2.2.2.c.

0.1.4.4. Loop optimization

Iterative processes are formulated in ALGOL 68 in such a way that
straightforward application of well-known optimization techniques yields
large gains during run time without excessive increase of compilation
time.

0.1.4.5. Representations

Representations of ALGOL 68 symbols have been chosen so that the
language may be implemented on computers with a minimal character
set. At the same time implementers may take advantage of a larger
character set, if it is available.

0.2. Comparison with ALGOL 60

a) ALGOL 68 is a language of wider applicability and power than
ALGOL 60. Although influenced by the lessons learned from ALGOL 60,
ALGOL 68 has not been designed as an expansion of ALGOL 60 but rather
as a completely new language based on new insight into the essential.
fundamental concepts of computing and a new description technique.

b) The result is that the successful features of ALGOL 60 reappear in
ALGOL 68 but as special cases of more general constructions, along with
completely new features. It is, therefore, difficult to isolate differences
between the two languages; however, the following sections are intended
to give insight into some of the more striking differences.

0.2.1. Values in ALGOL 68

a) Whereas ALGOL 60 has values of the types integer, real and
Boolean, ALGOL 68 features an infinity of '"modes'", i.e., generalizations of
the concept '"type".

ALGOL 68 Revised Report ll

b) Each plain value is either arithmetic, i.e., of 'intt•gral' or 'r<'al'
mode and then it is of one of several sizes, or it is of 'booh•an' or
'character' or 'void' mode. Machine words, considered as sequences of bits
or of bytes, may also be handled.

c) In ALGOL 60, values can be composed into arrays, whereas in
ALGOL 68, in addition to such "multiple" values. also "structured" values.
composed of values of possibly different modes, are defined and
manipulated. An example of a multiple value is the character array,
which corresponds approximately to the ALGOL 60 string: examples of
structured values are complex numbers and symbolic formulae.

d) In ALGOL 68 the concept of a "name" is introduced. i.e .. a value
which is said to "refer to" another value: such a name-value pair
corresponds to the ALGOL 60 variable. However, a name may take the
value position in a name-value pair, and thus chains of indirect addresses
can be built up.

e) The ALGOL 60 concept of procedure body is generalized in ALGOL
68 to the concept of "routine", which includes also the formal parameters,
and which is itself a value and therefore can be manipulated like any
other value.

f) In contrast with plain values, the significance of a name or routine
is, in general, dependent upon the existence of the storage cells referred to
or accessed. Therefore, the use of names and routines is subject to some
restrictions related to their "scope". However, the syntax of ALGOL 68 is
such that in many cases the check on scope can be made at compile time.
including all cases where no use is made of features whose expressive
power transcends that of ALGOL 60.

0.2.2. Declarations in ALGOL 68

a) Whereas ALGOL 60 has type declarations, array declarations.
switch declarations and procedure declarations, ALGOL 68 features the
identity-declaration whose expressive power includes all of these. and
more. The identity-declaration, although theoretically sufficient in itself. is
augmented by the variable-declaration for the convenience of the user.

b) Moreover, in ALGOL 68, a mode-declaration permits the
construction of a new mode from already existing ones. In particular. ihe
modes of multiple values and of structured values may be defined in this
way; in addition, a union of modes may be defined, allowing each value
referred to by a given name to be of any one of the uniting modes.

c) Finally, in ALGOL 68, a priority-declaration and an operation-
declaration permit the introduction of new operators, the definition of their
operation and the extension of the class of operands of, and the revision of
the meaning of, already established operators.

12 van Wijngaarden, et al.

0.2.3. Dynamic storage allocation in ALGOL 68

Whereas ALGOL 60 (apart from .. own dynamic arrays ..) implies a
.. stack .. -oriented storage-allocation regime, sufficient to cope with objects
having nested lifetimes (an object created before another object being
guaranteed not to become inaccessible before that second one), ALGOL 68
provides, in addition, the ability to create and manipulate objects whose
lifetimes are not so restricted. This ability implies the use of an additional
area of storage, the .. heap .. , in which garbage-collection techniques must
be used.

0.2.4. Collateral elaboration in ALGOL 68

Whereas, in ALGOL 60, statements are .. executed consecutively .. , in
ALGOL 68, phrases are .. elaborated serially .. or .. collaterally ... This latter
facility is conducive to more efficient object programs under many
circumstances, since it allows discretion to the implementer to choose, in
many cases, the order of elaboration of certain constructs or even, in
some cases, whether they are to be elaborated at all. Thus the user who
expects his .. side effects .. to take place in any well determined manner will
receive no support from this Report. Facilities for parallel programming,
though restricted to the essentials in view of the none-too-advanced state
of the art, have been introduced.

0.2.5. Standard declarations in ALGOL 68

The ALGOL 60 standard functions are all included in ALGOL 68 along
with many other standard declarations. Amongst these are .. environment
enquiries .. , which make it possible to determine certain properties of an
implementation, and .. transput .. declarations, which make it possible, at
run time, to obtain data from and to deliver results to external media.

0.2.6. Some particular constructions in ALGOL 68

a) The ALGOL 60 concepts of block, compound statement and
parenthesized expression are unified in ALGOL 68 into the serial-clause. A
serial-clause may be an expression and yield a value. Similarly, the
ALGOL 68 assignation, which is a generalization of the ALGOL 60
assignment statement, may be an expression and, as such, also yield a
value.

b) The ALGOL 60 concept of subscripting is generalized to .. 1e ALGOL
68 concept of .. indexing .. , which allows the selection not onl~· ,1f ·1 single
element of an array but also of subarrays with the same or any smaller
dimensionality and with possibly altered bounds.

c) ALGOL 68 provides row-displays and structure-displays, which
serve to compose the multiple and structured values mentioned in 0.2.1.c
from other, simpler, values.

ALGOL 68 Revised Report 13

d) The ALGOL 60 for statement is modified into a more concise and
efficient loop-clause.

e) The ALGOL 60 conditional expression and conditional statement.
unified into a conditional-clause, are improved by requiring them to end
with a closing symbol whereby the two alternative clauses admit the same
syntactic possibilities. Moreover, the conditional-claust• is generalized into
a case-clause, which allows the efficient selection from an arbitrary
number of clauses depending on the value of an integral-expression, and a
conformity-clause, which allows a selection depending upon the actual
mode of a value.

f) Some less successful ALGOL 60 concepts, such as own quantities
and integer labels, have not been included in ALGOL 68, and some
concepts, like designational expressions and switches, do not appear as
such in ALGOL 68 but their expressive power is included in other, more
general, constructions.

0.3. Comparison with the language defined in 1968

The more significant changes to the language are indicated in the
sections which follow. The revised language will be described in a new
edition of the "Informal Introduction to ALGOL 68" by C.H. Lindsey and
S.G. van der Meulen, which accompanied the original Report.

0.3.1. Casts and routine texts

Routines without parameters used to be constructed out of a cast in
which the cast-of-symbol (:) appeared. This construct is now one of the
forms of the new routine-text, which provides for procedures both with and
without parameters. A new form of the cast has been provided which may
be used in contexts previously not possible. Moreover, both void-casts and
procedure-PARAMETV -yielding-void-routine-texts must now contain an
explicit void-symbol.

0.3.2. Extended ranges

The new range which is established by the enquiry-l'lause of a choice­
clause (which encompasses the old conditional- and case-clauses) or of a
while-part now extends into the controlled serial-claust• or do-part.

0.3.3. Conformity clauses

The conformity-relation and the case-conformity which was obtained by
extension from it are now replaced by a new conformity-clause, which is a
further example of the choice-clause mentioned above.

14 van Wijngaarden, et al.

0.3.4. Modes of multiple values

A new class of modes is introduced, for multiple values whose elements
are themselves multiple values. Thus one may now write the declarer l J
string.

Moreover, multiple values no longer have "'states·· to distinguish their
flexibility. Instead, flexibility is now a property of those names which
refer to multiple values whose size may change, such names having
distinctive modes of the form 'reference to flexible ROWS of MODE'.

0.3.5. Identification of operators

Not only may two operators, related to each other by the modes of
their operands, not be declared in the same range, as before, but now, if
two such operators be declared in different reaches. any attempt to
identify from the inner reach the one in the outer reach will fail. This
gives some benefit to the implementer and removes a source of possible
confusion to the user.

0.3.6. Representations

The manner in which symbols for newly defined mode-indications and
operators are to be represented is now more closely defined. Thus it is
clear that the implementer is to provide a special alphabet of bold-faced,
or "'stropped"', marks from which symbols such as person may be made,
and it is also clear that operators such as » are to be allowed.

0.3.7. Standard prelude

In order to ease the problems of implementers who might wish to
provide variants of the language suitable for environments where English
is not spoken, there are no longer any field-selectors known to the user in
the standard-prelude, with the exception of re and im of the mode comp/.
The identifiers and other indicators declared in the standard-prelude
could, of course, easily be defined again in some library-prelude, but this
would not have been possible in the case of field-selectors.

0.3.8. Line length in transput

The lines (and the pages also) of the "book"' used during transput may
now, at the discretion of the implementer, be of varying lengths. This
models more closely the actual behaviour of most operating systems and
of devices such as teleprinters and paper-tape readers.

0.3.9. Internal transput

The transput routines, in addition to sending data to or from external
media, may now be associated with row-of-character-variables declared by
the user.

ALGOL 68 Revised Report

0.3.10. Elaboration of formats

15

The dynamic replicators contained in format-texts are now elaborated
as and when they are encountered during the formatted transput process.
This should give an effect more natural to the user, and is easier to
implement.

0.3.11. Features removed

Certain features, such as proceduring, gommas and formal bounds.
have not been included in the revision.

0.4. Changes in the method of description

In response to the directive from the Working Group "to make its study
easier for the uninitiated reader", the Editors of this revision have
rewritten the original Report almost entirely, using the same basic
descriptional technique, but applying it in new ways. It is their hope that
less "initiation" will now be necessary.

The more significant changes in the descriptional technique are
indicated below.

0.4.1. Two-level grammar

a) While the syntax is still described by a two-level grammar of the
type now widely known by the name "Van Wijngaarden". new techniques
for using such grammars have been applied. In particular, the entire
identification process is now described in the syntax using the metanotion
"NEST", whose terminal meta productions are capable of describing, and of
passing on to the descendent constructs, all the declared information
which is available at any particular node of the production tree.

b) In addition, extensive use is made of "predicates". These are
notions which are deliberately made to yield blind alleys when certain
conditions are not met, and which yield empty terminal productions
otherwise. They have enabled the number of syntax rules to be reduced in
many cases, while at the same time making the grammar easier to follow
by reducing the number of places where a continuation of a given rule
might be found.

c) It has thus been possible to remove all the "context conditions"
contained in the original Report.

0.4.2. Modes

a) In the original Report, modes were protonotions of possibly infinite
length. It was assumed that, knowing how an infinite mode had been
obtained, it was decidable whether or not it was the same as some other
infinite mode., However, counterexamples have come to light ,vhere this

16 van Wijngaarden, et al.

was not so. Therefore, it has been decided to remove all infinities from the
process of producing a finite program and, indeed, this can now be done in
a finite number of moves.

b) A mode, essentially, has to represent a potentially infinite tree. To
describe it as a protonotion of finite length requires the use of markers
('l\1lJ definition's) and pointers back to those markers {'MU application's)
within the protonotion. However, a given infinite tree can be "spelled" in
many ways by this method, and therefore a mode becomes an equivalence
class comprised of all those equivalent spellings of that tree. The
equivalence is defined in the syntax using the predicates mentioned
earlier.

0.4.3. Extensions

The need for many of the extensions given in the original Report had
been removed by language changes. Some of the remainder had been a
considerable source of confusion and surprises. The opportunity has
therefore been taken to remove the extension as a descriptional
mechanism. all the former extensions now being specified directly in the
syntax.

0.4.4. Semantics

a) In order to remove some rather repetitious phrases from the
semantics, certain technical terms have been revised and others
introduced. The grammar, instead of producing a terminal production
directly, now does so by way of a production tree. The semantics is
explained in terms of production trees. Paran'otions. which designate
constructs, may now contain metanotions and "hypernotions" have been
introduced in order to designate protonotions.

b) A model of the hypothetical computer much more closely related to
a real one has been introduced. The elaboration of each construct is now
presumed to take place in an "environ" and, when a new range is entered
(and, in particular, when a routine is called), a new "locale" is added to
the environ. The locale corresponds to the new range and, if recursive
procedure calls arise, then there exist many locales corresponding to one
same routine. This supersedes the method of "textual substitution" used
before, and one consequence of this is that the concept of "protection" is
no longer required.

c) The concept of an "instance" of a value is no longer used. This
simplifies certain portions of the semantics where. formerly, a new
instance" had to be taken, the effects of which were not always clear to
see.

ALGOL 68 Revised Report 17

0.4.5. Translations

The original Report has been translated into various natural languages.
The translators were not always able to adhere strictly to the descriptional
method, and so the opportunity has been taken to define more clearly and
more liberally certain descriptional features which caused difficulties (see
1.1.5).

(True wisdom knows it must comprise
some nonsense as a compromise.
lest fools should fail to find it wise.
Grooks, Piet Hein.}

PART I

Preliminary definitions

1. Language and metalanguage

1.1. The method of description

1.1.1. Introduction

a) ALGOL 68 is a language in which algorithms may be formulated
for computers, i.e., for automata or for human beings. It is defined by this
Report in four stages, the "syntax" (b}, the "semantics" (c}, the
"representations" (d} and the "standard environment" (e}.

b) The syntax is a mechanism whereby all the constructs of the
language may be produced. This mechanism proceeds as follows:

(i) A set of "hyper-rules" and a set of "metaproduction rules" are given
(1.1.3.4, 1.1.3.3}, from which "production rules" may be derived:

(ii) A "construct in the strict language" is a "production tree" {l.l .3.2.f}
which may be produced by the application of a subset of those
production rules; this production tree contains static information (i.e ..
information known at "compile time"} concerning that construct: it is
composed of a hierarchy of descendent production trees, terminating at
the lowest level in the "symbols"; with each production tree is
associated a "nest" of properties, declared in the levels above, which is
passed on to the nests of its descendents;

(iii) A "program in the strict language" is a production tree for the notion
'program' (2.2.1.a}. It must also satisfy the "environment condition"
{10.1.2}.

18 van Wijngaarden, et al.

c) The semantics ascribes a "meaning" {2.1.4.1.a} to each construct
(i.e., to each production tree) by defining the effect (which may, however,
be "undefined") of its "elaboration" {2.1.4.1). This proceeds as follows:

(i) A dynamic (i.e., run-time) tree of active "actions" is set up (2.1.4);
typically, an action is the elaboration of .s<_>me production tree T in an
"environ" consistent with the nest of T, and it may bring about the
elaboration of descendents of T in suitable newly created descendent
environs;

(ii) The meaning of a program in the strict language is the effect of its
elaboration in the empty "primal environ".

d) A program in the strict language must be represented in some
"representation language" (9.3.a} chosen by the implementer. In most
cases this will be the official "reference language".

(i) A program in a representation language is obtained by replacing the
symbols of a program in the strict language by certain typographical
marks (9.3).

(ii) Even the reference language allows considerable discretion to the
implementer {9.4.a,b,c). A restricted form of the reference language in
which such freedom has not been exercised may be termed the
"canonical form" of the language, and it is expected that this form will
be used in algorithms intended for publication.

(iii) The meaning of a program in a representation language is the same
as that of the program (in the strict language) from which it was
obtained.

e) An algorithm is expressed by means of a particular-program,
which is considered to be embedded, together with the standard
environment, in a program-text {10.1.1.a}. The meaning of a particular­
program (in the strict or a representation language) is the meaning of the
program "akin" to that program-text (10.1.2.a}.

1.1.2. Pragmatics

(Merely corroborative detail, intended to
give artistic verisimilitude to an otherwise
bald and unconvincing narrative.
Mikado, W.S. Gilbert.)

Scattered throughout this Report are "pragmatic" remarks included
between the braces"(" and ")". These are not part of the definition of the
language but serve to help the reader to understand the intentions and
implications of the definitions and to find corresponding sections or rules.

(Some of the pragmatic remarks contain examples written in the
reference language. In these examples, applied-indicators occur out of
context from their defining-indicators. Unless otherwise specified. these
occurrences identify those in the standard- or particular-preludes and the

ALGOL 68 Revised Report 19

particular-postlude (10.2, 10.3, 10.5) (e.g., see 10.2.3.12.a for pi, 10.5.1.b for
random and 10.5.2.a for stop), or those in:

Inti, j, k, m, n; real a, b, x, y; boot p, q, overflow; char c; format f:
bytes r; strings; bits t; comp/ w, z; ref real xx, yy; union (Int, real) uir;
proc void taskl, task2;

[J: n]realxl,yl;flexll: nlrealal; II: m,l: nlrealx2;
[J: n, 1: n] realy2; lI: nJ lntil; II: m, 1: nl lnti2:
[I: n] complzl;

proc x or y = ref real: If random < .5 then x else y ti;
proc ncos =(inti) real: cos (2 x pix i In);
proc nsin =(inti) real: sin (2 x pix i In);
proc finish = void : go to stop;
mode book = struct (string text, ref book next); book draft;
princeton: grenoble: st pierre de chartreuse: kootwijk: warsaw:

zandvoort: amsterdam: tirrenia: north berwick: munich:
finish.)

1.1.3. The syntax of the strict language

1.1.3.1. Protonotions

a) In the definition of the syntax of the strict language, a formal
grammar is used in which certain syntactic marks appear. These may be
classified as follows:
(i) "small syntactic marks", written, in this Report, as
"a", "b", "c", "d", "e", "f", "g", "h", "i", "j", _"k", "l", "m". "n", "o", "p",
"q", "r", "s", "t'', "u", "v", "w", "x", "y", "z", "(", ")":
(ii) "large syntactic marks", written, in this Report, as
"A", "B", "C", "D", "E", "(<'", "G", "H", "I", "j'', "K", "!,", "M", "N", "O",
"P", "Q", "R", "S", "T", "ll", "V", "\\!", "X", "\'", "Z", "If', "I", "2", ";J",
"4", "5", "6", "7", "8", "9":

(iii) "other syntactic marks", written, in this Report, as
"," ("point"),"," ("comma"),":" ("colon"),";" ("semicolon"),
""' ("apostrophe"), "." ("hyphen") and "*" ("asterisk").

(Note that these marks are in another type font than that of the marks in
this sentence.)

b) A "protonotion" is a possibly empty sequence of small syntactic
marks.

c) A "notion" is a (nonempty) protonotion for which a production rule
can be derived (1.1.3.2.a, 1.1.3.4.d).

d) A "metanotion" is a (nonempty) sequence of large syntactic marks
for which a metaproduction rule is given or created (1.1.3.3.a}.

e) A "hypernotion" is a possibly empty sequence each of whose
elements either is a small syntactic mark or is a metanotion.

20 van Wijngaarden, et al.

(Thus the class of protonotions (b) is a subclass of the class of
hypernotions. Hypernotions are used in metaproduction rules (l.l.3.3). in
hyper-rules (l.l.3.4), as paranotions (l.l.4.2) and, in their own right, to
"designate" certain classes of protonotions (l.l.4.1) .)

(A "paranotion" is a hypernotion to which certain special conventions
and interpretations apply, as detailed in 1.1.4.2.)

f) A "symbol" is a protonotion ending with 'symbol'. (Note that the
paranotion symbol (9.1.l.h) designates a particular occurrence of such a
protonotion.)

(Examples:

b) 'variable point'
c) 'variable point numeral' (8.1.2.1.b)
d) "lNTREAL" (1.2.1.C)
e) 'reference to INTREAL'
f) 'letter a symbol' .

Note that the protonotion 'twas brillig and the slithy loves' is neither a
symbol nor a notion, in that it does not end with 'symbol' and no
production rule can be derived for it. Likewise, "LEWIS" and "t:ARROU,"
are not metanotions in that no metaproduction rules are given for them.)

g) In order to distinguish the various usages in the text of this Report
of the terms defined above, the following conventions are adopted:

(i) No distinguishing marks (quotes, apostrophes or hyphens) are used in
production rules, metaproduction rules or hyper-rules;

(ii) Metanotions, and hypernotions which stand for themselves (i.e., which
do not designate protonotions), are enclosed in quotes;

(iii) Paranotions are not enclosed in anything (but, as an aid to the
reader, are provided with hyphens where, otherwise, they would have
been provided with blanks);

(iv) All other hypernotions (including protonotions) not covered abovt.• are
enclosed in apostrophes (in order to indicate that they designate some
protonotion, as defined in 1.1.4.1.a);

(v) Typographical display features, such as blank space. hyphen. and
change to a new line or new page, are of no significance (but see also
9.4.d).

(Examples:
(i) LEAP : : local ; heap ; primal. is a metaproduction rule:

(ii) "INTREAL" is a metanotion and designates nothing but itself:
(iii) reference-to-lNTREAL-identifier, which is not enclosed in apostrophes

but is provided with hyphens, is a paranotion designating a construct
(1.1.4.2.a);

(iv) 'variable point' is both a hypernotion and a protonotion; regarded as
a hypernotion, it designates itself regarded as a protonotion;

(v) 'reference to real' means the same as 'referencetoreal' .)

ALGOL 68 Revised Report

l.l.3.2. Production rules and production trees

21

a) The {derived] "production rules" {bl of the language are those
production rules which can be derived from the "'hyper-rules" (l.l.3.4),
together with those specified informally in 8.1.4.l.d and 9.2.l.d.

b) A "production rule" consists of the following items, in order:
an optional asterisk :
a nonempty protonotion N :
a colon ;
a nonempty sequence of "alternatives" separated by semicolons :
a point.

It is said to be a production rule "'for" (the notion (l.l.3.1.c)] N.
(The optional asterisk, if present, signifies that the notion is not used in

other production rules, but is provided to facilitate discussion in the
semantics. It also signifies that that notion may be used as an
"abstraction" (l.1.4.2.b) of one of its alternatives.]

c) An "alternative" is a nonempty sequence of "members" separated
by commas.

d) A "member" is either
(i) a notion (and may then be said to be productive, or nonterminal],

(ii) a symbol (which is terminal],
(iii) empty, or
(iv) some other protonotion (for which no production rule can be derived],

which is then said to be a "blind alley".
(For example, the member 'reference to real denotation' (derived

from the hyper-rule 8.0.l.a) is a blind alley.]

(Examples:

b) exponent part : times ten to the power choice,
power of ten. (8.l.2.1.g) •

times ten to the power choice :
times ten to_ the power symbol ;
letter e symbol. (8.1.2.l.h)

c) times ten to the power choice, power of ten •
times ten to the power symbol •
letter e symbol

d) times ten to the power choice •
power of ten •
times ten to the power symbol •
letter e symbol]

e) A "construct in the strict language" is any "production tree" (f] that
may be "produced" from a production rule of the language.

f) A "production tree" T for a notion N, which is termed the "original"
of T, is "produced" as follows:

22 van Wijngaarden, et al.

• let P be some (derived) production rule for N;
• a copy is taken of N;
• a sequence of production trees, the "'direct descendents" of T, one
produced for each nonempty member of some alternative A of P, is
attached to the copy; the order of the sequence is the order of those
members within A;
• the copy of the original, together with the attached direct
descendents, comprise the production tree T.
A "'production tree"' for a symbol consists of a copy of that symbol (i.e.,

it consists of a symbol).

The "'terminal production" of a production tree T is a sequence
consisting of the terminal productions of the direct descendents of T, taken
in order.

The "terminal production" of a production tree consisting only of a
symbol is that symbol.

(Example:

'times ten to the
power choice'

'letter e
symbol'

'exponent part'

'power of ten'

'plusminus
option'

I
'plusminus'

'plus
symbol'

I
'digit

'fixed point
numeral'

I
'digit cypher

sequence·
I

I
'digit cypher

cypher' sequence'
I

'digit
zero'

'digit zero
symbol'

I
'digit
cypher'

I
'digit
two'

I
'digit two

symbol'

(The terminal production of this tree is the sequence of symbols at
the bottom of the tree. In the reference language, its representation would
be e+02.J

A "terminal production" of a notion is the terminal production of some
production tree for that notion (thus there are many other terminal
productions of 'exponent part' besides the one shown).

ALGOL 68 Revised Report 23

(The syntax of the strict language has been chosen in such a way that a
given sequence of symbols which is a terminal production of some notion
is so by virtue of a unique production tree, or by a set of production trees
which differ only in such a way that the result of their elaboration is the
same (e.g., production trees derived from rules 3.2.l.e (balancing),
1.3.l.d,e (predicates) and 6.7.l.a,b (choice of spelling of the mode of a
coercend to be voided); see also 2.2.2.a).

Therefore, in practice, terminal productions (or representations
thereof) are used, in this Report and elsewhere, in place of production
trees. Nevertheless, it is really the production trees in terms of which the
elaboration of programs is defined by the semantics of this Report, which
is concerned with explaining the meaning of those constructs whose
originals are the notion 'program'.)

g) A production tree P is a "descendent" of a production tree Q if it is
a direct descendent (f) either of Q or of a descendent of Q. Q is said to
"contain" its descendents and those descendents are said to be "smaller"
than Q. (For example, the production tree

'plusminus option'

I
'plusminus'

I
'plus symbol'

occurs as a descendent in (and is contained within and is smaller than)
the production tree for ·exponent part' given above.)

h) A "visible" ("invisible") production tree is one whose terminal
production is not (is) empty.

i) A descendent (g) U of a production tree T is "before" ("after") a
descendent V of T if the terminal production (f) of U is before (after) that
of V in the terminal production of T. The {partial) ordering of the
descendents of T thus defined is termed the "textual order". (In the
example production tree for ·exponent part' (f), the production tree whose
original is 'plusminus' is before that whose original is 'digit two'.)

j) A descendent A of a production tree "follows" ("precedes") another
descendent B in some textual order if A is after (before) B in that textual
order, and there exists no visible (h) descendent C which comes between A
and B. {Thus "immediately" following (preceding) is implied.)

k) A production tree A is "akin" to a production tree B if the terminal
production (f) of A is identical to the terminal production of B.

1.1.3.3. Metaproduction rules and simple substitution

(The metaproduction rules of the language form a set of context-free
grammars defining a "metalanguage".)

24 van Wijngaarden, et al.

a) The "metaproduction rules" (bl of the language are those given in
the sections of this Report whose heading begins with "Syntax",
"Metasyntax" or "Metaproduction rules", together with those obtained as
follows:

• for each given metaproduction rule, whose metanotion is M say,
additional rules are created each of which consists of a copy of M
followed by one of the large syntactic marks "O", "I", "2", "3", "4",
"5", "6", "7", "8" or "9", followed by two colons, another copy of that M
and a point.

(Thus, the metaproduction rule "MODEi : : MODE." is to be added.)

b) A "metaproduction rule" consists of the following items, in order:
an optional asterisk ;
a nonempty sequence M of large syntactic marks ;
two colons;
a nonempty sequence of hypernotions {1.1.3.l.e) separated by

semicolons ;
a point.

It is said to be a metaproduction rule "for" (the metanotion (1.1.3.1.d) J M.
{The asterisk, if present, signifies that the metanotion is not used in

other metaproduction rules or in hyper-rules, but is provided to facilitate
discussion in the semantics.)

(Examples:

INTREAL : : SIZETY integral ; SIZETY real. (l.2.1.C) •
SIZETY : : long LONGSETY ; short SHORTSETY ; EMPTY. (1.2.1.D))

c) A "terminal metaproduction" of a metanotion M is any protonotion
which is a "simple substitute" (di for one of the hypernotions (on the right
hand side) of the metaproduction rule for M.

d) A protonotion P is a "simple substitute" for a hypernotion H if a
copy of H can be transformed into a copy of P by replacing each
metanotion M in the copy by some terminal metaproduction of M.

(Thus two possible terminal metaproductions (c) of "INTREAL" are
'integral' and 'long long real'. This is because the hypernotions 'SIZETY
integral' and 'SIZETY real' (the hypernotions of the metaproduction rule
for "INTREAL") may, upon simple substitution (d), give rise to 'integral'
and 'long long real', which, in turn, is because · · (the empty protonotion)
and 'long long' are terminal metaproductions of "SIZE1Y' .)

(The metanotions used in this Report have been so chosen that no
concatenation of one or more of them gives the same sequence of large
syntactic marks as any other such concatenation. Thus a source of
possible ambiguity has been avoided.

Although the recursive nature of some of the metaproduction rules
makes it possible to produce terminal metaproductions of arbitrary length,

ALGOL 68 Revised Report 25

the length of the terminal metaproductions necessarily involved in the
production of any given program is finite.)

1.1.3.4. Hyper-rules and consistent substitution

a) The hyper-rules (b) of the language are those given in the sections
of this Report whose heading begins with "Syntax".

b) A "hyper-rule" consists of the following items, in order:
an optional asterisk ;
a nonempty hypernotion H ;
a colon ;
a nonempty sequence of "hyperalternatives" separated by

semicolons ;
a point.

It is said to be a hyper-rule "for" (the hypernotion (1.1.3.1.e)) H.

c) A "hyperalternative" is a nonempty sequence of hypernotions
separated by commas.

(Examples:

b) NOTION sequence :
NOTION ; NOTION, NOTION sequence. (1.3.3.b)

c) NOTION, NOTION sequence)

d) A production rule PR {1.1.3.2.b) is derived from a hyper-rule HR if a
copy of HR can be transformed into a copy of PR by replacing the set of
all the hypernotions in the copy by a "consistent substitute" (e) for that
set.

e) A set of (one or more) protonotions PP is a "consistent substitute"
for a corresponding set of hypernotions HH if a copy of HH can be
transformed into a copy of PP by means of the following step:
Step: If the copy contains one or more metanotions then, for some

terminal metaproduction T of one such metanotion M, each occurrence
of M in the copy is replaced by a copy of T and the Step is taken again.

(See 1.1.4.1.a for another application of consistent substitution.)

(Applying this derivation process to the hyper-rule given above (c) may
give rise to

digit cypher sequence :
digit cypher ; digit cypher, digit cypher sequence.

which is therefore a production rule of the language. Note that
digit cypher sequence :

digit cypher ; digit cypher, letter b sequence.
is not a production rule of the language, since the replacement of the
metanotion "NOTION" by one of its terminal metaproductions must be
consistent throughout.)

26 van Wijngaarden, et al.

(Since some metanotions have an infinite number of terminal
metaproductions, the number of production rules which may be derived is
infinite. The language is, however, so designed that, for the production of
any program of finite length, orily a finite number of those production
rules is needed.)

{f) The rules under Syntax are provided with "cross-references" to be
interpreted as follows.

Each hypernotion H of a hyperalternative of a hyper-rule A is followed
by a reference to those hyper-rules B whose derived production rules are
for notions which could be substituted for that H. Likewise, the
hypernotions of each hyper-rule B are followed by a reference back to A.
Alternatively, if H is to be replaced by a symbol, then it is followed by a
reference to its representation in section 9.4.1. Moreover, in some cases, it
is more convenient to give a cross-reference to one metaproduction rule
rather than to many hyper-rules, and in these cases the missing cross­
references will be found in the metaproduction rule.

Such a reference is, in principle, the section number followed by a
letter indicating the line where the rule or representation appears, with
the following conventions:

(i) the references whose section number is that of the section in which
they appear are given first and their section number is omitted; e.g.,
··s.2.1.a" appears as "a" in section "8.2.1";

(ii) all points and a final 1 are omitted, and 10 appears as A; e.g.,
"8.2.1.a" appears as "82a" elsewhere and "10.3.4.1.1.i" appears as
"A34li";

(iii) a section number which is the same as that of the preceding
reference is omitted; e.g., "82a,82b,82c" appears as "82a,b,c";

(iv) the presence of a blind alley derived from that hypernotion is
indicated by "-"; e.g., in 8.0.1.a after "MOID denotation", since "MOID"
may be replaced by, for example, 'reference to real', but 'reference to
real denotation' is not a notion.)

1.1.4. The semantics

The "meaning" of programs {2.2.1.a) in the strict language is defined in
the semantics by means of sentences (in somewhat formalized natural
language) which specify the "actions" to be carried out during the
"elaboration" (2.1.4.1) of those programs. The "meaning" of a program in a
representation language is the same as the meaning of the program in the
strict language which it represents (9.3).

{The semantics makes extensive use of hypernotions and paranotions in
order to "designate", respectively, protonotions and constructs. The word
"designate" should be understood in the sense that the word "flamingo"
may "designate" any animal of the family Phoenicopteridae.)

ALGOL 68 Revised Report 27

1.1.4.l. Hypernotions, designation and envelopment

(Hypernotions, when enclosed between apostrophes, are used to
"designate" protonotions belonging to certain classes; e.g., 'LEAP'
designates any of the protonotions 'local', 'primal' and 'heap'.)

a) Hypernotions standing in the text of this Report, except those in
hyper-rules {l.1.3.4.b) or metaproduction rules {l.l.3.3.b}, "designate" any
protonotions which may be consistently substituted {l.l.3.4.e} for them, the
consistent substitution being applied over all the hypernotions contained in
each complete sub-section of the text (a sub-section being one of the
lettered sub-divisions, if any, or else the whole, of a numbered section).

(Thus 'QUALITY TAX' is a hypernotion designating protonotions such
as 'integral letter i', 'real letter x·, etc. If, in some particular discussion, it
in fact designates 'integral letter i', then all occurrences of "QUALITY" in
that subsection must, over the span of that discussion, designate 'integral'
and all occurrences of "TAX" must designate 'letter i ·. It may then be
deduced from subsection 4.8.2.a that in order, for example, to "ascribe to
an integral-defining-indicator-with-letter-i", it is 'integral letter i' that must
be "made to access V inside the locale".}

Occasionally, where the context clearly so demands, consistent
substitution may be applied over less than a section. (For example, in the
introduction to section 2.1.1.2, there are several occurrences of "'MOID'",
of which two are stated to designate specific (and different) protonotions
spelled out in full, and of which others occur in the plural form "'MOID's",
which is clearly intended to designate a set of different members of the
class of terminal metaproductions of "MOID" .)

b) If a protonotion (a hypernotion) P consists of the concatenation of
the protonotions (hypernotions) A, B and C, where A and C are possibly
empty, then P "contains" B at the position (in P} determined by the length
of A. (Thus, 'abcdefcdgh' contains 'cd' at its third and seventh positions.}

c) A protonotion P1 "envelops" a protonotion P2 as specifically
designated by a hypernotion H2 if P2, or some equivalent (2.1.1.2.a} of it, is
contained (b} at some position within P1 but not, at that position, within
any different (intermediate} protonotion P3 also contained in P1 such that
H2 could also designate P3.

{Thus the 'MODE' enveloped by 'reference to real closed clause· is
'reference to real' rather than 'real'; moreover, the mode (2.1.1.2.b)
specified by struct (real a, struct (boo/ b, char c) d) envelops 'f,'IEI.D' just
twice.}

1.1.4.2. Paranotions

(In order to facilitate discussion, in this Report, of constructs with
specified originals, the concept . of a "paranotion·· is introduced. A
paranotion is a noun that designates constructs (l.l.3.2.e); its meaning is

28 van Wijngaarden, et al.

not necessarily that found in a dictionary but can be construed from the
rules which follow.)

a) A "paranotion" P is a hypernotion (not between apostrophes) which
is used, in the text of this Report, to "designate" any construct whose
original O satisfies the following:

• P, regarded as a hypernotion (i.e., as if it had been enclosed in
apostrophes}, designates {1.1.4.1.a) an "abstraction" (bl of 0.

(For example, the paranotion "fixed-point-numeral" could designate the
construct represented by 02, since, had it been in apostrophes, it would
have designated an abstraction of the notion 'fixed point numeral', which
is the original of that construct. However, that same representation could
also be described as a digit-cypher-sequence, and as such it would be a
direct descendent of that fixed-point-numeral.)

(As an aid to the reader in distinguishing them from other
hypernotions, paranotions are not enclosed between apostrophes and are
provided with hyphens where, otherwise, they would have been provided
with blanks.)

The meaning of a paranotion to which the small syntactic mark "s" has
been appended is the same as if the letter "s" (which is in the same type
font as the marks in this sentence) had been appended instead. (Thus the
fixed-point-numeral 02 may be said to contain two digit-cyphers, rather
than two digit-cyphers.) Moreover, the "s" may be inserted elsewhere than
at the end if no ambiguity arises (e.g., "sources-for-MODINE" means the
same as "source-for-MODINEs").

An initial small syntactic mark of a paranotion is often replaced by the
corresponding large syntactic mark (in order to improve readability, as at
the start of a sentence) without change of meaning (: e.g., "Identifier"
means the same as "identifier").

b) A protonotion P2 is an "abstraction" of a protonotion P1 if
(i) P2 is an abstraction of a notion whose production rule begins with an

asterisk and of which P1 is an alternative
(e.g., 'trimscript' (5.3.2.1.h) is an abstraction of any of the
notions designated by 'NEST trimmer', 'NEST subscript' and
'NEST revised lower bound option'}, or

(ii) P1 envelops a protonotion P3 which is designated by one of the
"elidible hypernotions" listed in section c below, and P2 is an
abstraction of the protonotion consisting of P1 without that enveloped
P3

(e.g., 'choice using boolean start' is an abstraction of the notions
'choice using boolean brief start' and 'choice using boolean bold
start' (by elision of a 'STYLE' from 9.1.l.a)l, or

ALGOL 68 Revised Report 29

(iii) P2 is equivalent to {2.1.1.2.a} P1
(e.g., 'bold begin symbol' is an abstraction of 'bold begin
symbol'}.

(For an example invoking all three rules, it may be observed that
'union of real integral mode defining indicator' is an abstraction of some
'union of integral real mode NEST defining identifier with letter a'
(4.8.1.a). Note, however, that 'choice using union of integral real mode
brief start' is not an abstraction of the notion 'choice using union oI
integral real boolean mode brief start', because the 'boolean' that has
apparently been elided is not an enveloped 'Mom· of that notion.}

c) The "elidible hypernotions" mentioned in section b above are the
following:

"STYLE" • ""TALLY" • "LEAP" • ''DEl<'IED" • "Vl(:TAI," •
"SORT" • "MOID" • "NEST" • "REf<'ETY routine" • "label" •
"with TAX"• "with DECSETY LABSETY" • "of DECSET\ LABSETY" •
"defining LA YER".

(Which one of several possible notions or symbols is the original of a
construct designated by a given paranotion will be apparent from the
context in which that paranotion appears. For example, when speaking of
the formal-declarer of an identity-declaration, if the identity-declaration is
one whose terminal production (1.1.3.2.f) happens to be ref real x = loc real,
then the original of that formal-declarer is some notion designated by
'formal reference to real NEST declarer'.}

(Since a paranotion designates a construct, all technical terms which
are defined for constructs can be used with paranotions without formality.}

d) If two paranotions P and Q designate, respectively, two constructs
S and T, and if S is a descendent of T, then P is termed a "constituent" of
Q unless there exists some (intermediate construct} U such that

(i) S is a descendent of U,
(ii) U is a descendent of T, and

(iii) either P or Q could (equally well} designate U.

(Hence a (S1) is a constituent operand of the formula ax (b + 2 I (i + j))
(T), but b (S2) is not, since it is a descendent of an intermediate formula
b+2 1 (i+j) (U), which is itself descended from T. Likewise. (b+2 I (i+j))
is a constituent closed-clause of the formula T, but the elosed-elause (i + j)
is not, because it is descended from an intermediate elosed-daust>.
However, (i + j) is a constituent integral-elosed-clause of T, because the
intermediate closed-clause is, in fact. a real-elosed-elaust>.

30 van Wijngaarden, et al.

formula
a X (b + 2 1 (i + j))

operand
a

operand
(b + 2 1 (i + j))

I
(real-) closed-clause

operand
b

(b + 2 1 (i + j))

I
formula

b + 2 1 (i + j)

operand
2

operand
2 1 (i + j)

I
formula

operand
(i + j)

I
(integral-) closed-clause

(i + j)

1.1.4.3. Undefined
a) If something is left "undefined" or is said to be "undefined", then

this means that it is not defined by this Report alone and that, for its
definition, information from outside this Report has to be taken into
account.

{A distinction must be drawn between the yielding of an undefined
value (whereupon elaboration continues with possibly unpredictable
results) and the complete undefinedness of the further elaboration. The
action to be taken in this latter case is at the discretion of the
implementer, and may be some form of continuation (but not necessarily
the same as any other implementer's continuation), or some form of
interruption (2.1.4.3.h) brought about by some run-time check.)

b) If some condition is "required" to be satisfied during some
elaboration then, if it is not so satisfied, the further elaboration is
undefined.

c) A "meaningful'' program is a program {2.2.l.a) whose elaboration is
defined by this Report.

{Whether all programs, only particular-programs, only meaningful
programs, or even only meaningful particular-programs are "ALGOL 68"
programs is a matter for individual taste.)

1.1.5. Translations and variants
a) The definitive version D of this Report is written in English. A

translation T of this Report into some other language is an acceptable
translation if:

ALGOL 68 Revised Report 31

• T defines the same set of production trees as D, except that
(i) the originals contained in each production tree of T may be different

protonotions obtained by some uniform translation of the corresponding
originals contained in the corresponding production tree of D, and

(ii) descendents of those production trees need not be the same if their
originals are predicates {l.3.2};

• T defines the meaning {2.1.4.1.a} of each of its programs to be the same
as that of the corresponding program defined by D;

• T defines the same reference language {9.4) and the same standard
environment {10} as D;

• T preserves, under another mode of expression, the meaning of each
section of D except that:

(i) different syntactic marks {l.1.3.1.a} may be used {with a
correspondingly different metaproduction rule for "ALPHA" (1.3.1.B)};

(ii) the method of derivation of the production rules (1.1.3.4} and their
interpretation {1.1.3.2} may be changed to suit the peculiarities of the
particular natural languagE:: {; e.g., in a highly inflected natural
language, it may be necessary to introduce some inflections into the
hypernotions, for which changes such as the following might be
required:

1) additional means for the creation of extra metaproduction rules
(1.1.3.3.a);

2) a more elaborate definition of "consistent substitute" (l.l.3.4.e);
3) a more elaborate definition of "equivalence" between

protonotions (2.1.1.2.a);
4) different inflections for paranotions (1.1.4.2.a) };

(iii) some pragmatic remarks (1.1.2} may be changed.

b) A version of this Report may, additionally, define a "variant of
ALGOL 68" by providing:

(i) additional or alternative representations in the reference language
{9.4},

(ii) additional or alternative rules for the notion 'diaracter glyph'
(8.1.4.1.c} and for the metanotions "ABC" (9.4.2.1.L} and "STOP"
(10.1.1.B},

(iii) additional or alternative declarations in the standard environment
which must, however, have the same meaning as the ones provided in
D:

provided always that such additional or alternative items are delineated in
the text in such a way that the original language, as defined in D, is still
defined therein.

1.2. General metaproduction rules

(The reader may find it helpful to note that a metanotion ending in
"ETY" always has "EMPTY" as one of the hypernotions on its right-hand
side.}

32 van Wijngaarden, et al.

1.2.1. Metaproduction rules of modes

A) MODE : : PLAIN ; STOWED ; REF to MODE ; PROU:DllRE ;
UNITED ; MU definition of MODE ; Ml, appliealion.

B) PLAIN :: INTREAL ; boolean ; charaetcr.
C) INTREAL : : SIZET\' integral ; SIZET\ n•al.
D) SIZET\' : : long LON(;SET\' ; short SIIOHTSET\ ; EMPT\'.
E) LONGSET\' : : long U)NGSET\' ; EMPT\.
F) SHORTSET\' : : short SHORTSET\' ; EMPT\.
G) EMPT\' :: .
H) STOWED : : structured with t'IEU>S mode ;

FLEXET\' ROWS of MODK
I) FIELDS : : t'IEU> ; HELDS HELi>.
J) FIELD : : MODE field TAG{942A).
K) l<'LEXET\' :: flexible ; EMPT\'.
L) ROWS : : row ; ROWS row.
M) REF : : reference ; transient referenec.
N) PROCEDURE : : procedure PAR AM ET\ yielding MOIi),
0) PARAMET\' :: with PARAMETERS ; t:MPT\.
P) PARAMETERS:: PARAMETER; PARAMETEHS PARAMETER.
Q) PARAMETER :: MODE parameter.
R) MOIi> : : MODE ; void.
S) UNITED : : union of MOODS mode.
T) MOODS : : MOOD ; MOODS MOOD.
U) MOOD::

PLAIN ; STOWED ; reference to MODE ; PROU:l)l;RE ; void.
V) MU : : muTALL\'.
W) TALI.\' : : i ; TALI.\' i.

(The metaproduction rule for "TAG" is given in section 9.4.2.l. It
suffices for the present that it produces an arbitrarily large number of
terminal metaproductions.)

1.2.2. Metaproduction rules associated with phrases and coercion

A) ENt:LOSED : :
closed ; collateral ; parallel ; t:HOU:E{34A) ; loop.

B) SOME : : SORT MOil> NEST.
C) SORT : : strong ; firm ; meek ; weak ; soft.

1.2.3. Metaproduction rules associated with nests

A) NEST:: LA\'ER; NEST LA\'ER.
B) LA \'ER : : new DEt:SET\' LABS ET\'.
C) DECSET\' : : DECS ; EMPTY.
D) DEt:S : : DEt: ; DEt:S DEC.
E) DEt: :: MODE TAG{942A) ; priority PRIO TAD{942F) ;

MOID TALLY TAB(942D) ; DUO TAD{942F) ; MONO TAM{942K).
F) PRIO : : i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii.
G) MONO : : procedure with PARAMETER yielding MOID.

ALGOL 68 Revised Report 33

H) Dl10 :: procedure with PARAMETER! PARAMETER2
yielding MOID.

I) LAHSETY : : LABS ; EMPTY.
J) LAHS : : LAB ; LABS LAB.
K) LAH : : label TAG{942A).

(The meta production rules for "TAB", "TAD" and "TAM" are given in
section 9.4.2.l. It suffices for the present that each of them produces an
arbitrarily large number of terminal metaproductions, none of which is a
terminal metaproduction of "TAG".)

1.3. General hyper-rules

("Well, 'slithy' means 'lithe and slimy·. . ..
You see it's like a portmanteau - there are
two meanings packed up into one word."
Through the Looking-glass. Lewis Carroll.}

(Predicates are used in the syntax to enforce certain restrictions on the
production trees, such as that each applied-indicator should identify a
uniquely determined defining-indicator. A more modest use is to reduce
the number of hyper-rules by grouping several similar cases as
alternatives in one rule. In these cases predicates are used to test which
alternative applies.)

1.3.l. Syntax of general predicates

A) NOTION : : ALPHA ; NOTION ALPHA.
B) ALPHA : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; I ; m ; n ; o ; p ;

Q ; r ; S ; t ; U ; V ; W ; X ; y ; z.
C) NOTETY : : NOTION ; EMPTY.
D) THING :: NOTION ; (NOTETYI) NOTETY2 ;

THIN(; (NOTETYI) NOTETY2.
E) WHETHER : : where ; unless.

a) where true : EMPTY.
b) unless false : EMPTY.
c) where THINGl and THING2 : where THIN(;l, where THING2.
d) where THINGl or THING2 : where THINGl ; where THIN(;2.
e) unless THINGl and THING2 : unless THINGl ; unless THING2.
f) unless THINGl or THING2 : unless THIM;I, unless THING2.

g) WHETHER (NOTETY l) is (NOTETY2) :
WHETHER (NOTETYl) begins with (NOTETY2){h,i,j)

and (NOTETY2) begins with (NOTETY l){h,i,j).
h) WHETHER (EMPTY) begins with (NOTION){g,j) :

WHETHER false{b,-).
i) WHETHER (NOTETY) begins with (EMPTY){g,j) :

WHETHER true{a,-).

34 van Wijngaarden, et al.

j) WHETHER (ALPHA! NOTETYI) begins with
(ALPHA2 NOTET\'2){g,j,m) :

WHETHER (ALPHA!) coincides with (ALPHA2) in
(abcdefghijklmnopqrstuvwxyz){k,1,-)

and (NOTETYI) begins with (NOTETY2){h,i,j).
k) where (ALPHA) coincides with (ALPHA) in (NOTION){j} :

where true(a}.
1) unless (ALPHAI) coincides with (ALPHA2) in (NOTION){j) :

where (NOTION) contains (ALPHAI NOTETY ALPHA2){m}
or (NOTION) contains (ALPHA2 NOTET\' ALPHAI){m}.

m) WHETHER (ALPHA NOTET\') contains (NOTION){l,m) :
WHETHER (ALPHA NOTETY) begins with (NOTION){j}

or (NOTETY) contains (NOTION){m,n).
n) WHETHER (EMPTY) contains (NOTION){m) : WHETHER false(b,-).

(The small syntactic marks "'(" and "')'" are used to ensure, in a simple
way, the unambiguous application of these predicates.)

1.3.2. The holding of predicates

A "'predicate"' is a protonotion which begins with 'where' or 'unless·
(unified into 'WHETHER"). For a predicate P, either one or more
production trees may be produced {l.l.3.2.f) (all of which are then
invisible}, in which case P "holds"', or no production tree may be produced
(since each attempt to produce one runs into blind alleys}, and then P
"'does not hold".

(For example, the predicate 'where (ab) is (ab)' holds. Its production
tree may be depicted thus:

'where (ab) is (ab)'

I
'where (ab) begins with (ab) and (ab) begins with (ab)'

'where (ab) begins with (ab)'

I
'where (ab) begins with (ab)'

(same as left branch)

'where (a) coincides with (a) in (abc ... z) and (b) begins with (b)'

I I

"where (a) coincides with (a) in (abc ... z)'

I
'where true' 'where (b) begins with (b)'

I I I
'where (b) coincides with (b) in (abc ... z)'

I
'where true· 'where () begins with ()'

I
'where true·

ALGOL 68 Revised Report 35

If a predicate holds, then its production tree always terminates via
'where true· or 'unless false·. If it does not hold, then, in general, the blind
alleys are 'where false' and 'unless true·. Although almost all the hyper­
rules concerned are for hypernotions beginning with "WHETHER" and so
provide, each time, production rules for pairs of predicates such as 'where
THING 1 · and 'unless THING I·, this does not mean that in each such case
one of the pair must hold. For example, 'where digit four counts iii'
(4.3.l.c) does not hold, but no care has been taken to make 'unless digit
four counts iii' hold either, since there is no application for it in this
Report.

In the semantics, no meaning is ascribed to constructs whose originals
are predicates. They serve purely syntactical purposes.)

1.3.3. Syntax of general constructions

A) STYLE:: brief ; bold ; style TALLY ..

a) NOTION option : NOTION ; EMPTY.
b) NOTION sequence(b) : NOTION ; NOTION, NOTION sequence(b).
c) NOTION list(c) :

NOTION ; NOTION, and also{94f) token, NOTION list(c).
d) NOTETY STYLE pack :

STYLE begin{94f,-) token, NOTET\, STYLE end{94f,-) token.
e) NOTION STYLE bracket :

STYLE sub(94f,-) token, NOTION, sn u: bus{94f,-) token.
f) THINGI or alternatively THING2 : THINGI ; THIN(;2.

(It follows from this syntax that production rules such as
digit cypher sequence :

digit cypher ; digit cypher, digit cypher sequence.
(which was used in the production of the example in 1.1.3.2.f, but for
which no more explicit hyper-rule is given) are immediately available.
Thus the number of hyper-rules actually written in this Report has been
reduced and those that remain have, hopefully, been made more readable,
since these general constructions are so worded as to suggest what their
productions should be.

For this reason, cross-references (1.1.3.4.f) to these rules have been
replaced by more helpful references; e.g., in 8.1.l.l.b, instead of "digit
cypher sequence{l33b}", the more helpful "digit cypher(c) sequence" is
given. Likewise, references within the general constructions themselves
have been restricted to a bare minimum.)

2. The computer and the program

The meaning of a program in the strict language is explained in terms
of a hypothetical computer which performs the set of actions (2.1.4) which
constitute the elaboration (2.1.4.1) of that program. The computer deals
with a set of "objects" (2.1.1).

~

36

2.1. Terminology

2.1.1. Objects

van Wijngaarden, et al.

{"'When I use a word," Humpty Dumpty said, in rather a
scornful tone, "it means just what I choose it to mean -
neither more nor less."
Through the Looking-glass, Lewis Carroll.}

An "object" is a construct {l.1.3.2.e}, a "value" {2.1.1.1.a}, a "locale"
{2.1.1.1.b}, an "environ" {2.1.1.1.c) or a "scene" {2.1.1.1.d}.

{Constructs may be classified as "external objects", since they
correspond to the text of the program, which, in a more realistic
computer, would be compiled into some internal form in which it could
operate upon the "internal objects", namely the values, the locales. the
environs and the scenes. However, the hypothetical computer has no need
of a compilation phase, it being presumed able to examine the program
and all of its descendent constructs at the same time as it is manipulating
the internal objects.)

2.1.1.1. Values, locales, environs and scenes

a) A "value" is a "plain value·· {2.1.3.1}, a "name" {2.1.3.2). a "stowed
value" (i.e., a "structured value" {2.1.3.3} or a "multiple value" {2.1.3.4}) or
a "routine" {2.1.3.5).

{For example, a real number is a plain value. A special font is used for
values appearing in the text of this Report, thus: 3.14, true. This is not to
be confused with the italic and bold fonts used for constructs. This same
special font is also used for letters designating such things as constructs
and protonotions.}

b) A "locale" {is an internal object which} corresponds to some
'DECSETY LABSETY' {1.2.3.C,I}. A "vacant locale" is one for which that
'DECSETY LABSET\'' is 'EMPTY'.

{Each 'QUALITY TAX" (4.8.1.F,G) enveloped by that 'l)E(:~ET\
LABSETY' corresponds to a QllALITY-defining-indicator-with-TA\. (i.e., to
an identifier, operator or mode-indication) declared in the construct whose
elaboration caused that locale to be created. Such a 'QL\LITY TA\.· may
be made to "access" a value or a scene "inside" that locale (2.1.2.c).

A locale may be thought of as a number of storage cells, into which
such accessed objects are placed.}

{The terminal metaproductions of the metanotions ··uEC, "LAH" and
"FIELD" (or of the more frequently used "PROP", which includes them all)
are all of the form 'QUALITY TA\.'. These "properties·· are used in the
syntax and semantics concerned with nests and locales in order to
associate, in a particular situation, some quality with that 'TA\.·.)

ALGOL 68 Revised Report 37

c) An "environ" is either empty, or is composed of an environ and a
locale.

(Hence, each environ is derived from a series of other environs.
stemming ultimately from the empty "primal environ" in which the
program is elaborated (2.2.2.a) .)

d) A "scene" S is an object which is composed of a construct C
(l.l.3.2.e} and an environ E. C is said to be the construct, and E the
environ, "of" S.

(Scenes may be accessed inside locales (2.1.2.c) by 'tAB's or 'UECs
arising from label-identifiers or from mode-indications. and they may also
be values (2.1.3.5) .)

2.1.1.2. Modes

(Each value has an attribute, termed its "mode", which defines how
that value relates to other values and which actions may be applied to it.
This attribute is described, or "spelled", by means of some 'Mom·
(1.2.1.R) (thus there is a mode spelled 'real', and there is a mode spelled
'structured with real field letter r letter e real field ll•tter i lc•ltl•r m
mode'). Since it is intended that the modes specified by the mod(•.
indications a and b in

mode a= struct (ref ab),
mode b = struct (ref struct (ref b b) b)

should in fact be the same mode, it is necessary that both the 'Mom·
'mui definition of structured with reference to mui application

field letter b mode·
and the 'MOID'

'muii definition of structured with reference to structured with
reference to muii application field letter b mod(•
field letter b mode'

(and indeed many others) should be alternative spellings of that same
mode. Similarly, the mode specified by the declarer union (Int, real) may
be spelled as either ·union of integral real mode' or 'union of n•al integral
mode'. All those 'MOID's which are spellings of one same mode are said to
be "equivalent to" one another (a).

Certain 'MOID's, such as 'reference to muiii application', 'reference to
muiiii definition of reference to muiiii application', 'union of real ret'en•nce
to real mode', and 'structured with integral field letter a real field ll'ttt•r a
mode', are ill formed (7.4, 4.7.1.f, 4.8.1.c) and do not spell any mode.

Although for most practical purposes a "mode" can be regarded as
simply a 'MOIi>", its rigorous definition therefore involves the whole class
of 'MOID's, equivalent to each other, any of which could describe it.)

a) 'MOIDI' (1.2.1.R} is "equivalent to" 'MOIU2' if the predicate 'whl'rt'
MOll>l equivalent MOIU2' (7.3.1.a} holds (1.3.2).

{A well formed 'Mom· is always equivalent to itself: ·union of intl'~ral
real mode' is equivalent to 'union of real intt•gral mod(•.)

38 van Wijngaarden, et al.

A protonotion P is "'equivalent to .. a protonotion Q if it is possible to
transform a copy Pc of P into a copy Qc of Q in the following step:
Step: If Pc is not identical to Qc, then some 'MOll)I' contained in Pc, but

not within any {larger) 'Mom.2· contained in Pc, is replaced by some
equivalent 'MOID', and the Step is taken again.

(Thus 'union of integral real mode identifier' is equivalent to 'union ol' rl'al
integral mode identifier'.)

b) A .. mode"' is a class C of 'MOID's such that each member of C is
equivalent (a) to each other member of C and also to itself (in order to
ensure well formedness). but not to any 'MOIDI' which is not a member· of
C.

(However, it is possible (except when equivalence of modes is
specifically under discussion) to discuss a mode as if it were simply a
terminal meta production of .. Mom .. , by virtue of the abbreviation to be
given in 2.1.5.f.)

c) Each value is of one specific mode.
(For example, the mode of the value 3.14 is 'real'. However, there are

no values whose mode begins with 'union of', 'transient reference to' or
'flexible ROWS of' (see 2.1.3.6) .)

2.1.1.3. Scopes

(A value V may .. refer to.. (2.1.2.e), or be composed from (2.1. l.l.dl.
another internal object O (e.g., a name may refer to a value: a routinv.
which is a scene, is composed, in part, from an environ). Now the lifetime
of the storage cells containing (2.1.3.2.a) or implied by (2.1.1.1.b) 0 may
be limited (in order that they may be recovered after a certain time), and
therefore it must not be possible to preserve V beyond that lifetime. for
otherwise an attempt to reach some no-longer-existent storage cell via V
might still be made. This restriction is expressed by saying that, if V is to
be ··assigned" (5.2.1.2.b) to some name W, then the .. scope .. of W must not
be "'older" than the scope of V. Thus, the scope of V is a measure of the
age of those storage cells, and hence of their lifetime.)

a) Each value has one specific "'scope .. (which depends upon its mode
or upon the manner of its creation: the scope of a value is defined to be
the same as that of some environ).

b) Each environ has one specific "scope". (The scope of each environ
is "newer" (2.1.2.f) than that of the environ from which it is composed
(2.1.1.l.c) .)

(The scope of an environ is not to be confused with the scopes of the
values accessed inside its locale. Rather, the scope of an environ is used
when defining the scope of scenes for which it is necessary (7.2.2.c) or of
the yields of generators for which it is "local" (5.2.3.2.b). The scope of an
environ is defined relative (2.1.2.f) to the scope of some other environ. so
that hierarchies of scopes are created depending ultimately upon the scope
of the primal environ (2.2.2.a) .)

ALGOL 68 Revised Report 39

2.1.2. Relationships

a) Relationships either are "permanent", i.e., independent of the
program and of its elaboration, or actions may cause them to "hold" or to
cease to hold. Relationships may also be ··transitive"; i.e., if is such a
relationship and A*B and B*C hold, then A*C holds also.

b) ··To be the yield of" is a relationship between a value and an
action, viz., the elaboration of a scene. This relationship is made to hold
upon the completion of that elaboration (2.1.4.1.b).

c) ··To access" is a relationship between a 'PROP' (4.8.1.E} and a
value or a scene V which may hold "inside" some specified locale L {whose
'DECSETY LABSETY' envelops 'PROP'). This relationship is made to hold
when 'PROP' is ··made to access" V inside L (3.5.2.Step 4, 4.8.2.a) and it
then holds also between any 'PROPl · equivalent to (2.1.1.2.a) 'PROP' and V
inside L.

d) The permanent relationships between values are: "to be of the
same mode as" {2.1.1.2.c}, "to be smaller than", "to be widenable to", "to
be lengthenable to" {2.1.3.1.e} and "to be equivalent to" {2.1.3.1.g). If one of
these relationships is defined at all for a given pair of values, then it
either holds or does not hold permanently. These relationships are all
transitive.

e) "To refer to" is a relationship between a "name" (2.1.3.2.a) N and
some other value. This relationship is made to hold when N is "made to
refer to" that value and ceases to hold when N is made to refer to some
other value.

f) There are three transitive relationships between scopes. viz.. a
scope A {2.1.1.3} may be either "newer than", or "the same as" or "older
than" a scope B. If A is newer than 8, then B is older than A and vice­
versa. If A is the same as B, then A is neither newer nor older than B (but
the converse is not necessarily true, since the relationship is not defined at
all for some pairs of scopes).

g) "To be a subname of" is a relationship between a name and a
"stowed name" (2.1.3.2.b). This relationship is made to hold when that
stowed name is "endowed with subnames" (2.1.3.3.e, 2.1.3.4.g) or when it is
"generated" (2.1.3.4.j,l}. and it continues to hold until th3t stowed name is
endowed with a different set of subnames.

2.1.3. Values

2.1.3.1. Plain values

a) A plain value is either an "arithmetic value". i.e .. an "integer" or a
"real number", or is a "truth value" (f). a "character" (g} or a "void valm•'
{h).

40 van Wijngaarden, et al.

b) An arithmetic value has a "size", i.e., an integer characterizing the
degree of discrimination with which it is kept in the computer.

c) The mode of an integer or of a real number of size n is,
respectively, some 'SIZETY integral' or 'SIZETY real' where, if n is
positive (zero, negative), that 'SIZETY' is n times 'long· (is empty, is -n
times 'short') .

d) The number of integers or of real numbers of a given size that can
be distinguished increases (decreases) with that size until a certain size is
reached, viz., the "number of extra lengths" (minus the "number of extra
shorths") of integers or of real numbers, respectively, {10.2.1.a,b,d,e) after
which it is constant.

(Taking Three as the subject to reason
about-
A convenient number to state-

e) For the purpose of explaining the meaning of the widening coercion
and of the operators declared in the standard-prelude, the following
properties of arithmetic values are assumed:

• for each pair of integers or of real numbers of the same size, the
relationship "to be smaller than" is defined with its usual mathematical
meaning {10.2.3.3.a, 10.2.3.4.a);
• for each pair of integers of the same size, a third distinguishable
integer of that size may exist, the first integer "minus" the other
{10.2.3.3.g};

(We add Seven, and Ten, and then multiply
out
By One Thousand diminished by Eight.

• for each pair of real numbers of the same size, three distinguishable
real numbers of that size may exist, the first real number "minus"
("times", "divided by") the other one (10.2.3.4.g,l,m);
• in the foregoing, the terms "minus", "times" and "divided by" have
their usual mathematical meaning but, in the case of real numbers,
their results are obtained "in the sense of numerical analysis", i.e., by
performing those operations on numbers which may deviate slightly
from the given ones (; this deviation is left undefined in this Report):

(The result we proceed to divide, as you
see,
By Nf ne Hundred and Ninety and Two

• each integer of a given size is "widenable to" ,1 real number close to
it and of that same size (6.5);
• each integer (real number) of a given size can be "lengthened to" an
integer (real number) close to it whose size is greater by one
(10.2.3.3.q, 10.2.3.4.n}.

ALGOL 68 Revised Report 41

f) A "truth value" is either "true" or "false". Its mode is 'boolean·.

(Then subtract Seventeen, and the answer
must be
Exactly and perfectly true.
The Hunting of the Snark, Lewis Carroll.)

g) Each "character" is "equivalent'" to a nonnegative integer of size
zero, its "integral equivalent" (10.2.1.n): this relationship is defined only to
the extent that different characters have different integral equivalents,
and that there exists a "largest integral equivalent'" (10.2.1.p). The mode of
a character is 'character·.

h) The only "void value" is "empty··. Its mode is ·void'.
(The elaboration of a construct yields a void value when no more useful

result is needed. Since the syntax does not provide for void-variables. void­
identity-declarations or void-parameters, the programmer cannot make
use of void values, except those arising from uniting (6.4) .)

i) The scope of a plain value is the scope of the primal t'nviron
{2.2.2.a).

2.1.3.2. Names

{What's in a name? that which we call a
rose
By any other name would smell as sweet.
Romeo and Juliet, William Shakespeare.)

a) A "name" is a value which can be "made to refer to" {d, 5.2.3.2.a,
5.2.1.2.b) some other value, or which can be "nil" {and then refers to no
value); moreover, for each mode beginning with 'reference to', there is
exactly one nil name of that mode.

A name may be "newly created" {by the elaboration of a generawr
(5.2.3.2) or a rowed-to-FORM (6.6.2), when a stowed name is endowed with
subnames (2.1.3.3.e, 2.1.3.4.g) and, possibly, when a name is "generated"
(2.1.3.4.j, 1)). The name so created is different from all names already in
existence.

{A name may be thought of as the address of the storage cell or cells,
in the computer, used to contain the value referred to. The creation of a
name implies the reservation of storage space to hold that value.)

b) The mode of a name N is some 'reference to MODE' and any value
which is referred to by N must be "acceptable to" {2.1.3.6.d) that 'MOUE'.
If 'MODE' is some 'STOWED', then N is said to be a "stowed name".

c) The scope of a name is the scope of some specific environ {usually
the "local environ" (5.2.3.2.b) of some generator). The scope of a name
which is nil is the scope of the primal environ {2.2.2.a).

42 van Wijngaarden, et al.

d) If N is a stowed name referring to a structured (multiple) value V
(2.1.3.3, 2.1.3.4}, and if a subname (2.1.2.g} of N selected (2.1.3.3.e, 2.1.3.4.g)
by a 'TAG' (an index) I is made to refer to a (new) value X, then N is
made to refer to a structured (multiple) value which is the same as V
except for its field (element) selected by I, which is {now made to be} X.

{For the mode of a subname, see 2.1.3.3.d and 2.1.3.4.f.)

2.1.3.3. Structured values

a) A "structured value" is composed of a sequence of other values, its
'"fields'", each of which is '"selected" (bl by a specific 'TAG' {9.4.2.1.AJ. {For
the selection of a field by a field-selector, see 2.1.5.g.}

(The ordering of the fields of a structured value is utilized in the
semantics of structure-displays (3.3.2.b) and format-texts (10.3.4), and in
straightening (10.3.2.3.c) .}

b) The mode of a structured value V is some 'structured with HEU)S
mode'. If the n-th 'FJELD' enveloped by that 'FIELDS' is some 'MODE field
TAG·, then the n-th field of V is .. selected" by 'TAG· and is acceptable to
(2.1.3.6.d} 'MODE'.

c) The scope of a structured value is the newest of the scopes of its
fields.

d) If the mode of a name N (referring to a structured value) is some
'reference to structured with FIELDS mode', and if the predicate 'where
MODE field TAG resides in FIELDS' holds (7.2.1.b,c), then the mode of the
subname of N selected {e) by 'TAG' is 'reference to MODE'.

e) When a name N which refers to a structured value V is "endowed
with subnames'" {e, 2.1.3.4.g, 4.4.2.b, 5.2.3.2.a}, then,
For each 'TAG' selecting a field F in V,

• a new subname M is created of the same scope as N:
• M is made to refer to F:
• M is said to be the name '"selected" by 'TAG' in N:
• if M is a stowed name {2.1.3.2.b). then it is itself endowed with
subnames {e, 2.1.3.4.g}.

2.1.3.4. Multiple values

a) A "multiple value" (of n dimensions) is composed of a "descriptor"
and a sequence of other values, its "elements'", each of which may be
"selected" by a specific n-tuple of integers, its '"index".

b) The "descriptor" is of the form
((11, u1), (12, u2), ... , (In, un))

where each (1., u.), i = 1, ... , n, is a "bound pair" of integers in which 1. is
I I I

~-
the i-th ··1ower bound" and u. is the i-th "upper bound". ··.

I

ALGOL 68 Revised Report 43

c) If for any i, i = 1, ... , n, u. < 1., then the descriptor is said to be
I I

"flat" and there is one element, termed a "ghost element" {, and not
selected by any index; see also 5.2.1.2.b}: otherwise. the number of
elements is (u1 - 11 + 1) x (u2 - 12 + 1) x ... x (un - In+ 1) and each is

selected by a specific index (r1, ... , r) where I.~ r. ~ u., i = 1, ... , n.
n I I I

d) The mode of a multiple value V is some 'RO\\S of MODE', where
that 'ROWS' is composed of as many times 'row· as there are bound pairs
in the descriptor of V and where each element of V is acceptable to
{2.l.3.6.d} that 'MODE'.

{For example, given l J union (int, real) ruir = (1, 2.0), the mode of the
yield of ruir is 'row of union of integral real mode', the mode of its first
element is 'integral' and that of its second element is 'real'.}

e) The scope of a multiple value is the newest of the scopes of its
elements, if its descriptor is not flat, and, otherwise. is the scope of the
primal environ {2.2.2.a}.

f) A multiple value, of mode 'ROWS of MODE', may be referred to
either by a "flexible" name of mode 'reference to flcxibll' RO\\ s oi'
MODEi ·, or by a "fixed" name of mode 'reference to RO\\ s of MOHEI ·
where {in either case} 'MODEi · "deflexes·· {2.l.3.6.b) to 'MOHE'.

(The difference implies a possible difference in the method whereby the
value is stored in the computer. The flexible case must allow a multiple
value with different bounds to be assigned (5.2.1.2.b) to that name.
whereas the fixed case can rely on the fact that tho~e bounds will remain
fixed during the lifetime of that name. Note that the ··flexibility·· is a
property of the name: the underlying multiple value is the same value in
both cases.}

If the mode of a name N (referring to a multiple value} is some
'reference to FLEXETY ROWS of MODE', then the mode of each subname
of N is 'reference to MODE'.

g) When a name N which refers to a multiple value V is "endowed
with subnames" {g, 2.1.3.3.e, 4.4.2.b, 5.2.1.2.b, 5.2.3.2.a}. then,
For each index selecting an element E of V,

• a new subname M is created of the same scope as N:
• M is made to refer to E:
• M is said to be the name "selected" by that index in N:
• if M is a stowed name {2.l.3.2.b}, then it is itself endowed with
subnames (g, 2.1.3.3.e}.

(In addition to the selection of an element (a) or a name (g) by means
of an index, it is also possible to select a value, or to generate a new name
referring to such a value, by means of a trim (h,i,j) or a 'TA(;' (k.l). Both
indexes and trims are used in the elaboration of slices (5.3.2.2) .)

44 van Wijngaarden, et al.

h) A "trim" is an n-tuple, each element of which is either an integer
(corresponding to a subscript} or a triplet (I, u, d) (corresponding to a
trimmer or a revised-lower-bound-option}, such that at least one of those
elements is a triplet (if all the elements are integers, then the n-tuple is an
index (a)}. Each element of such a triplet is either an integer or is
"absent".

(A trim (or an index) is yielded by the elaboration of an indcxt•r
(5.3.2.2.b) .}

i) The multiple value W (of m dimensions} "selected" by a trim T in a
multiple value V (of n dimensions, 1 ~ m ~ n} is determined as follows:

• Let T be composed of integers and triplets T., i = 1, n, of which
I

m are actually triplets: let the j-th triplet be (I.. u .. d.). j = 1, m:
J J J

• W is composed of
(i) a descriptor ((1 1 - d1, u1 - d1), (1 2 - d2, u2 - d2) (Im - dm,

u - d)) : m m
(ii) elements of V, where the element, if any. selected in W by an index
(w , ... , w) (1. - d. ~ w. ~ u. - d.} is that selected in V by the index

1 m J J J J J
(v 1, ... , v n) determined as follows:

For i = 1, . . . , n,
Case A: T. is an integer:

I

• V = T.
i j'

Case B: T. is the j-th triplet (I., u., d.) of T:
I J J J

• V. = W. + d ..
I J J

j) The name M "generated" by a trim T from a name N which refers
to a multiple value V is a {fixed} name, of the same scope as N, {not
necessarily newly created} which refers to the multiple value W selected
{i} by Tin V. Each subname of M, as selected by an index lw, is one of the
{already existing} subnames of N, as selected by an index Iv, where each Iv
is determined from T and the corresponding lw using the method given in
the previous sub-section.

k) The multiple value W "selected" by a 'TAG' in a multiple value V
{each of whose elements is a structured value) is composed of

(i) the descriptor of V, and
(ii) the fields selected by 'TAG· in the elements of V, where the element,

if any, selected in W by an index I is the field selected by 'TAG· in the
element of V selected by I.

l) The name M "generated" by a 'TAG' from a name N khich refers
to a multiple value V (each of whose elements is a structured value) is a
(fixed) name, of the same scope as N, {not necessarily newly created)

ALGOL 68 Revised Report 45

which refers to the multiple value selected (k} by 'TAG' in V. Each
subname of M selected by an index I is the (already existing) name
selected (2.1.3.3.e) by 'TAG' in the subname of N selected (g) by I.

2.1.3.5. Routines

a) A "routine" is a scene (2.1.1.1.d} composed of a routine-text
(5.4.1.1.a,b) together with an environ (2.1.1.1.c).

(A routine may be "called" (5.4.3.2.b), whereupon the unit of its routim.·­
text is elaborated.)

b) The mode of a routine composed of a PRO(:EDLIRl<:-routine-text is
'PRO(~EDllRE'.

c) The scope of a routine is the scope of its environ.

2.1.3.6. Acceptability of values

a) (There are no values whose mode begins with 'union of'. There
exist names whose modes begin with 'reference to union of', e.g., u in
union (int, real) u; . Here, however, u, whose mode is 'reft'rt'nce to union ol'
integral real mode', refers either to a value whose mode is 'integral' or to
a value whose mode is 'real'. It is possible to discover which of these
situations obtains, at a given moment. by means of a eonformity-claust•
(3.4.1.q) .)

The mode 'MOID' is "united from" the mode 'MOOD' if 'Mom· is some
'union of MOODSET\' I MOOD MOODSET\'2 mode'.

b) (There are no values whose mode begins with 'flexible'. There exist
flexible names whose modes begin with 'reference to l'lexible', e.g., a I in
flex [1 : n] real al; . Here al, whose mode is 'rel'eren<·e to flexible row of
real', refers to a multiple value whose mode is 'row of real' (see also
2.1.3.4.f). In general, there exist values only for those modes obtainable by
"deflexing" .)

The mode 'MOIDI · "deflexes" to the mode 'MOID2' if the predicate
'where MOIDI deflexes to MOID2' holds (4.7.1.a,b,c).

(The deflexing process obtains 'MOID2' by removing all 'flexiblt•'s
contained at positions in 'MOIDI · where they are not also contained in any
'REF to MOID3'. Thus

'structured with flexible row of character field letter a mode',
which is not the mode of any value, deflexes to

'structured with row of character field letter a mode'
which is therefore the mode of a value referable to by a flexible name of
mode

'reference to structured with flexible row of character
field letter a mode'.

This mode is already the mode of a name and therefore it cannot be
deflexed any further.)

46 van Wijngaarden, et al.

c) (There are no names whose mode begins with 'transient
reference to'.

The yield of a transient-reference-to-MODE-H)RM is a "transient name"
of mode 'reference to MODE', but, there being no transient-reference-to­
MODE-declarators in the language (4.6.1), the syntax ensures that
transient names can never be assigned, ascribed or yielded by the calling
of a routine.

E.g., xx : = al [i] is not an assignation because xx is not a reference-to­
transient-reference-to-real-identifier. Transient names originate from the
slicing, multiple selection or rowing of a flexible name.)

d) A value of mode M1 is "acceptable to" a mode M2 if
(i) M1 is the same as M2, or

(ii) M2 is united (a} from M1 (thus the mode specified by union (real, Int)
accepts values whose mode is that specified by either real or Intl, or

(iii) M2 deflexes (b) to M1 (thus the mode 'flexible row of real' (a mode of
which there are no values) accepts values such as the yield of the
actual-declarer flex [1 : n] real which is a value of mode 'row of real'),
or

(iv) M1 is some 'reference to MODE' and M2 is 'transient reference to
MODE' (thus the mode 'transient reference to real' accepts values
(such as the yield of al [i]) whose mode is 'reference to real').

{See 2.1.4.1.b for the acceptability of the yield of a scene.)

2.1.4. Actions

(Su it the action to the word, the word to
the action.
Hamlet, William Shakespeare.)

2.1.4.1. Elaboration

a) The "elaboration" of certain scenes (those whose constructs are
designated by certain paranotions) is specified in the sections of this
Report headed "Semantics", which describe the sequence of "actions"
which are to be carried out during the elaboration of each such scene.

{Examples of actions which may be specified are:
• the causing to hold of relationships,
• the creation of new names, and
• the elaboration of other scenes.)

The ··meaning" of a scene is the effect of the actions carried out during
its elaboration. Any of these actions or any combination thereof may be.
replaced by any action or combination which causes the same effect.

b) The elaboration of a scene S may "yield" a value. If the construct
of S is a MOID-NOTION, then that value is, unless otherwise specified, {of
such a mode that it is) acceptable to {2.1.3.6.d) 'MOID'.

{This rule makes it possible, in the semantics, to discuss yields without
explicitly prescribing their modes.)

ALGOL 68 Revised Report 47

c) If the elaboration of some construct A in some environ E is not
otherwise specified in the semantics of this Report, and if B is the only
direct descendent of A which needs elaboration {see below}, then the
elaboration of A in E consists of the elaboration of B in E and the yield, if
any, of A is the yield, if any, of B {; this automatic elaboration is termed
the "pre-elaboration" of A in E).

A construct needs no elaboration if it is invisible {l.l.3.2.h}, if it is a
symbol (9.1.1.h), or if its elaboration is not otherwise specified in the
semantics of this Report and none of its direct descendents needs
elaboration.

{Thus the elaboration of the reference-to-real-closed-clause (3.1.1.a)
(x : = 3.14) is (and yields the same value as) the elaboration of its
constituent reference-to-real-serial-clause (3.2.1.a) x : = 3.14.)

2.1.4.2. Serial and collateral actions

a) An action may be "inseparable", "serial" or "collateral". A serial or
collateral action consists of one or more other actions, termed its "direct
actions". An inseparable action does not consist of other actions (; what
actions are inseparable is left undefined by this Report).

b) A "descendent action" of another action B is a direct action either
of B, or of a descendent action of B.

c) An action A is the "direct parent" of an action B if B is a direct
action {a) of A.

d) The direct actions of a serial action S take place one after the
other; i.e., the completion {2.1.4.3.c,d) of a direct action of S is followed by
the initiation {2.1.4.3.b,c) of the next direct action, if any, of S. {The
elaboration of a scene, being in general composed of a sequence of
actions, is a serial action.)

e) The direct actions of a collateral action are merged in time; i.e.,
one of its descendent inseparable actions which, at that moment, is
"active" {2.1.4.3.a} is chosen and carried out, upon the completion {2.1.4.3.c}
of which another such action is chosen, and so on {until all are completed).

If two actions (collateral with each other) have been said to be
"incompatible with" {10.2.4} each other, then {they shall not be merged;
i.e.,} no descendent inseparable action of the one shall (then the one (if it
is already inseparable) shall not) be chosen if, at that moment, the other
is active and one or more, but not all, of its descendent inseparable
actions have already been completed; otherwise, the method of choice is
left undefined in this Report.

f) If one or more scenes are to be "elaborated collaterally", then this
elaboration is the collateral action consisting of the (merged) elaboration
of those scenes.

48 van Wijngaarden, et al.

2.1.4.3. Initiation, completion and termination

a) An action is either "active" or "inactive".
An action becomes active when it is "initiated" (b,c) or "resumed" (g)

and it becomes inactive when it is "completed" (c,d), "terminated" (e).
"halted" (fl or "interrupted" (h).

b) When a serial action is "initiated", then the first of its direct
actions is initiated. When a collateral action is "initiated", then all of its
direct actions are initiated.

c) When an inseparable action is "initiated". it may then be carried
out (see 2.1.4.2.e). whereupon it is "completed".

d) A serial action is "completed" when its last direct action has bn•n
completed. A collateral action is "completed" when all of its direct actions
have been completed.

e) When an action A (whether serial or collateral) is "terminall'd .
then all of its direct actions (and hence all of its descendent actions} are
terminated (whereupon another action may be initiated in its pla<:l').
(Termination of an action is brought about by the elaboration of a .ium11
(5.4.4.2) .)

f) When an action is "halted", then all of its active direct actions (and
hence all of its active descendent actions) are halted. (An action may lw
halted during a "calling" of the routine yielded by the operator down
(10.2.4.d), whereupon it may subsequently be resumed during a calling of
the routine yielded by the operator up (10.2.4.e) .)

If, at any time, some action is halted and it is not descended from a
"process" of a "parallel action" (10.2.4) of whose other process (es) thPre
still exist descendent active inseparable actions. then the further
elaboration is undefined. (Thus it is not defined that the elaboration of thl'
collateral-clause in

begin sema sergei = level O;
(par begin (down sergei; print (pokrovsky)), skip end,

(read (pokrovsky); up sergei))
end

will ever be completed.)

g) When an action A is "resumed", then those of its direct actions
which had been halted. consequent upon the halting of A are resumed.

h) An action may be "interrupted" by an event (e.g., "overflow") not
specified by the semantics of this Report but caused by the computer if its

ALGOL 68 Revised Report 49

limitations (2.2.2.b} do not permit satisfactory elaboration. When an action
is interrupted. then all of its direct actions. and possibly its direct p,1re11t
also, are interrupted. (Whether, after an interruption. that action is
resumed. some other action is initiated or the elaboration of the program
ends, is left undefined by this Report.}

(The effect of the definitions given above is as follows:
During the elaboration of a program (2.2.2.a) the el:1boration of its

closed-clause in the empty primal environ is active. At any given monwnt.
the elaboration of one scene may have called for the elilhoration of somt'
other scene or of several other scenes collaterally. If and when t lw
elaboration of that other scene or scenes has been completed. thL· next
step of the elaboration of the original scene is taken. and so on until it. in
turn, is completed.

It will be seen that all this is analogous to the calling of one subrouti1w
by another: upon the completion of the execution of the called subrouti1w.
the execution of the calling subroutine is continued: thP semantic rules
given in this Report for the elaboration of the various paranotions
correspond to the texts of the subroutines: the sernantil' rules may e\·cn.
in suitable circumstances, invoke themselves recursin•ly (but with ,,
different construct or in a different environ on each Ol'casion).

Thus there exists, at each moment. a tree of aeti\'e actions descended
(2.1.4.2.b) from the elaboration of the program.)

2.1.5. Abbreviations

(In order to avoid some long and turgid phrases which would otherwise
have been necessary in the Semantics. certain abbrL•\·iations are used
freely throughout the text of this Report.}

a) The phrase "the A of B", where A and B ,tre paranotions. stands for
"the A which is a direct descendent (1.1.3.2.f} of B".

(This permits the abbreviation of "direct descendent or· to "of' or "its··.
e.g., in the assignation (5.2.1.1.a) i := I. i is "its· dt>slination (or i is tlw.
or a, destination "of' the assignation i := I). whereas I is not :1 dPslination
of the serial-clause i := I; j := 2 (although it is a constituent dPstin.11w11
(l.l.4.2.d) of it).}

b) The phrase "C in E". where C is a eonstrud and E is an environ.
stands for "the scene composed (2.1.1.1.d} of C and E". It is sometimes
even further shortened to just "C" when it is clear which l'nviron is meant.

(Since the process of elaboration (2.1.4.1.,1) may be applied onl.v to
scenes. this abbreviation appears most frequently in forms sul'h :is · .-\ loup­
clause C, in an environ E1. is elaborated ... ·· (:J.5.2) and · :\n assig11.1tio11 A
is elaborated ... " (5.2.1.2.a, where it is the l'iabor:ition of A in ,111_\·

appropriate environ that is being discussed).}

50 van Wijngaarden, et al.

c) The phrase "the yield of S", where S is a scene whose elaboration
is not explicitly prescribed, stands for "the yield obtained by initiating the
elaboration of S and awaiting its completion".

(Thus the sentence (3.2.2.c):
"W is the yield of that unit: "

(which also makes use of the abbreviation defined in b above) is to be
interpreted as meaning:

"W is the yield obtained upon the completion of the elaboration.
hereby initiated, of the scene composed of that unit and the
environ under discussion: " .)

d) The phrase "the yields of s1 , Sn"· where s1 Sn are scerws

whose elaboration is not explicitly prescribed. stands for "the yields
obtained by initiating the collateral elaboration (2.1.4.2.f) of s1 , Sn and

awaiting its completion (which implies the completion of the elaboration of
them all)".

If some or all of s1, ... , Sn are described as being. in some environ.

certain constituents of some construct, then their yields are to be
considered as being taken in the textual order (l.l.3.2.i) of those
constituents within that construct.

(Thus the sentence (3.3.2.b):
"let V 1, ... , V m be the (collateral) yields of the constituent units of

C:"
is to be interpreted as meaning:

"let V 1. ... , V m be the respective yields obtained upon the

completion of the collateral elaboration, hereby initiated, of the
scenes composed of the constituent units of C. considered in their
textual order, together with the environ in which C was being
elaborated:" .)

e) The phrase "if A is B", where A and B are hypernotions, stands for
"if A is equivalent (2.1.1.2.a) to B".

(Thus, in "Case C: '(~HOIC.:E' is some 'choice using llMTED'" (3.4.2.b).
it matters not whether 'CHOICE' happens to begin with 'choice using union
of' or with some 'choice using Mli definition of union of'.)

f) The phrase "the mode is A", where A is a hypernotion, stands for
"the mode (is a class of 'MOID's which) includes A".

(This permits such shortened forms as "the mode is some 'structured
with FIELDS mode'", "the mode begins with 'union of'", and "the mode
envelops a 'FIEU>"": in general, a mode may be specified by quoting just
one of the 'MOID's included in it.)

g) The phrase "the value selected (generated) by the field-selector F"
stands for "if F is a field-selector-with-TA(; (4.8.1.f}, then the value selected
(2.1.3.3.a,e, 2.1.3.4.k) (generated (2.1.3.4.l)) by that 'TA(;

ALGOL 68 Revised Report

2.2. The program

51

2.2.1. Syntax

a) program : strong void new closed clause{3la).
{See also 10.1.}

2.2.2. Semantics

{"I can explain all the poems that ever were invented -
and a good many that haven't been invented just yet."
Through the Looking-glass, Lewis Carroll.}

a) The elaboration of a program is the elaboration of its strong-void-
new-closed-clause in an empty environ (2.1.1.1.c} termed the "primal
environ".

(Although the purpose of this Report is to define the meaning of a
particular-program {10.1.1.g}, that meaning is established only by first
defining the meaning of a program in which that particular-program is
embedded (10.1.2) .)

(In this Report, the syntax says which sequences of symbols are
terminal productions of 'program', and the semantics which actions are
performed by the computer when elaborating a program. Both syntax and
semantics are recursive. Though certain sequences of symbols may be
terminal productions of 'program' in more than one way (see also
1.1.3.2.f), this syntactic ambiguity does not lead to a semantic ambiguity.)

b) In ALGOL 68, a specific syntax for constructs is provided which,
together with its recursive definition, makes it possible to describe and to
distinguish between arbitrarily large production trees, to distinguish
between arbitrarily many different" values of a given mode (except certain
modes like 'boolean' and ·void') and to distinguish between arbitrarily
many modes, which allows arbitrarily many objects to exist within the
computer and which allows the elaboration of a program to involve an
arbitrarily large, not necessarily finite, number of actions. This is not
meant to imply that the notation of the objects in the computer is that
used in this Report nor that it has the same possibilities. It is not assumed
that these two notations are the same nor even that a one-to-one
correspondence exists between them: in fact, the set of different notations
of objects of a given category may be finite. It is not assumed that the
computer can handle arbitrary amounts of presented information. It is not
assumed that the speed of the computer is sufficient to elaborate a given
program within a prescribed lapse of time, nor that the number of objects
and relationships that can be established is sufficient to elaborate it at all.

c) A model of the hypothetical computer, using a physical machine, is
said to be an "implementation" of ALGOL 68 if it does not restrict the use
of the language in other respects than those mentioned above.
Furthermore, if a language A is defined whose particular-programs are

52 van Wijngaarden, et al.

also particular-programs of a language B, and if each such particular­
program for which a meaning is defined in A has the same defined
meaning in B, then A is said to be a "sublanguage" of B, and B a
"superlanguage" of A.

(Thus a sublanguage of ALGOL 68 might be defined by omitting some
part of the syntax, by omitting some part of the standard-prelude, and/or
by leaving undefined something which is defined in this Report, so as to
enable more efficient solutions to certain classes of problem or to permit
implementation on smaller machines.

Likewise, a superlanguage of ALGOL 68 might be defined by additions
to the syntax, semantics or standard-prelude, so as to improve efficiency
(by allowing the user to provide additional information) or to permit the
solution of problems not readily amenable to ALGOL 68.)

A model is said to be an implementation of a sublanguage if it does not
restrict the use of the sublanguage in other respects than those mentioned
above.

(See 9.3.c for the term "implementation of the reference language".)

(A sequence of symbols which is not a particular-program but can be
turned into one by deleting or inserting a certain number of symbols and
not a smaller number could be regarded as a particular-program with that
number of syntactical errors. Any particular-program that can be obtained
by deleting or inserting that number of symbols may be termed a
"possibly intended" particular-program. Whether a particular-program or
one of the possibly intended particular-programs has the effect its author
in fact intended it to have is a matter which falls outside this Report.)

(In an implementation, the particular-program may be "compiled", i.e.,
translated into an "object program" in the code of the physical machine.
Under certain circumstances, it may be advantageous to compile ·parts of
the particular-program independently, e.g., parts which are common to
several particular-programs. If such a part contains applied-indieators
which identify defining-indicators not contained in that part, then
compilation into an efficient object program may be assured by preceding
the part by a sequence of declarations containing those defining.
indicators.)

(The definition of specific sublanguages and also the specification of
actions not definable by any program (e.g., compilation or initiation of the
elaboration) is not given in this Report. See, however, 9.2 for the
suggested use of pragmats to control such actions.)

PART II

Fundamental Constructions

(This part presents the essential structure of programs:
• the general rules for constructing them:

ALGOL 68 Revised Report 53

• the ways of defining indicators and their properties, at each new level
of construction;
• the constructs available for programming primitive actions.)

3'_ Clauses

(Clauses provide
• a hierarchical structure for programs,
• the introduction of new ranges of definitions,
• serial or collateral composition, parallelism, choices and loops.)

3.0.1. Syntax

a) * phrase : SOME unit{32d) ; NEST declaration of DEl:S(4la).
b) * SORT MODE expression : SORT MODE NEST liNIT{5A}.
c) * statement : strong void NEST lJNIT(5A).
d) * MOID constant : MOID NEST DEFIED identifier with TAG{48a,b) ;

MOID NEST denoter{80a).
e) * MODE variable :

reference to MODE NEST DEFIED identifier with TAG(48a,b).
f) * NEST range : SOID NEST serial clause defining LA YER{32a) ;

SOID NEST chooser CHOICE STYLE clause{34b) ;
SOID NEST case part of choice using l1NITED{34i) ;
NEST STYLE repeating part with DEC{35e) ;
NEST STYLE while do part(35f} ;
PROCEDURE NEST routine text{54la,b).

(NEST-ranges arise in the definition of "identification" (7.2.2.b) .)

3.0.2. Semantics

A "nest" is a 'NEST'. The nest "of" a construct is the "NEST" enveloped
by the original of that construct, but not by any 'defining LAYER'
contained in that original.

(The nest of a construct carries a record of all the declarations forming
the environment in which that construct is to be interpreted.

Those constructs which are contained in a range R, but not in any
smaller range contained within R, may be said to comprise a "reach". All
constructs in a given reach have the same nest, which is that of the
immediately surrounding reach with the addition of one extra "LAYER".
The syntax ensures (3.2.1.b, 3.4.1.i,j,k, 3.5.1.e, 5.4.1.1.b) that each 'PROP'
(4.8.1.E) or "property" in the extra 'LAYER' is matched by a defining.
indicator (4.8.1.a) contained in a definition in that reach.)

3.1. Closed clauses

(Closed-clauses are usually used to construct units from serial-clauses
as, e.g.,
(real x; read (x); x) in
(real x; read (x); x) + 3.14.)

54 van Wijngaarden, et al.

3.1.1. Syntax

A) SOID : : SORT MOID.
B) PACK : : STYLE pack.

a) SOID NEST closed clause(22a,5D,55la,A34lh,A349a} :
SOID NEST serial clause defining LA YER(32a) PA(:K.

(LAYER:: new DECSETY LABSETY.)

(Example:

a) begin x: =1; y: =2 end)

(The yield of a closed-clause is that of its constituent serial-clause, by
way of pre-elaboration (2.1.4.1.c) .)

3.2. Serial clauses

(The purposes of serial-clauses are
• the construction of new ranges of definitions, and
• the serial composition of actions.

A serial-clause consists of a possibly empty sequence of unlabelled
phrases, the last of which, if any, is a declaration, followed by a sequence
of possibly labelled units. The phrases and the units are separated by go­
on-tokens, viz., semicolons. Some of the units may instead be separated by
completers, viz., exits; after a completer, the next unit must be labelled so
that it can be reached. The value of the final unit, or of a unit preceding
an exit, determines the value of the serial-clause.

For example, the following serial-clause yields true if and only if the
vector a contains the integer 8:

int n; read (n);
[J : n] int a; read (a);
for i to n do if a [i] = 8 then goto success fl od;
false exit
success: true .)

3.2.1. Syntax

a) SOID NEST serial clause defining new PROPSETY{3la,34f,l,35h) :
SOID NEST new PROPSETY series with PROPSETY(b).

(Here PROPSETY : : DECSET\' LABSETY.)
b) SOID NEST series with PROPSETY(a,b,34c) :

strong void NEST unit(d), go on(94f) token,
SOID NEST series with PROPSETY(b) ;

where (PROPSETY) is (DECS DECSETY LABSETY),
NEST declaration of DECS(4la}, go on{94f) token,
SOID NEST series with DECSETY LABSETY(b) ;

where (PROPSETY) is (LAB LABSETY),
NEST label definition of LAB(c},
SOID NEST series with LABSETY(b) ;

ALGOL 68 Revised Report

where (PROPSETY) is (LAB LABSETY)
and SOID balances SOIDl and SOID2(e}, SOIDI NEST unit(d),

completion(94f} token, NEST label definition of LAB(c),
SOID2 NEST series with LABSETY{b) ;

where (PROPSETY) is (EMPTY),
SOID NEST unit(d).

c) NEST label definition of label TAG(b) :
label NEST defining identifier with T AG(48a}, label(94f) token.

d) SOME unit(b,33b,g,34i,35d,46m,n,521c,532e,541a,b,543c,
A34Ab,c,d) : SOME llNIT(5A,-).

e) WHETHER SORT MOID balances
SORTI MOIDl and SORT2 MOID2{b,33b,34d,h) :

WHETHER SORT balances SORTl and SORT2(f}
and MOID balances MOIDI and MOID2(g).

f) WHETHER SORT balances SORTI and SORT2(e,522a) :
where (SORTl) is (strong), WHETHER (SORT2) is (SORT) ;
where (SORT2) is (strong), WHETHER (SORTI) is (SORT).

g) WHETHER MOID balances MOIDl and MOID2(e) :
where (MOIDl) is (MOID2), WHETHER (MOID) is (MOIDI) ;
where (MOIDl) is (transient MOID2),

WHETHER (MOID) is (MOIDl) ;
where (MOID2) is (transient MOIDl),

WHETHER (MOID) is (MOID2).

h) * SOID unitary clause : som NEST unit(d).
i) * establishing clause :

SOID NEST serial clause defining LA YER(32a) ;
MODE NEST enquiry clause defining LA YER(34c).

(Examples:

b) read (xl); reals:= O;
sum: for i ton do (xl [i] > 0 Is+:= xl [i] I nonpos) od exit
nonpos: print (s) •

reals:=0;
sum:fori ton do(xl [i] >OI s+:=xl [i] I nonpos)odexit
nonpos: print (s) •

sum:fori ton do(xl [i] >OI s+:=xl [i] I nonpos)odexlt
nonpos: print (s) •

for i ton do (xl [i] > 0 Is+:= xl [i] I nonpos) od exit
nonpos: print (s) •

print (s)
c) sum: d) print (s) I

55

(Often, a series must be "balanced" (3.2.1.e). For remarks concerning
balancing, see 3.4.1.)

56 van Wijngaarden, et al.

3.2.2. Semantics

a) The yield of a serial-clause, in an environ E, is the yield of the
elaboration of its series, or of any series elaborated "in its place" (5.4.4.2),
in the environ "established" (b} around E according to that serial-clause: it
is required that the yield be not newer in scope than E.

b) The environ E "established"
• upon an environ E1, possibly not specified, (which determines its
scope,}
• around an environ E2 (which determines its composition},
• according to a NOTION-defining-new-PROPSETY C, possibly absent,
(which prescribes its locale,)
• with values V 1, ... , V n' possibly absent, (which are possibly to be

ascribed,}
is determined as follows:
• if E1 is not specified, then let E1 be E2:
• E is newer in scope than E1 and is composed of E2 and a new locale
corresponding to 'PROPSETY', if C is present, and to 'EMPTY' otherwise:
Case A: C is an establishing-clause:

For each constituent mode-definition M, if any, of C,
• the scene composed of
(i) the actual-declarer of M, and
(ii) the environ necessary for (7.2.2.c} that actual-declarer in E,
is ascribed in E to the mode-indication of M:

For each constituent label-definition L, if any, of C,
• the scene composed of
(i) the series of which L is a direct descendent, and
(ii) the environ E,
is ascribed in E to the label-identifier of L:

If each 'PROP' enveloped by 'PROPSETY' is some 'DYADIC TAD' or
'label TAG',

then E is said to be "nonlocal" (see 5.2.3.2.b}:
Case B: C is a declarative, a for-part or a specification:

For i = 1, ... , n, where n is the number of 'DEC's enveloped by
'PROPSETY',
• V. is ascribed (4.8.2.a} in E to the i-th constituent defining.

I

identifier, if any, of C and, otherwise (in the case of an invisible for.
part}, to an integral-defining-indicator-with-letter-aleph:

If C is a for-part or a specification,
then E is nonlocal.

(Other cases, i.e., when C is absent:
• E is local (see 5.2.3.2.b), but not further defined.}

c) The yield W of a series C is determined as follows:
If C contains a direct descendent unit which is not followed by a go-on.

token,

ALGOL 68 Revised Report

then
• W is the yield of that unit;

otherwise,
• the declaration or the unit, if any, of C is elaborated;
• W is the yield of the series of C.

(See also 5.4.4.2.Case A.}

3.3. Collateral and parallel clauses

57

(Collateral-clauses allow an arbitrary merging of streams of actions.
Parallel-clauses provide, moreover, levels of coordination for the
synchronization (10.2.4) of that merging.

A collateral- or parallel-clause consists of a sequence of units separated
by and-also-symbols (viz., ","), and is enclosed by parentheses or by a
begin-end pair; a parallel-clause begins moreover with par.

Collateral-clauses, but not parallel-clauses, may yield stowed values
composed from the yields of the constituent units.
Examples of collateral-clauses yielding stowed values:

[] int q = (1, 4, 9, 16, 25);
struct (int price, string category) bike:= (150, "sport").

Example of a parallel-clause which synchronizes eating and speaking:
proc void eat, speak; sema mouth= level 1;
par begin

do
down mouth;
eat;
up mouth

od,
do

od
end.)

3.3.l. Syntax

down mouth;
speak;
up mouth

a) strong void NEST collateral clause(5D,55la} :
strong void NEST joined portrait(b} PACK.

b) SOID NEST joined portrait{a,b,c,d,34g} :
where SOID balances SOIDI and SOID2{32e},

SOID I NEST unit{32d}, and also{94f] token,
SOID2 NEST unit{32d}

or alternatively SOID2 NEST joined portrait(b}.
c) strong void NEST parallel clause(5D,55la} :

parallel{94f] token, strong void NEST joined portrait(b} PACK.
d) strong ROWS of MODE NEST collateral clause(5D,55la} :

where (ROWS) is (row),
strong MODE NEST joined portrait(b} PACK ;

58 van Wijngaarden, et al.

where (ROWS) is (row ROWSl),
strong ROWSl of MODE NEST joined portrait(b} PACK ;

EMPTY PACK.
e) strong structured with

FIELDS FIELD mode NEST collateral clause(5D,55la) :
NEST FIELDS FIELD portrait(f) PACK.

f) NEST FIELDS FIELD portrait{e,f} :
NEST FIELDS portrait(f,g), and also(94f) token,

NEST FIELD portrait(g).
(FIELD : : MODE field TAG.)

g) NEST MODE field TAG portrait([) : strong MODE NEST unit(32d).

h) * structure display : strong structured with
FIELDS FIELD mode NEST collateral clause(e).

i) * row display : strong ROWS of MODE NEST collateral clause(d).
j) * display : strong STOWED NEST collateral clause(d,e).
k) * vacuum : EMPTY p ACK.

(Examples:

a) (x:=l,y:=2)
c) par (task I, task2)
e) (I, 2) (in comp/ (I, 2))
g) J)

b)x:=J,y:=2
d) (I, 2) (in [] real (I, 2))
f) J, 2

(Structure-displays must contain at least two FIELD-portraits, for,
otherwise, in the reach of

mode m = struct (ref m m); m nobuo, yoneda;,
the assignation nobuo : = (yoneda) would be syntactically ambiguous and
could produce different effects; however, m of nobuo : = yoneda is
unambiguous.

Row-displays contain zero, two or more constituent units. It is also
possible to present a single value as a multiple value, e.g., [J : J] int v : =
123, but this uses a coercion known as rowing (6.6) .)

3.3.2. Semantics

a) The elaboration of a void-collateral-clause or void-parallel-clause
consists of the collateral elaboration of its constituent units and yields
empty.

b) The yield W of a STOWED-collateral-clause C is determined as
follows:
If the direct descendent of C is a vacuum,
then ('STOWED' is some 'ROWS of MODE' and) each bound pair in the

descriptor of W is (1, O) (and it has one ghost element whose value is
irrelevant);

otherwise,
• let V , ... , V be the (collateral) yields of the constituent units of C;

1 m

ALGOL 68 Revised Report

Case A: 'STOWED' is some 'structured with FIELDS mode':
• the fields of W, taken in order, are v1, ... , Vm;

Case B: 'STOWED' is some 'row of MODEi ·:
• W is composed of
(i) a descriptor ((1,m)),

(ii) V 1, ... , V m;

For i = 1, ... , m,
• the element selected by the index (i) in W is V.;

I

Case C: 'STOWED' is some 'row ROWS of MODE2':
• it is required that the descriptors of V 1, ... , V m be identical;

• let the descriptor of {say) v1 be ((1 1, u1), ... , (In, un));

• W is composed of
(i) a descriptor ((1, m), (1 1, u1), ... , (In, un));

(ii) the elements of V 1, . . . , V m;

For i = 1, ... , m,

• the element selected by an index (i, i1, ... , in) in Wis that

selected by (i 1, ... , i) in V ..
n I

59

{Note that in [,,] char block = ("abc", "def"), the descriptor of the three­
dimensional yield W will be ((1, 2), (1, 1), (1, 3)), since the units "abc"
and "def" are first rowed (6.6), so that V 1 and V 2 have descriptors ((1, 1),

(1, 3)) .)

3.4. Choice clauses

(Choice-clauses enable a dynamic choice to be made among different
paths in a computation. The choice among the alternatives (the in-CHOICE­
and the out-CHOICE-clause) is determined by the success or failure of a
test on a truth value, on an integer or on a mode. The value under test is
computed by an enquiry-clause before the choice is made.

A choice-using-boolean-clause (or conditional-clause) is of the form
(x > O I x I a) in the "brief" style, or
if x > 0 then x else O fi in the "bold" style;

x > 0 is the enquiry-clause, then x is the in-CHOICE-clause and else O is the
out-CHOICE-clause; all three may have the syntactical structure of a
series, because all choice-clauses are well closed. A choice-using-boolean­
clause may also be reduced to

(x < 0 Ix:= -x) or
if x < 0 then x : = - x fi;

the omitted out-CHOICE-clause is then understood to be an else skip. On the
other hand, the choice can be reiterated by writing

(x > 0 I I+ x I: x < 0 I I - x I I) or
if x > 0 then I + x elif x < 0 then I - x else I fi,

60 van Wijngaarden, et al.

and so on; this is to be understood as
(X > 011 +XI (X < 011 - X 11)).

CASE-clauses, which define choices depending on an integer or on a
mode, are different in that the in-CASE-clause is further decomposed into
units. The general pattern is

(---1 --- , ... , ---1 ---) or
case --- in --- , ... , --- out --- esac.

The choice may also be reiterated by use of ouse.

In a choice-using-integral-clause (or case-clause), the parts are simply
units and there must be at least two of them; the choice among the units
follows their textual ordering.
Example:

proc void work, relax, enjoy;
case Int day; read (day); day
in work, work, work, work, work, relax, enjoy
out print ((day, "is not in the week"))
esac.

In a choice-using-UNITED-clause (or conformity-clause), which tests
modes, each case-part-of-CHOICE is of the form (declarer identifier): unit
or (declarer): unit. The mode specified by the declarer is compared with
the mode of the value under test; the identifier, if present, is available
inside the unit to access that value, with the full security of syntactical
mode checking. The 'UNITED' mode provides the required freedom for the
mode of the vaJue under test; moreover, that 'UNITED' mode must contain
the mode of each specification for, otherwise, the corresponding case-part­
of-CHOICE could never be chosen.
Example:

mode boy= struct (Int age, real weight),
_ mode girl= struct (Int age, real beauty);
proc union (boy, girl) newborn;
case newborn in

(boy john): print (weight of john),
(girl mary): print (beauty of mary)

esac.)

(The flowers that bloom in the spring,
Tra la,
Have nothing to do with the case.
Mikado, W.S. Gilbert.)

{The hierarchy of ranges in conditional-clauses is illustrated by

,...... _________ if _________ _,

cthen=i celse=i
__________ fi _________ -

ALGOL 68 Revised Report 61

and similarly for the other kinds of choice. Thus the nest and the environ
of the enquiry-clause remain valid over the in-CHOICE-clause and the out­
CHOICE-clause. However, no transfer back from the in- or out-CHOICE­
clause into the enquiry-clause is possible, since the latter can contain no
label-definitions (except within a closed-clause contained within it).}

3.4.1. Syntax

A) CHOICE : : choice using boolean ; CASE.
B) CASE : : choice using integral ; choice using UNITED.

a) SOID NESTI CHOICE clause(5D,55la,A34lh,A349a} :
CHOICE STYLE start{9la,-},

SOID NESTI chooser CHOICE STYLE clause(b},
CHOICE STYLE finish{9le,-}.

b) SOID NESTI chooser choice using MODE STYLE clause{a,l} :
MODE NESTI enquiry clause defining LA YER2{c,-},

SOID NESTI LA YER2 alternate choice using MODE
STYLE clause(d}.

c) MODE NESTI enquiry clause defining new DECSETY2{b,35g} :
meek MODE NESTI new DECSETY2 series with DECSETY2(32b}.

d) SOID NEST2 alternate CHOICE STYLE clause(b} :
SOID NEST2 in CHOICE STYLE clause(e} ;
where SOID balances SOIDI and SOID2{32e},

SOIDI NEST2 in CHOICE STYLE clause(e},
SOID2 NEST2 out CHOICE STYLE clause(l}.

e) SOID NEST2 in CHOICE STYLE clause(d} :
CHOICE STYLE in{9lb,-}, SOID NEST2 in part of CHOICE{f,g,h}.

f) SOID NEST2 in part of choice using boolean(e} :
SOID NEST2 serial clause defining LA YER3{32a}.

g) SOID NEST2 in part of choice using integral(e} :
SOID NEST2 joined portrait{33b}.

h) SOID NEST2 in part of choice using llNITED{e,h} :
SOID NEST2 case part of choice using llNITED{i} ;
where SOID balances SOIDI and SOID2{32e},

SOIDI NEST2 case part of choice using llNITED{i},
and also(94f} token,
SOID2 NEST2 in part of choice using llNITED(h}.

i) SOID NEST2 case part of choice using llNITED(h} :
MOID NEST2 LA YER3 specification defining LA YER3Ll ,k,-},

where MOID unites to lJNITED{64b},
SOID NEST2 LA YER3 unit{32d).

(Here LAYER3 :: new MODE TAG ; new EMPTY.}
j) MODE NEST3 specification defining new MODE TAG3(i) :

NEST3 declarative defining new MODE TAG:J{54le} brief pack,
colon{94f} token.

k) MOID NEST3 specification defining new EMPTY(i} :
formal MOID NEST3 declarer{46b} brief pack, colon{94f} token.

62 van Wijngaarden, et al.

l) SOID NEST2 out CHOICE STYLE clause{d}
CHOICE STYLE out{9ld,-},

SOID NEST2 serial clause defining LA YER3{32a}
CHOICE STYLE again{9lc,-},

SOID NEST2 chooser CHOICE2 STYLE clause{b},
where CHOICE2 may follow CHOICE{m}.

m) WHETHER choice using MODE2 may follow
. choice using MODEl{l) :

where (MODEi) is (MOOD), WHETHER (MODE2) is (MODEi) ;
where (MODEi) begins with (union of),

WHETHER (MODE2) begins with (union of).

n) • SOME choice clause : SOME CHOICE clause{a}.
o) • SOME conditional clause : SOME choice using boolean clause(a}.
p) • SOME case clause : SOME choice using integral clause(a}.
q) • SOME conformity clause : SOME choice using UNITED clause(a}.

(Examples:

a) (x > 0 I x I 0) •
case i In princeton, grenoble out finish esac •
case uir In (Inti): print (i), (real): print ("no") esac

b) x > 0 I x I O c) x > 0 • i • uir

d) Ix• I xi 0
e) Ix•

in princeton, grenoble •
In (inti): print (i), (real): print ("no")

f) x g) princeton, grenoble
h) (Inti): print (i), (real): print ("no")
i) (Inti): print (i) j) (Inti):
k) (real):
l) out finish • I: x < 0 I -x I O }

{I would to God they would either conform, or be more
wise, and not be catched!
Diary, 7 Aug. 1664, Samuel Pepys.}

(Rule d illustrates why "SORT MOID"s should be "balanced".lf an
alternate-CHOICE-clause is, say, firm, then at least its in-CHOICE-clause
or its out-CHOICE-clause must be firm, while the other may be strong. For
example, in (p I x I skip) + (p I skip I y), the conditional-clause (p I x I skip)
is balanced by making I x firm and I skip strong whereas (p I skip I y) is
balanced by making I skip strong and I y firm. The counterexample
(p I skip I skip)+ y illustrates that not both may be strong, for otherwise the
operator + could not be identified.}

3.4.2. Semantics

a) The yield W of a chooser-CHOICE-clause C, in an environ E1, is
determined as follows:

ALGOL 68 Revised Report 63

• let E2 be the environ established (3.2.2.b} around E1 according to the
enquiry-clause of C;
• let V be the yield, in E2, of that enquiry-clause;
• W is the yield of the scene "chosen" (bl by V from C in E2; it is required
that W be not newer in scope than E1.

b) The scene S "chosen" by a value V from a MOID-chooser-CHOICE-
clause C, in an environ E2, is determined as follows:
Case A: 'CHOICE' is 'choice using boolean' and V is true:

• S is the constituent in-CHOICE-clause of C, in E2;
Case B: 'CHOICE' is 'choice using integral' and 1 5. V 5. n, where n is the

number of constituent units of the constituent in-part-of-CHOICE of C:
• S is the V-th such unit, in E2;

Case C: 'CHOICE' is some 'choice using UNITED' and V is acceptable to
(2.1.3.6.d} the 'MOID2' of some constituent MOID2-specification D of C
(; if there exists more than one such constituent specification, it is not
defined which one is chosen as D}:
• S is the unit following that D, in an environ established (nonlocally
(3.2.2.b)} around E2, according to D, with V;

Other Cases (when the enquiry-clause has been unsuccessful}:
If C contains a constituent out-CHOICE-clause 0,
then S is O in E2;
otherwise, S is a MOID-skip in E2.

3.5. Loop clauses

(Loop-clauses are used for repeating dynamically one same sequence of
instructions. The number of repetitions is controlled by a finite sequence
of equidistant integers, by a condition to be tested each time, or by both.
Example 1:

int fac := 1;
tori from n by-1 to 1
dofacx:= iod.

Example 2:
int a, b; read ((a, b)) pr assert a z. 0 I\ b > 0 pr;
Int q : = 0, r : = a;
while r z. b pr assert a = b x q + r I\ 0 5. r pr
do (q +: = 1, r -: = b) od
pr assert a = b x q + r I\ 0 5. r A r < b pr

(see 9.2 for an explanation of the pragmats).

The controlled identifier, e.g., i in Example 1, is defined over the
repeating-part. Definitions introduced in the while-part are also valid over
the do-part.

If the controlled identifier is not applied in the repeating.part, then the
for-part may be omitted. A from-part from 1 may be omitted; similarly,
by 1 may be omitted. The to-part may be omitted if no test on the final

64 van Wijngaarden, et al.

value of the control-integer is required. A while-part while true may be
omitted. For example,

for i from 1 by 1 to n white true do print ("a") od
may be written

to n do print ("a") od.

The hierarchy of ranges is illustrated by:

l for. from by 2r-:=whlle~ ~=:~
3.5.l. Syntax

A) FROBYT : : from ; by ; to.

a) strong void NESTI loop clause(5D,55la) :

to

NESTI STYLE for part defining new integral TAG2(b),
NESTI STYLE intervals(c),
NEST I STYLE repeating part with integral T AG2(e).

b) NESTI STYLE for part defining new integral TAG2(a) :
STYLE for(94g,-) token,

integral NESTI new integral TAG2 defining identifier
with T AG2{48a) ;

where (TAG2) is (letter aleph), EMPTY.
c) NESTI STYLE intervals(a) : NESTI STYLE from part{d) option,

NESTI STYLE by part{d) option,
NESTI STYLE to part{d) option.

d) NESTI STYLE FROBYT part(c) :
STYLE FROBYT(94g,-) token, meek integral NESTI unit{32d).

e) NESTI STYLE repeating part with DEC2{a) :
NESTI new DEC2 STYLE while do part{f) ;
NESTI new DEC2 STYLE do part(h).

f) NEST2 STYLE while do part(e) :
NEST2 STYLE while part defining LA YER3{g),

NEST2 LA YER3 STYLE do part{h).
g) NEST2 STYLE while part defining LA YER3{f) :

STYLE while{94g,-J token,
boolean NEST2 enquiry clause defining LA YER3{34c,-).

h) NEST3 STYLE do part{e,f) :
STYLE do{94g,-J token,

(Examples:

strong void NEST3 serial clause defining LA YER4{32a),
STYLE od(94g,-J token.

a) for i while i < n do taskl od • ton do taskl; task2 od
b) for i c) from -5 to +5

ALGOL 68 Revised Report 65

d) from -5
e) while i < n do taskl od • do taskl; task2 od
f) while i < n do taskl; task2 od
g) while i < n h) do taskl; task2 od }

3.5.2. Semantics

A loop-clause C, in an environ E1, is elaborated in the following Steps:
Step 1: All the constituent FROBYT-parts, if any, of C are elaborated

collaterally in E1;
• let f be the yield of the constituent from-part, if any, of C, and be 1
otherwise;
• let b be the yield of the constituent by-part, if any, of C, and be 1
otherwise;
• let t be the yield of the constituent to-part, if any, of C, and be
absent otherwise;
• let E2 be the environ established (nonlocally (3.2.2.b)} around E1,
according to the for-part-defining-new-integral-TAG2 of C, and with the
integer f;

Step 2: Let i be the integer accessed (2.1.2.c} by 'integral TAG2' inside the
locale of E2;

If t is not absent,
then

If b > O and i > t or if b < O and i < t,

then C in E1 (is completed and} yields empty;
(otherwise, Step 3 is taken;}

Step 3: Let an environ E3 and a truth value w be determined as follows:
Case A: C does not contain a constituent while-part:

• E3 is E2;
• w is true;

Case B: C contains a constituent while-part P:
• E3 is established (perhaps nonlocally (3.2.2.b)} around E2
according to the enquiry-clause of P;
• w is the yield in E3 of that enquiry-clause;

Step 4: If w is true,
then

• the constituent do-part of C is elaborated in E3;
• 'integral T AG2' is made to access i + b inside the locale of E2;
• Step 2 is taken again;

otherwise,
• C in E1 (is completed and} yields empty.

(The loop-clause
for i from ul by u2 to u3 while condition do action od

is thus equivalent to the following void-closed-clause:

66 van Wijngaarden, et al.

beginintf:=ul, intb=u2, t=u3;
step2:

end.

if (b > 0 I\ f '.,. f) V (b < 0 I\ f ~ f) V b = 0
then inti = f;

ti

if condition
then action; f +: = b; go to step2
ti

This equivalence might not hold, of course, if the loop-clause contains local.
generators, or if some of the operators above do not identify those in the
standard environment(lO) .)

4. Declarations, declarers and indicators

(Declarations serve
• to announce new indicators, e.g., identifiers,
• to define their modes or priorities, and
• to ascribe values to those indicators and to initialize variables.)

4.1. Declarations

4.1.1. Syntax

A) COMMON : : mode ; priority ; MODINE identity ;
reference to MODINE variable ; MODINE operation ;
PARAMETER ; MODE FIELDS.

(MODINE : : MODE ; routine.)

a) NEST declaration of DECS{a,32b} :
NEST COMMON declaration of DECS(42a,43a,44a,e,45a,-}
where (DECS) is (DECSI DECS2),

NEST COMMON declaration of DECSI{42a,43a,44a,e,45a,-),
and also{94f} token, NEST declaration of DECS2{a}.

b) NEST COMMON joined definition of PROPS PROP
{b,42a,43a,44a,e,45a,46e,54le} :

NEST COMMON joined definition of PROPS(b,c},
and also{94f} token,
NEST COMMON joined definition of PROP{c}.

c) NEST COMMON joined definition of PROP
{b,42a,43a,44a,e,45a,46e,54le} :

NEST COMMON definition of PROP{42b,43b,44c,f,45c,46f,54lf,-}.

d) * definition of PROP : NEST COMMON definition of PROP
{42b,43b,44c,f ,45c,46f,54lf) ;

NEST label definition of PROP[32c}.

ALGOL 68 Revised Report

(Examples:

a) moder= ref real, s = char •prio v = 2, A= 3 •int m = 4096 •
realx,y •
op v =(boo/a, b) boo/: (a I true I b)

b) r=refreal, s=char •v =2, A =3 •m=4096 •x, y •
v =(boo/a, b) boo/: (a I true I b)

c) r=refrea/•v=2•m=4096•x•
v =(boo/a, b) boo/: (a I true I b) J

4.1.2. Semantics

67

The elaboration of a declaration consists of the collateral
elaboration of its COMMON-declaration and of its declaration, if any.
{Thus, all the COMMON-declarations separated by and-also-tokens are
elaborated collaterally.)

4.2. Mode declarations

{Mode-declarations provide the defining-mode-indications, which act as
abbreviations for declarers constructed from the more primitive ones, or
from other declarers, or even from themselves.

For example,
mode array= [m, n] real, and
mode book = struct (string text, ref book next)
In the latter example, the applied-mode-indication book is not only a

convenient abbreviation, but is essential to the declaration.)

4.2.1. Syntax

a) NEST mode declaration of DECS{4la) :
mode{94d) token, NEST mode joined definition of DECS{4lb,c).

b) NEST mode definition of MOID TALLY TAB{4lc) :
where (TAB) is (bold TAG) or (NEST) is (new LA YER),

MOID TALLY NEST defining mode indication with TAB{48a),
is defined as{94d) token,
actual MOID TALLY NEST declarer{c}.

c) actual MOID TALLY! NEST declarer{b} :
where (TALLYI) is (i),

actual MOID NEST declarator{46c,d,g,h,o,s,-}
where (TALLYI) is (TALLY2 i),

MOID TALL Y2 NEST applied mode indication with T A82
{48b).

{Examples:

a) mode r = ref real, s = char
b) r = ref real c) ref real • char }

{The use of 'TALLY' excludes circular chains of mode-definitions such
as mode a = b, b = a.

68 van Wijngaarden, et al.

Defining-mode-indications-with-SIZETY -ST AND ARD may be declared
only in the standard-prelude, where the nest is of the form 'new LAYER'
(10.l.l.b) .}

4.2.2. Semantics

The elaboration of a mode-declaration (involves no action, yields no
value and} is completed.

4.3. Priority declarations

(Priority-declarations are used to specify the priority of operators.
Priorities from 1 to 9 are available.

Since monadic-operators have effectively only one priority-level, which
is higher than that of all dyadic-operators, monadic-operators do not
require priority-declarations.}

4.3.l. Syntax

a) NEST priority declaration of DECS(4la} :
priority(94d} token, NEST priority joined definition of DECS(4lb,c}.

b) NEST priority definition of priority PRIO TAD(4lc} :
priority PRIO NEST defining operator with TAD(48a},

is defined as(94d} token, DIGIT(94b} token,
where DIGIT counts PRIO(c,d}.

(DIGIT : : digit zero ; digit one ; digit two ; digit three ; digit four ;
digit five ; digit six ; digit seven ; digit eight ; digit nine.}

c) WHETHER DIGITl counts PRIO i{b,c} :
WHETHER DIGIT2 counts PRIO(c,d},

where (digit one digit two digit three digit four
digit five digit six digit seven digit eight digit nine)

~contains (DIGIT2 DIGITl).
d) WHETHER digit one counts i(b,c} : WHETHER true.

(Examples:

a) prio v =2, "=3 b) V =2}

4.3.2. Semantics

The elaboration of a priority-declaration (involves no action, yields no
value and} is completed.

4.4. Identifier declarations

(Identifier-declarations provide MODE-defining-identifiers, by means of
either identity-definitions or variable-definitions.
Examples:

real pi = 3.1416 •
real scan : = 0.05.

ALGOL 68 Revised Report 69

The latter example, which is a variable-declaration, may be considered as
an equivalent form of the identity-declaration

ref real scan= loc real := 0.05.
The elaboration of identifier-declarations causes values to be ascribed

to their identifiers; in the examples given above, 3.1416 is ascribed to pi
and a new local name which refers to 0.05 is ascribed to scan.)

4.4.1. Syntax

A) MODINE : : MODE ; routine.
B) LEAP : : local ; heap ; primal.

a) NEST MODINE identity declaration of DECS{4la} :
formal MODINE NEST declarer{b,46b},

NEST MODINE identity joined definition of DECS(4lb,c).
b) VICTAL routine NEST declarer(a,523b} : procedure{94d) token.
c) NEST MODINE identity definition of MODE TAG{4lc) :

MODE NEST defining identifier with TAG{48a),
is defined as{94d} token, MODE NEST source for MODINE{d).

d) MODE NEST source for MODINE(c,f,45c) :
where (MODINE) is (MODE), MODE NEST source{52lc) ;
where (MODINE) is (routine), MODE NEST routine text{54la,b,-).

e) NEST reference to MODINE variable declaration of DECS{4la} :
reference to MODINE NEST LEAP sample generator{523b),

NEST reference to MODINE variable joined
definition of DECS{4lb,c).

f) NEST reference to MODINE variable definition
of reference to MODE TAG(4lc) :

reference to MODE NEST defining identifier with TAG{48a),
becomes{94c} token, MODE NEST source for MODINE{d) ;

where (MODINE) is (MODE),
reference to MODE NEST defining identifier with TAG{48a).

g) * identifier declaration :
NEST MODINE identity declaration of DE(:S{a) ;
NEST reference to MODINE variable declaration of DECS{e).

{Examples:

a) int m = 4096 • proc rlO =real: random x 10
b) proc c) m = 4096
d) 4096 •real: random x 10
e) real x, y • proc pp:= real: random x 10
f) pp : = real : random x 10 • x I

4.4.2. Semantics

a) An identity-declaration D is elaborated as follows:
• the constituent sources-for-MODINE of D are elaborated collaterally;

70 van Wijngaarden, et al.

For each constituent identity-definition D1 of D,
• the yield V of the source-for-MODINE of D1 is ascribed (4.8.2.a) to the
defining-identifier of D1.

b) A variable-declaration D is elaborated as follows:
• the sample-generator (5.2.3.1.b} G of D and all the sources-for-MODINE,
if any, of the constituent variable-definitions of D are elaborated
collaterally;
For each constituent variable-definition-of-reference-to-MODE-TAG D1 of

D,
• let W1 be a "variant" (c}, for 'MODE', of the value referred to by the
yield N of G;
• let N1 be a newly created name equal in scope to N and referring to
W1;
• if N1 is a stowed name (2.1.3.2.b}, then N1 is endowed with subnames
(2.1.3.3.e, 2.1.3.4.g);
• N1 is ascribed (4.8.2.a) to the defining-identifier of D1;
• the yield of the source-for-MODINE, if any, of D1 is assigned
(5.2.1.2.b} to N1.

[An actual-declarer which is common to a number of variable­
definitions is elaborated only once. For example, the elaboration of

int m := 10; ll: m +:= 1] intp, q; print (m)
causes 11 to be printed, and not 12; moreover, two new local names
referring to multiple values with descriptor ((1, 11)) , and undefined
elements, are ascribed top and to q.)

c) A "variant" of a value V, for a mode M, is a value W acceptable to
(2.1.3.6.d} M, and determined as follows:
Case A: M is some ·structured with FIELDS mode':

For each 'MODE field TAG' enveloped by 'FIELDS',
• the field selected by 'TAG' in W is a variant, for 'MODE', of the
field selected by 'TAG' in V;

Case B: M is some 'FLEXETY ROWS of MODEi ':
• the descriptor of W is that of V;
• each element of W is a variant, for 'MODEi ·, of some element of V;

Other Cases:
• Wis any value acceptable to M.

d) The yield of an actual-routine-declarer is some routine (whose mode
is of no relevance).

4.5. Operation declarations

[Operation-declarations provide defining-operators.
Example:

opmc=(reala, b)real: (3xa < bl alb).
Unlike the case with, e.g., identifier-declarations, more than one

operation-declaration involving the same TAO-token may occur in the

ALGOL 68 Revised Report 71

same reach; e.g., the previous example may very well be in the same
reach as

op me= (compl earthy, john) compl : (random < .51 earthy I john);
the operator me is then said to be ··overloaded".}

4.5.1. Syntax

A) PRAM : : DUO ; MONO.
B) TAO:: TAD; TAM.

a) NEST MODINE operation declaration of DECS(4la} :
operator(94d} token, formal MODINE NEST plan(b,46p,-},

NEST MODINE operation joined definition of DECS(4lb,c}.
b) formal routine NEST plan(a} : EMPTY.
c) NEST MODINE operation definition of PRAM TA0(4lc} :

PRAM NEST defining operator with TA0(48a},
is defined as(94d} token, PRAM NEST source for MODINE(44d}.

(Examples:

a) op v = (bool a, b) bool: (a I true I b)
c) v = (bool a, b) bool: (a I true I b) }

4.5.2. Semantics

a) The elaboration of an operation-declaration consists of the
collateral elaboration of its constituent operation-definitions.

b) An operation-definition is elaborated by ascribing (4.8.2.a} the
routine yielded by its source-for-MODINE to its defining-operator.

4.6. Declarers

(Declarers specify modes. A declarer is either a declarator, which
explicitly constructs a mode, or an applied-mode-indication, which stands
for some declarator by way of a mode-declaration. Declarators are built
from void, int, real, bool and char (10.2.2) , with the assistance of other
symbols such as ref, struct, [], proc, and union. For example,
proc (real) bool specifies the mode 'procedure with real parameter yielding
boolean'.

Actual-declarers, used typically in generators, require the presence of
bounds. Formal-declarers, used typically in formal-parameters and casts,
are without bounds. The declarer following a ref is always 'virtual'; it may
then specify a 'flexible ROWS of MODE', because flexibility is a property
of names. Since actual-declarers follow an implicit 'reference to' in
generators, they may also specify 'flexible ROWS of MODE'.}

4.6.1. Syntax

A) VICT AL : : VIRACT ; formal.
B) VIRACT : : virtual ; actual.
C) MOIDS : : MOID ; MOIDS MOID.

72 van Wijngaarden, et al.

a) VIRACT MOIi) NEST declarer(c,e,g,h,523a,b) :
VIRACT MOID NEST declarator(c,d,g,h,o,s,-) ;
MOID TALLY NEST applied mode indication with TAB(48b,-).

b) formal MOID NEST declarer(e,h,p,r,u,34k,44a,54la,b,e,55la) :
where MOID deflexes to MOID(47a,b,c,-),

formal Mom NEST declarator(c,d,h,o,s,-) ;
MOIDl TALLY NEST applied mode indication with TAB(48b,-),

where MOIDl deflexes to MOID(47a,b,c,-).

c) VICTAL reference to MODE NEST declarator{a,b,42c) :
reference to{94d) token, virtual MODE NEST declarer(a).

d) VICTAL structured with FIELDS mode NEST declarator{a,b,42c) :
structure(94d) token,

VICTAL FIELDS NEST portrayer of FIELDS(e) brief pack.
e) VICTAL FIELDS NEST portrayer of f'IELDSl(d,e) :

VICTAL MODE NEST declarer(a,b),
NEST MODE FIELDS joined definition of FIELDS1(4lb,c) ;

where (FIELDS!) is (FIELDS2 f'IELDS3),
VICTAL MODE NEST declarer(a,b),
NEST MODE FIELDS joined definition of FIELDS2(4lb,c),
and also{94f) token,
VICTAL f'IELDS NEST portrayer of FIELDS3(e).

f) NEST MODE FIELDS definition of MODE field TAG(4lc) :
MODE field FIELDS defining field selector with TAG(48c).

g) VIRACT flexible ROWS of MODE NEST declarator(a,42c) :
flexible{94d) token, VIRACT ROWS of MODE NEST declarer(a).

h) VICTAL ROWS of MODE NEST declarator(a,b,42c) :
VICTAL ROWS NEST rower(i,j,k,l) STYLE bracket,

VICTAL MODE NEST declarer{a,b).
i) VICTAL row ROWS NEST rower(h,i) :

VICTAL row NEST rower(j,k,l), and also(94f) token,
VICTAL ROWS NEST rower(i,j,k,l).

j) actual row NEST rower{h,i) : NEST lower bound(m), up to(94f) token,
NEST upper bound(n) ; NEST upper bound(n).

k) virtual row NEST rower(h,i) : up to{94f) token option.
I) formal row NEST rower(h,i) : up to{94f) token option.

m) NEST lower bound(j,532f,g) : meek integral NEST unit(32d).
n) NEST upper bound(j ,532f) : meek integral NEST unit(32d).

o) VICTAL PROCEDURE NEST declarator(a,b,42c) :
procedure(94d) token, formal PROCEDURE NEST plan(p).

p) formal procedure PARAMETY yielding MOID NEST plan{o,45a) :
where (PARAMETY) is (EMPTY), formal MOIi) NEST declarer(b) ;
where (PARAMETY) is (with PARAMETERS),

PARAMETERS NEST joined declarer(q,r) brief pack,
formal MOID NEST declarer(b).

ALGOL 68 Revised Report

q) PARAMETERS PARAMETER NEST joined declarer(p,q)
PARAMETERS NEST joined declarer(q,r), and also(94f) token,

PARAMETER NEST joined declarer(r).
r) MODE parameter NEST joined declarer{p,q)

formal MODE NEST declarer(b).

s) VICTAL union of MOODS! MOOD! mode
NEST declarator(a,b,42c) :

unless EMPTY with MOODS! MOOD! incestuous(47f),
union of(94d) token,
MOIDS NEST joined declarer(t,u) brief pack,
where MOIDS ravels to MOODS2(47g)
and safe MOODS! MOODI subset of safe MOOl)S2(731)
and safe M00DS2 subset of safe MOODS! MOODl(731,m).

t) MOIDS MOID NEST joined declarer(s,t) :
MOIDS NEST joined declarer(t,u), and also(94f) token,

MOID NEST joined declarer(u).
u) MOID NEST joined declarer(s,t) : formal MOID NEST declarer(b).

(Examples:

a) lJ : n] real • person b) [J real• string
c) ref real
d) struct (int age, ref person father, son)
e) ref person father, son • int age, ref person father, son
f) age g) flex [I: n] real
h) [I : m, I : n] real i) I : m, I : n
j) I : n k) :

I) : m) I
n) n
p) (boo/, boo/) boo/
r) boo/
t) int, char

o) proc (boo/, boo/) boo/
q) boo/, boo/
s) union (int, char)
u) int I

73

(For actual-MO ID-TALLY -declarers, see 4.2.1.c: for actual-routine.
declarers, see 4.4.1.b.

There are no declarers specifying modes such as 'union of integral
union of integral real mode mode' or 'union of integral real integral
mode'. The declarers union (int, union (int, real)) and union (int, real, int)
may indeed be written, but in both cases the mode specified is 'union of
integral real mode' (which can as well be spelled ·union of real integral
mode').)

4.6.2. Semantics

a) The yield W of an actual-MODE-declarer D, in an environ E, is
determined as follows:

74 van Wijngaarden, et al.

If 'MODE' is some 'STOWED',
then

• let D1 in E1 be "developed" (c} from D in E:
• W is the yield of (the declarator} D1 in an environ established
(locally, see 3.2.2.b} upon E and around E1:

otherwise,
• W is any value (acceptable to 'MODE'}.

b) The yield W of an actual-STOWED-declarator D is determined as
follows:
Case A: 'STOWED' is some 'structured with FIELDS mode':

• the constituent declarers of D are elaborated collaterally:
• each field of W is a variant (4.4.2.c}
(i) of the yield of the last constituent MODE-declarer of D occurring
before the constituent defining.field-selector of D selecting (2.1.5.g} that
field,
(ii) for that 'MODE':

Case B: 'STOWED' is some 'ROWS of MODE':
• all the constituent lower-bounds and upper-bounds of D and the
declarer D1 of D are elaborated collaterally:
For i = 1, ... , n, where n is the number of 'row's contained in 'ROWS',

• let I. be the yield of the lower-bound, if any, of the i-th constituent
I

row-rower of D, and be 1 otherwise:
• let u. be the yield of the upper-bound of that row-rower;

I

• W is composed of
(i) a descriptor ((1 1, u1), ... , (In, un)),

(ii) variants of the yield of D1, for 'MODE':
Case C: 'STOWED' is some 'flexible ROWS of MODE':

• W is the yield of the declarer of D.

c) The scene S "developed from" an actual-STOWED-declarer D in an
environ E is determined as follows:
If the visible direct descendent D1 of D is a mode-indication,
then

• S is the scene developed from that yielded by D1 in E:
otherwise (D1 is a declarator}.

• S is composed of D1 and E.

d) A given MOID-declarer "specifies" the mode 'MOID'.

4.7. Relationships between modes

(Some modes must be deflexed because the mode of a value may not
be flexible (2.1.3.6.b). Incestuous unions must be prevented in order to
avoid ambiguities. A set of 'lJNITED's and 'MOODS's may be ravelled by
replacing all those 'lJNITED's by their component 'MOODS's.}

ALGOL 68 Revised Report

4.7.l. Syntax

A) NONSTOWED : : PLAIN ; REF to MODE ; PROCEDlJRE ; lJNITED ;
void.

B) MOODSETY :: MOODS; EMPTY.
C) MOIDSETY : : MOIDS ; EMPTY.

a) WHETHER NONSTOWED deflexes to NONSTOWED
(b,e,46b,52lc,62a,7ln} : WHETHER true.

b) WHETHER FLEXETY ROWS of MODEi deflexes to
ROWS of MODE2{b,e,46b,52lc,62a,7ln) :

WHETHER MODE! deflexes to MODE2{a,b,c,-).
c) WHETHER structured with l<'IELDSI mode deflexes to

structured with FIELDS2 mode[b,e,46b,52lc,62a,7ln) :
WHETHER FIELDS} deflexes to FIELDS2[d,e,-).

d) WHETHER FIELDS} FIELDI deflexes to FIELDS2 FIELD2[c,d) :
WHETHER FIELDSI deflexes to FIELDS2{d,e,-)

and FIELDI deflexes to FIELD2[e,-).
e) WHETHER MODEi field TAG deflexes to MODE2 field TAG[c,d) :

WHETHER MODEi deflexes to MODE2[a,b,c,-).

f) WHETHER MOODSETYI with MOODSETY2 incestuous{f,46s} :
where (MOODSETY2) is (MOOD MOODSETY3),

75

WHETHER MOODSETYI MOOD with M00DSETY3 incestuous(f)
or MOOD is firm union of MOODSETYI MOODSETY3 mode

(71m) ;
where (M00DSETY2) is (EMPTY), WHETHER false.

g) WHETHER MOIDS ravels to M00DS[g,46s} :
where (MOIDS) is (MOODS), WHETHER true ;
where (MOIDS) is

(MOODSETY union of MOODSI mode MOIDSETY),
WHETHER MOODSETY MOODSI MOIDSETY ravels to MOODS(g).

[A component mode of a union may not be firmly coerced to one of the
other component modes or to the union of those others (rule f) for,
otherwise, ambiguities could arise. For example,

union (ref Int, int) (loc Int),

is ambiguous in that dereferencing may or may not occur before the
uniting. Similarly,

mode szp = union (szeredi, peter);
union (ref szp, szp) (loc szp)

is ambiguous. Note that, because of ravelling (rule g), the mode specified
by the declarer of the cast is more closely suggested by union (ref szp,
szeredi, peter).)

,_

76 van Wijngaarden, et al.

4.8. Indicators and field selectors

4.8.1. Syntax

A) INDICATOR : : identifier ; mode indication ; operator.
B) DEFIED : : defining ; applied.
C) PROPSETY :: PROPS ; EMPTY.
D) PROPS : : PROP ; PROPS PROP.
E) PROP : : DEC ; LAB ; FIELD.
F) QUALITY : :

MODE ; MOID TALLY ; DYADIC ; label ; MODE field.
G) TAX :: TAG ; TAB ; TAD ; TAM.

a) QUALITY NEST new PROPSETYI QUALITY TAX PROPSETY2
defining INDICATOR with TAX{32c,35b,42b,43b,44c,f,45c, 54lf) :

where QUALITY TAX independent PROPSETYI PROPSETY2
{7la,b,c), TAX{942A,D,F,K) token.

b) QUALITY NEST applied INDICATOR with TAX
{42c,46a,b,5D,542a,b,544a) :

where QUALITY TAX identified in NEST{72a},
TAX{942A,D,F,K) token.

c) MODE field PROPSETYI MODE field TAG PROPSETY2 defining
field selector with T AG{46f} :

where MODE field TAG independent PROPSETY I PROPSETY2
(7la,b,c), TAG {942A) token.

d) MODE field FIELDS applied field selector with TAG{53la) :
where MODE field TAG resides in FIELDS{72b,c,-),

TAG(942A) token.

e) * QUALITY NEST DEFIED indicator with TAX :
QUALITY NEST DEFIED INDICATOR with TAX{a,b).

f) * MODE DEFIED field selector with TAG :
MODE field FIELDS DEFIED field selector with TA(;{c,d).

(Examples:

a) x (in real x, y)

c) next (see 1.1.2)

4.8.2. Semantics

b) x (in x+ y)
d) next (in next of draft))

a) When a value or a scene V is "ascribed" to a QUALITY-defining-
indicator-with-TAX, in an environ E, then 'QUALITY TAX' is made to
access V inside the locale of E (2.1.2.c).

b) The yield W of a QUALITY-applied-indicator-with-TAX I in an
environ E composed of an environ E1 and a locale L is determined as
follows:

ALGOL 68 Revised Report 77

If L corresponds to a 'DECSETY LABSETY' which envelops {1.1.4.1.c) that
'QUALITY TAX',

then Wis the value or scene, if any, accessed inside L by 'QUALITY TAX'
and, otherwise, is undefined;

otherwise, W is the yield of I in E1.

{Consider the following closed-clause, which contains another one:
begin co range 1 co

inti= 421, int a : = 5, proc p =void: print (a);
begin co range 2 co

real a; a : = i; p
end

end.
By the time a : = i 1s encountered during the elaboration, two new

environs have been created, one for each range. The defining-identifier i is
first sought in the newer one, E2, is not found there, and then is sought
and found in the older one, E1. The locale of E1 corresponds to 'integral
letter i reference to integral letter a procedure yielding void letter p'. The
yield of the applied-identifier i is therefore the value 421 which has been
ascribed (a) to 'integral letter i' inside the locale of E1. The yield of a, in
a : = i, however, is found from the locale of E2.

When p is called (5.4.3.2.b), its unit is elaborated in an environ E3
established around E1 but upon E2 (3.2.2.b). This means that, for scope
purposes, E3 is newer than E2, but the component environ of E3 is E1.
When a comes to be printed, it is the yield 5 of the reference-to~integral­
identifier a declared in the outer range that is obtained.

Thus, the meaning of an indicator applied but not defined within a
routine is determined by the context in which the routine was created,
rather than that in which it is called.)

5. Units

{Units are used to program the more primitive actions or to put into
one single piece the larger constructs of Chapter 3.

NOTION-coercees are the results of coercion (Chapter 6), but hips are
not; in the case of ENCLOSED-clauses, any coercions needed are
performed inside them.

The syntax below implies, for example, that text of draft+ "the.,_end" is
parsed as (text of draft)+ "the .:..end" since a selection is a 'SECONDARY·
whereas a formula is a 'TERTIARY'.)

5.1. Syntax

A) UNIT{32d) : : assignation{52la) coercee ;
identity relation{522a) coercee ; routine text{54la,b) coercee ;
jump(544a) ; skip{552a) ; TERTIARY{BJ.

B) TERTIARY{A,52lb,522a) : : ADIC formula(542a,b) coercee ;
nihil{524a) ; SECONDARY{C).

78 van Wijngaarden, et al.

C) SECONDARY{B,53la,542c) : : LEAP generator{523a} coercee ;
selection[53la} coercee ; PRIMARY(D).

D) PRIMARY[C,532a,543a} : : slice[532a) coercee ; call(543a) coercee ;
cast{55la) coercee ; denoter{80a) coercee ;
format text(A34la) coercee ;
applied identifier with TAG{48b} coercee ;
ENCLOSED clause(3la,33a,c,d,e,34a,35a).

[The hyper-rules for 'SORT MOID FORM coercee· are given in 6.1.1.a,
b, c, d and e, the entry rules of the coercion syntax. When the coercion
syntax is invoked for some 'SORT MOIO FORM coercee·, it will eventually
return to a rule in this chapter for some 'MOfDl FORM' (blind alleys
apart). It is the cross-reference to that rule that is given in the
metaproduction rules above. No other visible descendent has been
produced in the meantime; the coercion syntax merely transforms 'MOID'
into 'MOIDI · for semantical purposes.)

a) * SOME hip :
SOME jump{544a} ; SOME skip(552a} ; SOME nihil{524a).

{The mode of a hip is always that required, a posteriori, by its context,
and its yield is acceptable to that mode. Since any mode is so easily
accommodated, no coercion is permitted.)

5.2. Units associated with names

(Names may be assigned to (5.2.1), compared with other names (5.2.2)
and created (5.2.3) .)

5.2 .1. Assignations

(In assignations, a value is "assigned" to a name. E.g., in x := 3.14, the
real number yielded by the source 3.14 is assigned to the name yielded by
the destination x.)

5.2.1.1. Syntax

a) REF to MODE NEST assignation(5A) :
REF to MODE NEST destination(b), becomes{94c) token,

MODE NEST source(c).
b) REF to MODE NEST destination(a) :

soft REF to MODE NEST TERTIARY(5B).
c) MODEi NEST source{a,44d} : strong MODE2 NEST unit{32d),

where MODEi deflexes to MODE2{47a,b,c,-).

[Examples:

a) X := 3.]4
c) 3.14)

b) X

ALGOL 68 Revised Report 79

5.2.1.2. Semantics

a) An assignation A is elaborated as follows:
• let N and W be the (collateral} yields (a name and another value) of the
destination and source of A;
• W is assigned to (bl N;
• the yield of A is N.

b) A value W is "assigned to" a name N, whose mode is some 'REF to
MODE', as follows:
It is required that

• N be not nil, and that
• W be not newer in scope than N;

Case A: 'MODE' is some 'structured with FIELDS mode':
For each 'TAG' selecting a field in W,

• that field is assigned to the subname selected by 'TAG· in N;
Case B: 'MODE' is some 'ROWS of MODEi ':

• let V be the (old) value referred to by N;
• it is required that the descriptors of W and V be identical;
For each index I selecting an element in W,

• that element is assigned to the subname selected by I in N;
Case C: 'MODE' is some 'flexible ROWS of MODEi ':

• let V be the (old) value referred to by N;
• N is made to refer to a multiple value composed of
(i) the descriptor of W,
(ii) variants (4.4.2.c) of some element (possibly a ghost element) of V;
• N is endowed with subnames (2.1.3.4.g);
For each index I selecting an element in W,

• that element is assigned to the subname selected by I in N;
Other Cases (e.g., where 'MODE' is some 'PLAIN' or some 'UNITED'):

• N is made to refer (2.1.3.2.a) to W.

(Observe how, given
flex [1: O] [1: 3] int flexfix,

the presence of the ghost element (2.1.3.4.c) ensures that the meaning of
flexfix := loc [1: 1 j [1: 3] int is well defined, but that of flexfix := loc [1:
1] [1: 4] Int is not, since the bound pairs of the second dimension are
different.)

5.2.2. Identity relations

(Identity-relations may. be used to ask whether two names of the same
mode are the same.

E.g., after the assignation draft : = ("abc", nil), the identity-relation next
of draft :=: ref book (nil) yields true. However, next of draft :=: nil yields
false because it is equivalent to next of draft : =: ref ref book (nil): the yield
of next of draft, without any coercion, is the name referring to the second
field of the structured value referred to by the value of draft and, hence,
is not nil.)

-

80 van Wijngaarden, et al.

5.2.2.1. Syntax

a) boolean NEST identity relation(5A) :
where soft balances SORT! and SORT2{32f},

SORT! reference to MODE NEST TERTIARY1{5B},
identity relator(b),
SORT2 reference to MODE NEST TERTIARY2(5B).

b) identity relator(a) : is{94f} token ; is not{94f} token.

(Examples:

a) next of draft : =: ref book (nil)
b) :=: • :-J:)

(Observe that al [i] : =: al [j] is not produced by this syntax. The
comparison, by an identity-relation, of transient names (2.1.3.6.c) is thus
prevented.)

5.2.2.2. Semantics

The yield W of an identity-relation I is determined as follows:
• let N1 and N2 be the (collateral) yields of the TERTIARYs of I;
Case A: The token of the identity-relator of I is an is-token:

• W is true if (the name) N1 is the same as N2, and is false otherwise;
Case B: The token of the identity-relator of I is an is-not-token:

• W is true if N1 is not the same as N2, and is false, otherwise.

5.2.3. Generators

(And as imagination bodies forth
The forms of things unknown, the poefs
pen
Turns them to shapes, and gives to airy
nothing
A local habitation and a name.
A Midsummer-night"s Dream,

William Shakespeare.)

(The elaboration of a generator, e.g., /oc real in xx := toe real := 3.14,
or of a sample-generator, e.g., [J: n] char in [l: n] char u, v;, involves
the creation of a name, i.e., the reservation of storage.

The use of a local-generator implies (with most implementations) the
reservation of storage on a run-time stack, whereas heap-generators imply
the reservation of storage in another region, termed the '"heap'", in which
garbage-collection techniques may be used for storage retrieval. Since this
is less efficient, local-generators are preferable; this is why only toe may
be omitted from sample-generators of variable-declarations.)

ALGOL 68 Revised Report

5.2.3.1. Syntax

{LEAP : : local ; heap ; primal.}

a) reference to MODE NEST LEAP generator{5C} : LEAP{94d,-} token,
actual MODE NEST declarer{46a}.

b) reference to MODINE NEST LEAP sample generator(44e} :
LEAP{94d,-} t(jken, actual MODINE NEST declarer{44b,46a} ;
where (LEAP) is (local), actual MODINE NEST declarer{44b,46a}.

{Examples:

a) loc real b) loc real • real }

(There is no representation for the primal-symbol (see 9.4.a) .}

5.2.3.2. Semantics

81

a) The yield W of a LEAP-generator or LEAP-sample-generator G, in
an environ E, is determined as follows:
• W is a newly created name which is made to refer (2.1.3.2.a} to the yield
in E of the actual-declarer (4.4.2.d, 4.6.2.a} of G;
• W is equal in scope to the environ E1 determined as follows:

Case A: 'LEAP' is 'local':
• E1 is the "'local environ"' (b} accessible from E;

Case B: 'LEAP' is 'heap':
• E1 is {the first environ created during the elaboration of the
particular-program, which is} such that
(i) the primal environ {2.2.2.a} is the environ of the environ of the
environ of E1 (sic}, and
(ii) E1 is, or is older than, E;

Case C: 'LEAP' is 'primal':
• E1 is the primal environ;

• if W is a stowed name (2.1.3.2.b}, then W is endowed with subnames
(2.1.3.3.e, 2.1.3.4.g}.

{The only examples of primal-generators occur in the standard- and
system-preludes (10.3.1.1.h, 10.3.1.4.b,n,o, 10.4.1.a).

When G is a reference-to-routine-sample-generator, the mode of W is of
no relevance.}

b) The "'local environ"' accessible from an environ E is an environ E1
determined as follows:

If E is "'nonlocal'" {3.2.2.b},
then E1 is the local environ accessible from the environ of E;
otherwise, E1 is E.

(An environ is nonlocal if it has been established according to a serial­
clause or enquiry-clause which contains no constituent mode-, identifier-,
or operation-declaration, or according to a for-part (3.5.1.b) or a
specification (3.4.1.j,k) .}

.,

82 van Wijngaarden, et al.

5.2.4. Nihils

5.2.4.1. Syntax

a) strong reference to MODE NEST nihil(5B} : nil{94f) token.

(Example:

a) nil)

5.2.4.2. Semantics

The yield of a nihil is a nil name.

5.3. Units associated with stowed values

{In Flanders fields the poppies blow
Between the crosses, row on row, ...
In Flanders Fields, John Mccrae.)

(The fields of structured values may be obtained by selections (5.3.1)
and the elements of multiple values by slices (5.3.2) ; the corresponding
effects on stowed names are defined also.)

5.3.1. Selections

(A selection selects a field from a structured value or (if it is a
"multiple selection") it selects a multiple value from a multiple value
whose elements are structured values. For example, re of z selects the
first real field (usually termed the real part) of the yield of z. If z yields a
name, then re of z also yields a name, but if g yields a complex value,
then re of g yields a real value, not a name referring to one.)

5.3.1.1. Syntax

A) REFETY : : REF to ; EMPTY.
B) REFLEXETY :: REF to ; REF to flexible ; EMPTY.

(REF : : reference ; transient reference.)

a) REFETY MODEi NEST selection(5C} :
MODEi field FIELDS applied field selector with T AG(48d),

of (94f) token, weak REFETY structured with FIELDS mode
NEST SECONDARY(5C) ;

where (MODEi) is (ROWS of MODE2),
MODE2 field FIELDS applied field selector with TAG{48d),
of(94f) token, weak REFLEXETY ROWS of structured with
FIELDS mode NEST SECONDARY(5C),

where (REFETY) is derived from (REFLEXETY){b,c,-).
b) WHETHER (transient reference to) is derived from

(REF to flexible){a,532a,66a) : WHETHER true.
c) WHETHER (REFETY) is derived from (REFETY){a,532a,66a} :

WHETHER true.

ALGOL 68 Revised Report

(Examples:

a) reofz • reofzl)

(The mode of re of z begins with 'reference to' because that of z does.
Example:

Int age : = 7; struct (boo/ sex, int age) jill;
age of jill : = age;

83

Note that the destination age of jill yields a name because jill yields one.
After the identity-declaration

struct (boo/ sex, int age) jack = (true, 9),
age of jack cannot be assigned to since jack is not a variable.)

5.3.1.2. Semantics

The yield W of a selection S is determined as follows:
• let V be the yield of the SECONDARY of S;
• it is required that V (if it is a name) be not nil;
• W is the value selected in (2.1.3.3.a,e, 2.1.3.4.k) or the name generated
from (2.1.3.4.l) V by the field-selector of S.

(A selection in a name referring to a structured value yields an existing
subname (2.1.3.3.e) of that name. The name generated from a name
referring to a multiple value, by way of a selection with a ROWS-of-MODE­
SECONDARY (as in re of zl), is a name which may or may not be newly
created for the purpose.)

5.3.2. Slices

(Slices are obtained by subscripting, e.g., xl [i], by trimming, e.g.,
x1[2: n] or by both, e.g., x2[j: n,j] or x2[,k]. Subscripting and
trimming may be done only to PRIMARYs, e.g., xl or (p I xl I yl) but not
re of zl. The value of a slice may be either one element of the yield of its
PRIMARY or a subset of the elements; e.g., xl [i] is a real number from
the row of real numbers xl, x2 [i,] is the i-th row of the matrix x2 and
x2 [, k] is its k-th column.)

5.3.2.1. Syntax

A) ROWSETY :: ROWS; EMPTY.

a) REFETY MODEi NEST slice(5D) :
weak REFLEXETY ROWSI of MODEi NEST PRIMARY(5D),

ROWSI leaving EMPTY NEST indexer{b,c,-) STYLE bracket,
where (REFETY) is derived from (REFLEXETY){53lb,c,-) ;

where (MODEi) is (ROWS2 of MODE2),
weak REFLEXETY ROWSI of MODE2 NEST PRIMARY(5D),
ROWSI leaving ROWS2 NEST indexer{b,d,-) STYLE bracket,
where (REFETY) is derived from (REFLEXETY){53lb,c,-).

(ROWS : : row ; ROWS row.)

-

84 van Wijngaarden, et al.

b) row ROWS leaving ROWSETYI ROWSETY2 NEST indexer{a,b) :
row leaving ROWSETYI NEST indexer{c,d,-}, and also{94f} token,

ROWS leaving ROWSETY2 NEST indexer{b,c,d,-).
c) row leaving EMPTY NEST indexer{a,b) : NEST subscript(e).
d) row leaving row NEST indexer{a,b) : NEST trimmer(() ;

NEST revised lower bound(g) option.
e) NEST subscript(c) : meek integral NEST unit{32d).
f) NEST trimmer(d} : NEST lower bound{46m} option, up to{94f} token,

NEST upper bound{46n} option,
NEST revised lower bound(g) option.

g) NEST revised lower bound(d,f) :
at{94f} token, NEST lower bound(46m).

h) • trimscript : NEST subscript(e) ; NEST trimmer(f) ;
NEST revised lower bound(g) option.

i) • indexer : ROWS leaving ROWSETY NEST indexer{b,c,d).
j) • boundscript : NEST subscript(e) ; NEST lower bound{46m) ;

NEST upper bound{46n} ; NEST revised lower bound(g).

(Examples:

a) x2 [i,j] • x2 [,j)
b) J: 2, j (in x2 [I : 2,j)) • i, j (in x2 [i,j])
c) j (in x2 [I: 2,j)) d) 1: 2 • @0 (in xl [@0])
e) j f) J: 2@0
g) @0)

(A subscript decreases the number of dimensions by one, but a
trimmer leaves it unchanged. In rule a, ·ROWS I· reflects the number of
trimsripts in the slice, and 'ROWS2' the number of these which are
trimmers or revised-lower-bound-options.

If the value to be sliced is a name, then the yield of the slice is also a
name. Moreover, if the mode of the former name is 'reference to flexible
ROWS I of MODE', then that yield is a transient name (see 2.1.3.6.c) .)

5.3.2.2. Semantics

a) The yield W of a slice S is determined as follows:
• let V and (11 , ... , In) be the (collateral) yields of the PRIMARY of S

and of the indexer (b) of S;
• it is required that V (if it is a name) be not nil;
• let ((r1, s1), ... , (rn, sn)) be the descriptor of V or of the value referred

to by V;
For i = 1, ... , n,

Case A: I. is an integer:
I

• it is required that r. 5. I. 5. s.;
I I I

ALGOL 68 Revised Report

Case B: I. is some triplet (I, u, I'):
I

• let L be r., if I is absent, and be I otherwise;
I

• let U be s., if u is absent, and be u otherwise;
I

• it is required that r. s. L and U s. s.;
I I

85

• let D be O if I' is absent, and be L - I' otherwise; (D is the amount
to be subtracted from L in order to get the revised lower bound;}
• I. is replaced by (L, U, D);

I

• W is the value selected in (2.1.3.4.a,g,i) or the name generated from
(2.1.3.4.j} V by (1 1 , ... , In).

b) The yield of an indexer I of a slice S is a trim {2. l.3.4.h) or an
index (2.1.3.4.a) (1 1 , ... , In) determined as follows:

• the constituent boundscripts of S are elaborated collaterally;
For i = 1, ... , n, where n is the number of constituent trimscripts of S,

Case A: the i-th trimscript is a subscript:
• I. is (the integer which is) the yield of that subscript;

I

Case B: the i-th trimscript is a trimmer T:
• I. is the triplet (I, u, I'), where

I

• I is the yield of the constituent lower-bound, if any, of T,
and is absent, otherwise,
• u is the yield of the constituent upper-bound, if any, of T, and
is absent, otherwise,
• I' is the yield of the constituent revised-lower-bound, if any, of
T, and is 1, otherwise;

Case C: the i-th trimscript is a revised-lower-bound-option N:
• I. is the triplet (absent, absent, I'), where

I

• I' is the yield of the revised-lower-bound, if any, of N, and is
absent otherwise.

(Observe that, if (1 1 , ... , In) contains no triplets, it is an index, and

selects one element; otherwise, it is a trim, and selects a subset of the
elements.)

(A slice from a name referring to a multiple value yields an existing
subname (2.1.3.4.j) of that name if all the constituent trimscripts of that
slice are subscripts. Otherwise, it yields a generated name which may or
may not be newly created for the purpose. Hence, the yield of xl [1 : 21
:=: xl [1 : 2] is not defined. although xl [1] :=: xl [1] must always yield
true.)

(The various possible bounds in the yield of a slice are illustrated by
the following examples, for each of which the descriptor of the value

86 van Wijngaarden, et al.

referred to by the yield is shown:
[0 : 9, 2 : 11] int i3;
i3 [J, 3: 10 @3] <t ((3, 10)) <t;

i3 ll, 3: 10 J <t ((], 8)) <t;

i3 [1, 3: J <t ((], 9))<t;
i3 [1,: J <t ((1, 10)) <t;

i3 ll,] <t ((2, 11)) <t;

i3 l, 2] <t ((0, 9)) <t.)

5.4. Units associated with routines

(Routines are created from routine-texts (5.4.1) or from jumps (5.4.4),
and they may be "called" by calls (5.4.3), formulas (5.4.2) or by
deproceduring (6.3) .}

5.4.l. Routine texts

(A routine-text always has a formal-declarer, specifying the mode of
the result, and a routine-token, viz., a colon. To the right of this colon
stands a unit, which prescribes the computations to be performed when
the routine is called. If there are parameters, then to the left of the formal­
declarer stands a declarative containing the various formal-parameters
required.
Examples:

void: print (x);

(ref real a, real b) bool: (a < b I a : = b; true I false).)

5.4.l.l. Syntax

a) procedure yielding MOID NESTI routine text(44d,5A} :
formal MOID NESTI declarer(46b}, routine{94f} token,

strong MOID NESTI unit(32d}.
b) procedure with PARAMETERS yielding

MOID NESTI routine text{44d,5A} :
NESTI new DECS2 declarative defining

new DECS2{e) brief pack,
where DECS2 like PARAMETERS{c,d,-),
formal MOID NESTI declarer(46b), routine{94f} token,
strong MOID NESTI new DECS2 unit{32d}.

C) WHETHER DECS DEC like PARAMETERS PARAMETER(b,c} :
WHETHER DECS like PARAMETERS{c,d,-}

and DEC like PARAMETER{d,-}.
{PARAMETER : : MODE parameter.}

d) WHETHER MODE TAG like MODE parameter{b,c} :
WHETHER true.

e) NEST2 declarative defining new DECS2(b,e,34j} :
formal MODE NEST2 declarer{46b},

NEST2 MODE parameter joined definition of DECS2(4lb,c) ;

ALGOL 68 Revised Report

where (DECS2) is (DECS3 DECS4),
formal MODE NEST2 declarer{46b),
NEST2 MODE parameter joined definition of DECS3{4lb,c),
and also{94f) token, NEST2 declarative defining new DECS4{e).

f) NEST2 MODE parameter definition of MODE TAG2{4lc) :
MODE NEST2 defining identifier with T AG2{48a).

g) * formal MODE parameter :
NEST MODE parameter definition of MODE T AG{f).

{Examples:

a) real: random x 10
e) boot a, b • boot a, boot b

5.4.1.2. Semantics

b) (boot a, b) boot: (a I b I false)

O a I

87

The yield of a routine-text T, in an environ E, is the routine composed
of
(i) T, and

(ii) the environ necessary for {7.2.2.c) T in E.

5.4.2. Formulas

{Formulas are either dyadic or monadic: e.g., x + i or abs x. The order
of elaboration of a formula is determined by the priority of its operators;
monadic formulas are elaborated first and then the dyadic ones from the
highest to the lowest priority.)

5.4.2.l. Syntax

A) DYADIC : : priority PRIO.
B) MONADIC : : priority iii iii iii i.
C) ADIC : : DYADIC ; MONADIC.
D) TALLETY :: TALLY; EMPTY.

a) MOID NEST DYADIC formula{c,5B) :
MODEi NEST DYADIC TALLETY operand{c,-),

procedure with MODEi parameter MODE2 parameter
yielding MOID NEST applied operator with TAD{48b),

where DYADIC TAD identified in NEST{72a),
MODE2 NEST DYADIC TALLY operand{c,-).

b) MOID NEST MONADIC formula{c,5B) :
procedure with MODE parameter yielding MOID

NEST applied operator with TAM {48b),
MODE NEST MONADIC operand{c).

c) MODE NEST ADIC operand(a,b) :
firm MODE NEST ADIC formula{a,b) coercee{6lb) ;
where (ADIC) is (MONADIC), firm MODE NEST SECONDARY(5C).

-

88 van Wijngaarden, et al.

d) * MOID formula : MOID NEST ADIC formula{a,b}.
e) * DlJO dyadic operator with TAD :

DlJO NEST DEFIED operator with TAD{48a,b}.
f) * MONO monadic operator with TAM :

MONO NEST DEFIED operator with TAM{48a,b}.
g) * MODE operand : MODE NEST ADIC operand{c}.

{Examples:

a) -x + 1
c) -x • 1)

5.4.2.2. Semantics

b) -x

The yield W of a formula F, in an environ E, is determined as follows:
• let R be the routine yielded in E by the operator of F:
• let V 1, ... , V n {n is 1 or 2) be the {collateral} yields of the operands of F,

in an environ E1 established {locally, see 3.2.2.b} around E;
• W is the yield of the calling {5.4.3.2.b} of R in E1, with V 1, ... , V n;

• it is required that W be not newer in scope than E.

{Observe that a t b is not precisely the same as a6 in the usual
notation; indeed, the value of (- 1 1 2 + 4 = 5) and that of (4 -1 1 2 = 3) both
are true, since the first minus-symbol is a monadic-operator, whereas the
second is a dyadic-operator.}

5.4.3. Calls

{Calls are used to command the elaboration of routines parametrized
with actual-parameters.
Examples:

sin (x) • (p I sin I cos) (x).)

5.4.3.1. Syntax

a) MOID NEST call{5D} : meek procedure with PARAMETERS yielding
MOID NEST PRIMARY{5D),

actual NEST PARAMETERS{b,c) brief pack.
b) actual NEST PARAMETERS PARAMETER{a,b} :

actual NEST PARAMETERS{b,c), and also{94f} token,
actual NEST PARAMETER{c).

c) actual NEST MODE parameter{a,b) : strong MODE NEST unit{32d}.

{Examples:

a) put (stand out, x) (see 10.3.3.1.a)
b) stand out, x c) x)

ALGOL 68 Revised Report 89

5.4.3.2. Semantics

a) The yield W of a call C, in an environ E, is determined as follows:
• let R (a routine) and V 1, ... , V n be the (collateral) yields of the

PRIMARY of C, in E, and of the constituent actual-parameters of C, in an
environ E1 established {locally, see 3.2.2.b) around E;
• W is the yield of the calling (b) of R in E1 with V 1, ... , V n;

• it is required that W be not newer in scope than E.

b) The yield W of the "calling" of a routine R in an environ E1,
possibly with (parameter) values V 1, ... , V n' is determined as follows:

• let E2 be the environ established {3.2.2.b) upon E1, around the environ of
R, according to the declarative of the declarative-pack, if any, of the
routine-text of R, with the values V 1, ... , V n' if any;

• W is the yield in E2 of the unit of the routine-text of R.

(Consider the following serial-clause:
proc samelson = (int n, proc (int) real f) real :

begin long reals:= long O;
for i ton dos+:= Ieng f (i) r 2 od;
shorten long sqrt (s)

end;
samelson (m, (intj) real: xl [j]).

In that context, the last call has the same effect as the following cast:
real(

Int n = m, proc (int) real f = (Int j) real: xl [j];
begin long reals:= long O;

for i ton dos+:= Ieng f (i) r 2 od;
shorten long sqrt (s)

end).
The transmission of actual-parameters

elaboration of identity-declarations (4.4.2.a);
(3.2.2.b) and ascription (4.8.2.a) .)

5.4.4. Jumps

is thus similar to the
see also establishment

(A jump may terminate the elaboration of a series and cause some
other labelled series to be elaborated in its place.
Examples:

y : = If x ~ 0 then sqrt (x) else goto princeton fl•
goto st pierre de chartreuse.

Alternatively, if the context expects the mode 'procedure yielding
MOID', then a routine whose unit is that jump is yielded instead, as in
proc void m : = goto north berwick.)

'

90 van Wijngaarden, et al.

5.4.4.l. Syntax

a) strong MOID NEST jump(5A) : go to(b) option,
label NEST applied identifier with T AG{48b).

b) go to(a) : STYLE go to(94f,-) token ;
STYLE go{94f,-) token, STYLE to symbol{94g,-).

(Examples:

a) goto kootwijk • go to warsaw • zandvoort
b) goto • go to)

5.4.4.2. Semantics

A MOID-NEST-jump J, in an environ E, is elaborated as follows:
• let the scene yielded in E by the label-identifier of J be composed of a
series S2 and an environ E1;
Case A: "MOID" is not any "procedure yielding MOIDI ·:

• let S1 be the series of the smallest (l.l.3.2.g) serial-clause containing
S2;
• the elaboration of S1 in E1, or of any series in E1 elaborated in its
place, is terminated (2.1.4.3.e};
• S2 in E1 is elaborated "in place of" S1 in E1;

Case B: 'MOID' is some 'procedure yielding MOIDI ·:
• J in E (is completed and) yields the routine composed of
(i) a new MOID-NEST-routine-text whose unit is akin {l.l.3.2.k) to J,
(ii) E1.

5.5. Units associated with values of any mode

5.5.l. Casts

(Casts may be used to provide a strong position. For example, ref real
(xx) in ref real (xx) : = J, ref book (nil) in next of draft : =: ref book (nil) and
string (p I c I r) in s +: = string (p I c I r).)

5.5.l.l. Syntax

a) MOID NEST cast(5D} : formal MOID NEST declarer{46b},
strong MOID NEST ENCLOSED clause{3la,33a,c,d,e,34a,35a,-).

(Example:

a) ref book (nil))

(The yield of a cast is that of its ENCLOSED-clause, by way of pre­
elaboration (2.1.4.l.c) .)

5.5.2. Skips

5.5.2.l. Syntax

a) strong MOID NEST skip(5A) : skip{94f} token.

ALGOL 68 Revised Report 91

5.5.2.2. Semantics

The yield of a skip is some {undefined) value equal in scope to the
primal environ.

(The mode of the yield of a MOID-skip is 'MOID'. A void-skip serves as
a dummy statement and may be used, for example, after a label which
marks the end of a serial-clause.)

PART III

Context Dependence

(This Part deals with those rules which do not alter the underlying
syntactical structure:
• the transformations of modes implicitly defined by the context, with
their accompanying actions;
• the syntax needed for the equivalence of modes and for the safe
application of the properties kept in the nests.)

6. Coercion

(The coercions produce a coercend from a coercee according to three
criteria: the a priori mode of the coercend before the application of any
coercion, the a posteriori mode of the coercee required after those
coercions, and the syntactic position or "sort" of the coercee. Coercions
may be cascaded.

There are six possible coercions, termed "deproceduring",
"dereferencing", "uniting", "widening", ··rowing" and "voiding". Each
coercion, except "uniting", prescribes a corresponding dynamic effect on
the associated values. Hence, a number of primitive actions can be
programmed implicitly by coercions.)

6.1. Coercees

(A coercee is a construct whose production tree may begin a sequence
of coercions ending in a coercend. The order of (completion of) the
elaboration of the coercions is therefore from the coercend to the coercee
(hence the choice of these paranotions). For example, i in real (i) is a
coercee whose production tree involves 'widened to' and 'dereferenced to',
in that order, in passing from the coercee to the coercend. Note that the
dereferencing must be completed before the widening takes place.

-

92 van Wijngaarden, et al.

The relevant production tree (with elision of 'NEST', 'applied' and
'with TAG·, and with invisible subtrees omitted) is:

'strong real identifier coercee'
j 6.1.1.a

.------..- 'widened to real identifier'
widening coercion I 6.5.1.a

t 'dereferenced to integral identifier'
dereferencing coercion j 6.2.1.a

~·unchanged from reference to integral identifier'
, 6.1.1.f

6.1.1. Syntax

'reference to integral identifier' (coercend)
j 4.8.1.b, 9.1.f

'letter i symbol' .}

A) STRONG{a,66a) : : FIRM(B) ; widened to{65a,b,c,d) ; rowed to{66a) ;
voided to{67a,b).

B) FIRM{A,b) : : MEEK{C) ; united to(64a).
C) MEEK(B,c,d,62a,63a,64a,65a,b,c,d) : : unchanged from(f) ;

dereferenced to{62a) ; deprocedured to(63a).
D) SOFT(e,63b} : : unchanged from(f) ; softly deprocedured to(63b).
E) FORM::MORF;COMOR~
F) MORF : : NEST selection ; NEST slice ; NEST routine text ;

NEST ADIC formula ; NEST call ;
NEST applied identifier with TAG.

G) COMORF : : NEST assignation ; NEST identity relation ;
NEST LEAP generator ; NEST cast ; NEST denoter ;
NEST format text.

a) strong MOID FORM coercee(5A,B,C,D,A34li) :
where (FORM) is (MORF), STRONG(A) MOID MORF ;
where (FORM) is (COMORF), STRONG(A) MOID COMORF,

unless (STRONG MOID) is (deprocedured to void).
b) firm MODE FORM coercee{5A,B,C,D,542c) : FIRM(B) MODE FORM.
c) meek MOID FORM coercee(5A,B,C,D) : MEEK(C) MOID FORM.
d) weak REFETY STOWED FORM coercee(5A,B,C,D) :

MEEK(C) REFETY STOWED FORM,
unless (MEEK) is (dereferenced to)
and (REFETY) is (EMPTY).

e) soft MODE FORM coercee(5A,B,C,D) : SOl<'T(D) MODE FORM.
f) unchanged from MOID FORM{C,D,67a,b) : MOID FORM.

g) * SORT MOID coercee : SORT MOID FORM coercee{a,b,c,d,e).
h) * MOID coercend : MOID FORM.

ALGOL 68 Revised Report 93

(Examples:

a) 3.14 (in x := 3.14)
b) 3.14 (in X + 3.14)
c) sin (in sin (x))
d) xl (in xl [2] := 3.14)
e) x (in x: = 3.14) I

(For 'MOID FORM' (rule f), see the cross-references inserted in
sections 5.1.A,B,C,D before "coercee". Note, however, that a 'MOID FORM'
may be a blind alley. Blind alleys within this chapter are not indicated.)

(There are five sorts of syntactic position. They are:
• "strong" positions, i.e., actual-parameters, e.g., x in sin (x), sources,
e.g., x in y := x, the ENCLOSED-clause of a cast, e.g., (nil) in
ref book (nil), and statements, e.g., y: = x in (y: = x; x: = OJ;
• "firm" positions, i.e., operands, e.g., x in x + y;
• "meek" positions, i.e., enquiry-clauses, e.g., x > 0 in (x > 0 I x I OJ,
boundscripts, e.g., i in xl [i]. and the PRIMARY of a call, e.g., sin in
sin (x);
• "weak" positions, i.e., the SECONDARY of a selection and the
PRIMARY of a slice, e.g., xl in xl [i];
• "soft" positions, i.e., destinations, e.g., x in x : = y and one of the
TERTIARYs of an identity-relation, e.g., x in xx : =: x.

Strong positions also arise in balancing (3.2.1.e).

In strong positions, all six coercions may occur; in firm positions,
rowing, widening and voiding are forbidden; in meek and weak positions,
uniting is forbidden also, and in soft positions only deproceduring is
allowed. However, a dereferenced-to-STOWED-FORM may not be directly
descended from a weak-STOWED-FORM-coercee (rule d) for, otherwise,
x: = xl [i] would be syntactically ambiguous (although, in this case, not
semantically). Also, a deprocedured-to-void-COMORF may not be directly
descended from a strong-void-COMORF-coercee (rule a) for, otherwise,

(proc void engelfriet; proc void rijpens = skip; engelfriet : = rijpens; skip)
would be ambiguous.)

6.2. Dereferencing

(Dereferencing serves to obtain the value referred to by a name, as in
x : = y, where y yields a name referring to a real number and it is this
number which is assigned to the name yielded by x. The a priori mode of
y, regarded as a coercend, is ·reference to real' and its a posteriori mode,
when y is regarded as a coercee, is 'real'.)

6.2.1. Syntax

a) dereferenced to(61C} MODEi FORM :
MEEK(61C} REF to MODE2 FORM,

where MODE2 deflexes to MODE1(47a,b,c,-).

94 van Wijngaarden, et al.

(Example:

a) x (in real (x)))

6.2.2. Semantics

The yield W of a dereferenced-to-MODE-FORM F is determined as
follows:
• let (the name) N be the yield of the MEEK-FORM of F;
• it is required that N be not nil;
• W is the value referred to by N.

6.3. Deproceduring

(Deproceduring is used when a routine without parameters is to be
called. E.g., in x : = random, the routine yielded by random is called and
the real number yielded is assigned: the a posteriori mode of random is
'real'. Syntactically, an initial 'procedure yielding' is removed from the a
priori mode.)

6.3.1. Syntax

a) deprocedured to{61C,67a) MOID FORM
MEEK{61C} procedure yielding MOID FORM.

b) softly deprocedured to{61D} MODE FORM :
S0FT{61D} procedure yielding MODE FORM.

(Examples:

a) random (in real (random})
b) xory (in xory:=3.14, see 1.1.2)

6.3.2. Semantics

The yield W of a deprocedured-to-MOID-FORM or softly-deprocedured-to­
MOID-FORM F, in an environ E, is determined as follows:
• let (the routine} R be the yield in E of the direct descendent of F;
• W is the yield of the calling (5.4.3.2.b} of R in E;
• it is required that W be not newer in scope than E.

6.4. Uniting

(Uniting does not change the mode of the run-time value yielded by a
construct, but simply gives more freedom to it. That value must be
acceptable to not just that one mode, but rather to the whole of a given set
of modes. However, after uniting, that value may be subject to a primitive
action only after being dynamically tested in a conformity-clause (3.4.1.q);
indeed, no primitive action can be programmed with a construct of a
'UNITED' mode (except to assign it to a UNITED-variable, of course).

ALGOL 68 Revised Report

Example:
union (bool, char) t, u;
t := "a"; t := true; u := t.)

6.4.1. Syntax

a) united to[61B) UNITED FORM : MEEK(61C} MOID FORM,
where MOID unites to UNITED(b).

b) WHETHER MOIDI unites to MOID2[a,34i,71m) :
where MOIDI equivalent MOID2(73a}, WHETHER false ;
unless MOIDI equivalent MOID2(73a},

[Examples:

WHETHER safe MOODSI subset of safe MOODS2(73l,m,n),
where (MOODS!) is (MOIDI)
or (union of MOODSI mode) is (MOIDI),

where (MOODS2) is (MOID2)
or (union of MOODS2 mode) is (MOID2).

a) x (in uir:=x) •
u (in union (char, int, void) (u), in a reach containing
union (int, void) u : = empty))

6.5. Widening

95

(Widening transforms integers to real numbers, real numbers to
complex numbers (in both cases, with the same size), a value of mode
'BITS' to an unpacked vector of truth values, or a value of mode 'BYTES'
to an unpacked vector of characters.

For example, in z : = J, the yield of 1 is widened to the real number 1.0
and then to the complex number (1.0, 0.0); syntactically, the a priori
mode specified by int is changed to that specified by real and then to that
specified by compl.)

6.5.1. Syntax

A) BITS : : structured with
row of boolean field SITHETY letter aleph mode.

B) BYTES : : structured with
row of character field SITHETY letter aleph mode.

C) SITHETY : : LENGTH LENGTHETY ; SH ORTH SHORTHETY ;
EMPTY.

D) LENGTH : : letter I letter o letter n letter g.
E) SHORTH : : letter s letter h letter o letter r letter t.
F) LENGTHETY : : LENGTH LENGTHETY ; EMPTY.
G) SHORTHETY : : SHORTH SHORTHETY ; EMPTY.

a) widened to(b,61A} SIZETY real FORM :
MEEK(61C} SIZETY integral FORM.

(SIZETY : : long LONGSETY ; short SHORTSETY ; EMPTY.)

-

96 van Wijngaarden. et al.

b) widened to{61A) structured with SIZETY real field letter r letter e
SIZETY real field letter i letter m mode FORM :

MEEK{61C} SIZETY real FORM ;
widened to(a} SIZETY real FORM.

c) widened to{61A} row of boolean FORM : MEEK{61C} BITS FORM.
d) widened to(61A} row of character FORM : MEEK{61C} BYTES FORM.

(Examples:

a)J(inx:=1)
b) 1.0 (inz:=1.0) •1 (inz:=1)
c) 2r 101 (in [] bool (2r 101))

d) r (in []char(r), see 1.1.2)}

6.5.2. Semantics

The yield W of a widened-to-MODE-FORM F is determined as follows:
• let V be the yield of the direct descendent of F;
Case A: "MODE' is some 'SIZETY real':

• W is the real number widenable from (2.1.3.1.e) V;
Case B: 'MODE' is some 'structured with SIZETY real letter r letter e

SIZETY real letter i letter m mode':
• W is (the complex number which is) a structured value whose fields
are respectively V and the real number O of the same size {2.1.3.1.b) as
V;

Case C: 'MODE' is 'row of boolean' or 'row of character':
• W is the (only) field of V.

6.6. Rowing

{Rowing permits the building of a multiple value from a single element.
If the latter is a name then the result of rowing may also be a name
referring to that multiple value.
Example:

[J: J] real bl := 4.13)

6.6.1. Syntax

a) rowed to{61A) REFETY ROWSl of MODE FORM :
where (ROWSl) is (row),

STRONG{61A} REFLEXETY MODE FORM,
where (REFETY) is derived from (REJ<'LEXETY){53lb,c,-) ;

where (ROWSl) is (row ROWS2),

(Examples:

STRONG{61A) REFLEXETY ROWS2 of MODE FORM,
where (REFETY) is derived from (REFLEXETY){53lb,c,-).

a) 4.13 (in [J : J] real bl : = 4.13) •
xl (in [J: 1,1: n]realb2:=xl))

ALGOL 68 Revised Report 97

6.6.2. Semantics

a) The yield W of a rowed-to-REFETY-ROWSI-of-MODE-FORM F is
determined as follows:
• let V be the yield of the STRONG-FORM of F;
Case A: 'REf'ETY' is 'EMPTY':

• Wis the multiple value "built" (bl from V for 'ROWS I·:
Case B: 'REFETY' is 'REF to':

If V is nil,
then W is a nil name:
otherwise, Wis the name "built" (c} from V for 'ROWSI'.

b) The multiple value W "built" from a value V, for some 'ROWS I·; is
determined as follows:
Case A: 'ROWS I' is 'row':

• W is composed of
(i) a descriptor ((1, 1)),
(ii) (one element) V;

Case B: 'ROWSI' is some 'row ROWS2':
• let the descriptor of V be ((11, u1), ... , (In, un)):

• W is composed of
(i) a descriptor ((1, 1), (1 1, u1), ... , (In, un)),

(ii) the elements of V:

• the element selected by an index (i 1, ... , in) in V is that selected by

(1, i1, ... , in) in W.

c) The name N1 "built" from a name N, for some 'ROWS I·, is
determined as follows:
• N1 is a name (not necessarily newly created}, equal in scope to N and
referring to the multiple value built (b}, for 'ROWSI ', from the value
referred to by N:
Case A: 'ROWS I· is 'row·:

• the (only} subname of N1 is N;
Case B: 'ROWSI' is some 'row ROWS2':

• the subname of N 1 selected by (1, i 1, ... , in) is the subname of N

selected by (i 1, ... , in).

6.7. Voiding

(Voiding is used to discard the yield of some unit whose primary
purpose is to cause its side-effects: the a posteriori mode is then simply
·void'. For example, in x: = 1; y: = 1;, the assignation y: = 1 is voided, and
in proc t = int: entier (random x 100); t;, the applied-identifier t is voided
after a deproceduring, which prescribes the calling of a routine.

i

98 van Wijngaarden, et al.

Assignations and other COMORFs are voided without any deproceduring
so that, in proc void p; .p : = finish, the assignation p : = finish does not
prescribe an unexpected calling of the routine finish.)

6.7.l. Syntax

A) NONPROC : : PLAIN ; STOWED ; REF to NONPROC ;
procedure with PARAMETERS yielding MOID ; UNITED.

a) voided to{61A) void MORF : deprocedured to{63a} NONPROC MORF ;

unchanged from(6lf) NONPROC MORF.
b) voided to{61A) void COMORF :

unchanged from{6lf) MODE COMORF.

(Examples:

a) random (in skip; random;) •
next random (last random)
(in skip; next random (last random);)

b) proc void (pp) (in proc proc void pp= proc void: (print (1);
void: print (2)); proc void (pp);) I

6.7.2. Semantics

The elaboration of a voided-to-void-FORM consists of that of its direct
descendent, and yields empty.

7. Modes and nests

{The identification of a property in a nest is the static counterpart of
the dynamic determination (4.8.2.b) of a value in an environ: the search is
conducted from the newest (youngest) level towards the previous (older)
ones.

Modes are composed from the primitive modes, such as "boolean·, with
the aid of 'HEAD"s, such as 'structured with', and they may be recursive.
Recursive modes spelled in different ways may nevertheless be
equivalent. The syntax tests the equivalence of such modes by proving
that it is impossible to find any discrepancy between their respective
structures or component modes.

A number of unsafe uses of properties are prevented. An identifier or
mode-indication is not declared more than once in each reach. The modes
of the operands of a formula do not determine more than one operation.
Recursions in modes do not cause the creation of dynamic objects of
unlimited size and do not allow ambiguous coercions.)

7.1. Independence of properties

(The following syntax determines whether two properties (i.e., two
'PROP's), such as those corresponding to real x and int x, may or may not
be enveloped by the same 'LAYER'.)

ALGOL 68 Revised Report

7.1.l. Syntax

A) PREF : : procedure yielding ; REF to.
B) NONPREF : : PLAIN ; STOWED ;

procedure with PARAMETERS yielding MOID ; UNITED ; void.
C) • PREFSET\' : : PREF PREl<'SET\' ; EMPTY.

(PROP : : DEC ; LAB ; FIELD.
QUALITY:: MODE; MOID TALLY ; DYADIC; label; MODE field.
TAX:: TAG; TAB; TAD; TAM.
TAO:: TAD; TAM.)

a) WHETHER PROPI independent PROPS2 PROP2(a,48a,c,72a) :
WHETHER PROPI independent PROPS2(a,c)

and PROP I independent PROP2(c).
b) WHETHER PROP independent EMPTY(48a,c,72a) : WHETHER true.
c) WHETHER QUALITYI TAXI

independent QUALITY2 TAX2(a,48a,c,72a) :
unless (TAXI) is (TAX2), WHETHER true ;
where (TAXI) is (TAX2) and (TAXI) is (TAO),

WHETHER QUALITYI independent QUALITY2(d).
d) WHETHER QUALITYI independent QUALITY2(c) :

where QUALITY l related QLIALITY2(e,f,g,h,i,j .-},
WHETHER false ;

unless QUALITYI related QUALITY2(e,f,g,h,i,j,-},
WHETHER true.

e) WHETHER MONO related DUO(d) : WHETHER false.
f) WHETHER DUO related MONO(d) : WHETHER false.
g) WHETHER PRAM related DY ADIC(d) : WHETHER false.
h) WHETHER DYADIC related PRAM(d} : WHETHER false.
i) WHETHER procedure with MODEi parameter MODE2 parameter

yielding IVIOIDI related
procedure with MODE3 parameter MOUE4 parameter
yielding MOID2(d) :

WHETHER MODEi firmly related MODE3(k)
and MODE2 firmly related MODE4(k).

j) WHETHER procedure with MOUEI parameter yielding MOIDI
related procedure with MOUE2 parameter yielding
MOID2(d) : WHETHER MODEi firmly related MOUE2(k).

k) WHETHER MOIDl firmly related MOID2{i,j) :
WHETHER MOODSI is firm MOID2(1,m)

or MOODS2 is firm MOIDl{l,m),
where (MOODSI) is (MOIDI)
or (union of MOODSI mode) is (MOIDI),

where (M00DS2) is (MOID2)
or (union of M00DS2 mode) is (MOID2).

99

-

100 van Wijngaarden, et al.

1) WHETHER MOODS MOOD is firm MOID{k,l} :
WHETHER MOODS is firm MOID{l,m}

or MOOD is firm MOID(m}.
m) WHETHER MOIDI is firm MOID2{k,l,n,47f} :

WHETHER MOIDI equivalent MOID2(73a}
or MOIDI unites to MOID2{64b}
or MOIDI deprefs to firm MOID2{n}.

n) WHETHER MOIDI deprefs to firm MOID2{m) :
where (MOIDI) is (PREF MOID3),

WHETHER MOID5 is firm MOID2{m),
where MOID3 deflexes to MOID5(47a,b,c) ;

where (MOIDI) is (NONPREF), WHETHER false.

[To prevent the ambiguous application of indicators, as in real x, int x;
x: = 0, certain restrictions are imposed on defining-indicators contained in
a given reach. These are enforced by the syntactic test for "independence"
of properties enveloped by a given "LAYER" (rules a, b, c). A sufficient
condition, not satisfied in the example above, for the independence of a
pair of properties, each being some "QUALITY TAX', is that the 'TAX's
differ (rule c). For 'TAX's which are not some 'TAO', this condition is also
necessary, so that even real x, int x; skip is not a serial-clause.

For two properties 'QUALITY! TAO' and 'QllALIT\'2 TAO' the test for
independence is more complicated, as is exemplified by the serial-clause

op+= (inti) boo/ : true, op+= (Int i,j) int: J, op+= (inti, boo/ j) int : 2,
prio+=6;
O++O <f= 2<:.

Ambiguities would be present in
prio + = 6, + = 7; 1 + 2 x 3 <t 7 or 9? <t ,

in
opz =(inti) Int: J, modez = int;

z i <t formula or declaration? <t; skip ,
and in

op ? = (union (ref real, char) a) int: J, op ? = (real a) int: 2;
? loc real <t 1 or 2? <t •

In such cases a test is made that the two 'QllALITY's are independent
(rules c, d). A 'MOID TALLY' is never independent of any 'QUALITY'
(rule d). A 'MONO' is always independent of a 'DUO' (rules d, e, f) and
both are independent of a 'DYADIC' (i.e., of a 'priority PRIO') (rules d, g,
h). In the case of two 'PRAM's which are both 'MONO' or both 'DUO',
ambiguities could arise if the corresponding parameter modes were
"firmly related", i.e., if some (pair of) operand mode (s) could be firmly
coerced to the (pair of) parameter mode (s) of either 'PRAM' (rules i, j).
In the example with the two definitions of ?, the two 'PRAM's are related
since the modes specified by union (ref real, char) and by real are firmly
related, the mode specified by ref real being firmly coercible to either one.

It may be shown that two modes are firmly related if one of them, or
some component 'MOOD' of one of them, may be firmly coerced to the

ALGOL 68 Revised Report 101

other (rules k, 1), which requires a sequence of zero or more meek
coercions followed by at most one uniting (6.4.1.a). The possibility or
otherwise of such a sequence of coercions between two modes is
determined by the predicate 'is firm' (rules m, n).

A 'PROP I· also renders inaccessible a 'PROP2' in an outer 'LAYER' if
that 'PROP2' is not independent of 'PROP I·; e.g.,

begin Int x;
begin real x; <there the 'PROP I· is 'reference to real letter x· <t

skip
end

end
and likewise

beginop?=(inti)lnt: 1, intk :=2;
begin op?= (ref Inti) Int · 3;

? k <t delivers 3, but ? 4 could not occur here because its
operator is inaccessible <t

end
end .)

7.2. Identification in nests

[This section ensures that for each applied-indicator there is a
corresponding property in some suitable 'I.A YER' of the nest.)

7 .2.1. Syntax

(PROPSETY : : PROPS ; EMPTY.
PROPS : : PROP ; PROPS PROP.
PROP : : DEC ; LAB ; FIELD.
QUALITY:: MODE; MOID TALLY ; DYADIC; label; MODE field.
TAX:: TAG; TAB; TAD; TAM.)

a) WHETHER PROP identified in NEST new PROPSETY{a,48b,542a) :
where PROP resides in PROPSETY{b,c,-), WHETHER true ;
where PROP independent PROPSETY(7la,b,c),

WHETHER PROP identified in NEST{a,-).

b) WHETHER PROPl resides in PROPS2 PROP2{a,b,48d) :
WHETHER PROPl resides in PROP2{c,-)

or PROPI resides in PROPS2{b,c,-).
c) WHETHER QlJALITYl TAX resides in QlJALITY2 TAX{a,b,48d) :

where (QlJALITYl) is (label) or (QlJALITYl) is (DYADIC)
or (QlJALITYl) is (MODE field),

WHETHER (QlJALITYl) is (QlJALITY2) ;
where (QlJALITYl) is (MOIDl TALLETY)

and (QlJALITY2) is (MOID2 TALLETY),
WHETHER MOIDI equivalent MOID2(73a}.

-\
1

102 van Wijngaarden, et al.

(A nest, except the primal one (which is just 'new'), is some 'NEST
LAYER' (i.e., some 'NEST new PROPSETY'). A 'PROP' is identified by
first looking for it in that 'LA YER· (rule a). If the 'PROP' is some 'label
TAX' or 'DYADIC TAX', then a simple match of the 'PROP's is a sufficient
test (rule c). If the 'PROP' is some 'MOID TALLETY TAX', then the mode
equivalencing mechanism must be invoked (rule c). If it is not found in
the 'LA YER·, then the search continues with the 'NEST' (without that
'LAYER'), provided that it is independent of all 'PROP's in that 'LAYER';
otherwise the search is abandoned (rule a). Note that rules b and c do
double duty in that they are also used to check the validity of applied-field­
selectors (4.8.1.d) .}

7.2.2. Semantics

a) If some NEST-range R (3.0.1.f} contains an applied-indicator I
(4.8.1.b) of which there is a descendent where-PROP-identified-in-NEST­
LAYER, but no descendent where-PROP-identified-in-NEST, then R is the
"defining range" of that I. (Note that 'NEST' is always the nest in force
just outside the range.}

b) A QUALITY-applied-indicator-with-TAX I whose defining NEST-
range (a} is R "identifies" the QUALITY-NEST-LAYER-defining-indicator­
with-T AX contained in R.

(For example, in
(lfl<t real i = 2.0; (lf21f Inti= 1; (lf3/f real x; print (i) lf31f) lf21f) lfllf)

there are three ranges. The applied-identifier i in print (i) is forced, by the
syntax, to be an integral-NEST-new-real-letter-i-new-integral-letter-i-new­
reference-to-real-letter-x-applied-identifier-with-letter-i (4.8.1.b). Its
defining range is the NEST-new-real-letter-i-serial-clause-defining-new­
integral-letter-i (3.2.1.a) numbered lf2/f, it identifies the defining-identifier i
contained in Int i (not the one in real i), and its mode is 'integral'.}

(By a similar mechanism, a DYADIC-formula (5.4.2.1.a) may be said to
"identify" that DYADIC-defining-operator (4.8.1.a) which determines its
priority.)

c) The environ E "necessary for" a construct C in an environ E1 is
determined as follows:
If E1 is the primal environ (2.2.2.a},
then E is E1;
otherwise, letting E1 be composed of a locale L corresponding to some

'PROPSETY' and another environ E2,
If C contains any QUALITY-applied-indicator-with-TAX

• which does not identify (bl a defining-indicator contained in C,
• which is not a mode-indication directly descended from a formal­
or virtual-declarer, and
• which is such that the predicate 'where QUALITY TAX resides in
PROPSETY' (7.2.1.b} holds,

then Eis E1:

ALGOL 68 Revised Report 103

otherwise, (L is not necessary for C and) E is the environ necessary for
C in E2.

(The environ necessary for a construct is used in the semantics of
routine-texts (5.4.1.2) and in ""establishing"" (3.2.2.b). For example, in

rt2rt proc void pp; Int n; (rt 1 rt proc p = void : print (n); pp : = p)

if E1 and E2 are the environs established by the elaboration of the serial­
clauses marked by the comments rtlrt and rt2rt, then E2 is the environ
necessary in E1 for the routine-text void: print (n), and so the routine
yielded by p in E1 is composed of that routine-text together with E2
(5.4.1.2). Therefore, the scope of that routine is the scope of E2 (2.1.3.5.c)
and hence the assignment (5.2.1.2.b) invoked by pp : = p is well defined.)

7.3. Equivalence of modes

(The equivalence or nonequivalence of 'MOID's is determined in this
section. For a discussion of equivalent 'MOID's see 2.1.1.2.)

(One way of viewing recursive modes is to consider them as infinite
trees. Such a ""mode tree"" is obtained by repeatedly substituting in some
spelling, for each 'MU application', the 'MODE' of the corresponding 'MU
definition of MODE'. Thus, the spelling 'mui definition of structured with
integral field letter i reference to mui application field letter n mode'
would give rise to the following mode tree:

'structured with' 'mode'

'integral' 'field' 'letter i' 'field' 'letter n'

'reference to'

'structured with' 'mode'

'integral' 'field' 'letter i' 'field' 'letter n'

'reference to'
(et cetera).

Two spellings are equivalent if and only if they give rise to identical mode
trees. The equivalence syntax tests the equivalence of two spellings by, as
it were, simultaneously developing the two trees until a difference is found
(resulting in a blind alley) or until it becomes apparent that no difference
can be found. The growing production tree reflects to some extent the
structure of the mode trees.)

7.3.1. Syntax

A) SAFE : : safe ; MU has MODE SAFE ; yin SAFE ; yang SAFE ;
remember MOIDl MOID2 SAFE.

104 van Wijngaarden, etal.

B) HEAD : : PLAIN ; PREF(71A} ; structured with ;
FLEXETY ROWS of ; procedure with ; union of ; void.

C) TAILETY :: MOID; FIELDS mode; PARAMETERS yielding MOID;
MOODS mode ; EMPTY.

D) PARTS :: PART ; PARTS PART.
E) PART : : FIELD ; PARAMETER.

a) WHETHER MOIDI equivalent MOID2(64b,7lm,72c) :
WHETHER safe MOIDl equivalent safe MOll>2{b).

b) WHETHER SAFE! MOIDl equivalent SAFE2 MOID2{a,b,e,i,j,n) :
where (SAFE!) contains (remember MOIDI MOID2)

or (SAFE2) contains (remember MOID2 MOIDl),
WHETHER true ;

unless (SAFE!) contains (remember MOIDI MOID2)
or (SAFE2) contains (remember MOID2 MOIDl),

WHETHER (HEAD3) is (HEAD4)
and remember MOIDl MOID2 SAFE3 TAILETY3
equivalent SAFE4 TAILETY 4{b,d,e,k,q,-},

where SAFE3 HEAD3 TAILETY3 develops from
SAFE I MOIDl (c}
and SAFE4 HEAD4 TAILETY4 develops from
SAFE2 MOID2(c}.

c) WHETHER SAFE2 HEAD TAILETY develops from
SAFEI MOID{b,c) :

where (MOID) is (HEAD TAILETY),
WHETHER (HEAD) shields SAFE! to SAFE2{74a,b,c,d,-) ;

where (MOID) is (MU definition of MODE),
unless (SAFEl) contains (Mll has),
WHETHER SAFE2 HEAD TAILETY develops from
Mll has MODE SAFEl MODE(c) ;

where (MOID) is (MU application)
and (SAFE!) is (NOTION Mll has MODE SAFE3)
and (NOTION) contains (yin) and (NOTION) contains (yang),

WHETHER SAFE2 HEAD TAILETY develops from
SAFE! MODE(c).

d) WHETHER SAFEl FIELDS! mode
equivalent SAFE2 FIELDS2 mode(b} :

WHETHER SAFEl FIELDS! equivalent SAFE2 FIELDS2{f,g,h,i).
e) WHETHER SAFE! PARAMETERSl yielding MOIDI

equivalent SAFE2 PARAMETERS2 yielding MOID2(b} :
WHETHER SAFE! PARAMETERS!

equivalent SAFE2 PARAMETERS2{f,g,h,j)
and SAFEl MOIDl equivalent SAFE2 MOID2(b).

f) WHETHER SAFEl PARTSl PART!
equivalent SAFE2 PARTS2 PART2{d,e,f} :

WHETHER SAFEl PARTS! equivalent SAl<'E2 PARTS2{f,g,h,i,j)
and SAFEl PARTl equivalent SAl<'E2 PART2{i,j).

ALGOL 68 Revised Report

g) WHETHER SAFE! PARTS! PART! equivalent
SAl<'E2 PART2{d,e,f) : WHETHER false.

h) WHETHER SAFE! PART! equivalent
SAl<'E2 PARTS2 PART2{d,e,f} : WHETHER false.

i) WHETHER SAFE! MODEi field TAG!
equivalent SAFE2 MODE2 field TAG2{d,f) :

WHETHER (TAG!) is (TAG2)
and SAFE! MODEi equivalent SAFE2 MODE2{b).

j) WHETHER SAFE! MODEi parameter
equivalent SAl<'E2 MODE2 parameter(e,f) :

WHETHER SAFE! MODEi equivalent SAFE2 MODE2(b].

k) WHETHER SAFE! MOODS! mode equivalent
SAl<'E2 MOODS2 mode(b) :

WHETHER SAFE! MOODS! subset of SAFE2 MOODS2{1,m,n]
and SAFE2 MOODS2 subset of SAFE! MOODSI{l,m,n)
and MOODS! number equals MOODS2 number(o,p).

1) WHETHER SAl<'El MOODS! MOOD!
subset of SAFE2 MOODS2(k,l,46s,64b) :

WHETHER SAl<'El MOODS! subset of SAFE2 MOODS2(1,m,n)
and SAFE! MOOD! subset of SAFE2 MOODS2{m,n).

m) WHETHER SAFE! MOOD!
subset of SAl<'E2 MOODS2 MOOD2(k,l,m,46s,64b} :

WHETHER SAl<'El MOOD! subset of SAFE2 MOODS2{m,n)
or SAFE! MOOD! subset of SAl<'E2 MOOD2(n].

n) WHETHER SAFE! MOOD! subset of SAFE2 MOOD2(k,l,m,64b) :
WHETHER SAFE! MOOD! equivalent SAFE2 MOOD2(b).

o) WHETHER MOODS! MOOD! number equals
MOODS2 MOOD2 number(k,o) :

WHETHER MOODS! number equals MOODS2 number(o,p,-).
p) WHETHER MOOD! number equals MOOD2 number(k,o) :

WHETHER true.

q) WHETHER SAFE! EMPTY equivalent SAl<'E2 EMPTY{b) :
WHETHER true.

105

(Rule a introduces the "SAFE"s which are used as associative memories
during the determination of equivalence. There are two of them, one
belonging to each mode. Rule b draws an immediate conclusion if the
"MOID's under consideration are already remembered (see below) in an
appropriate 'SAFE' in the form ·remember MOIDI MOID2". If this is not
the case, then the two 'MOID's are first remembered in a 'SAFE' (the one
on the left) and then each 'MOID' is developed (rule c) and split into its
'HEAD' and its 'TAILETY', e.g., 'reference to rear is split into reference
to' and 'rear.

If the 'HEAD's differ, then the matter is settled (rule b): otherwise the
'TAILETY"s are analyzed according to their structure (which must be the
same if the "HEAD's are identical). In each case, except where the

106 van Wijngaarden, et al.

'HEAD's were 'union of', the equivalence is determined by examining the
corresponding components, according to the following scheme:

rule 'TAILETY' components

d 'HEU)S mode' '1-'IELl)S'
e 'PARAMETERS yielding MOIi)' 'PARAMETEH~' and 'Mom·
f 'FIELDS HEU)' '1-'IELl)S' and 'FIELD'
f 'PARAMETERS PARAMETER' 'PARAMETERS' and 'PARAMETER'

'MODE field TAG' 'MODE' and 'T \(;'
j 'MODE parameter' 'MODE'

In the case of unions, the 'TAILETY's are of the form 'J\U)ODSI mode' and
'MOODS2 mode'. Since 'MOOD's within equivalent unions may commute.
as in the modes specified by union (real, int) and union (int, real), the
equivalence is determined by checking that 'MOOl>S 1 • is a subset of
'MOODS2' and that 'MOODS2' is a subset of 'MOODS 1 ·, where the subset
test, of course, invokes the equivalence test recursively (rules k,l,m,n,o,p).

A 'MOID' is developed (rule c) into the form 'HEAD TAILE1Y by
determining that
(i) it is already of that form: in which case markers ('yin' and 'yang')
may be placed in its 'SAl-'E' for the later determination of well-formedness
(see 7.4):
(ii) it is some 'Mll definition of MODE': in which case 'Mll has MODE' is
stored in its 'SAFE' (provided that this particular 'MLJ' is not there
already) and the 'MODE' is developed:
(iii) it is some 'Mll application': in which case there must be some 'Mll
has MODE' in its 'SAFE' already. That 'MODE' is then developed after a
well-formedness check (see 7.4) consisting of the determination that there
is at least one 'yin' and at least one 'yang' in the 'SAFE' which is more
recent than the 'Mll has MODE'.)

(Before a pair of 'TAILETY's is tested for equivalence, it is
remembered in the 'SAl-'E' that the original pair of 'MOID's is being tested.
This is used to force a shortcut to 'WHETHER true· if these 'MOID's
should ever be tested again for equivalence lower down the production
tree. Since the number of pairs of component 'MOID's that can be derived
from any two given 'MOID's is finite, it follows that the testing process
terminates.

It remains to be shown that the process is correct. Consider the
unrestricted (possibly infinite) production tree that would be obtained if
there were no shortcut in the syntax (by omitting the first alternative
together with the first member of the other alternative of rule b). If two
'MOID's are not equivalent, then there exists in their mode trees a
shortest path from the top node to some node exhibiting a difference.
Obviously, the reflection of this shortest path in the unrestricted
production tree cannot contain a repeated test for the equivalence of any
pair of 'MOID's, and therefore none of the shortcuts to 'WHETHER true' in

ALGOL 68 Revised Report 107

the restricted production tree can occur on this shortest path.
Consequently, the path to the difference must be present also in the
(restricted) production tree produced by the syntax. If the testing process
does not exhibit a difference in the restricted tree, then no difference can
be found in any number of steps: i.e., the 'Mom's are equivalent.)

7.4. Well-formedness
(A mode is well formed if

(i) the elaboration of an actual-declarer specifying that mode is a finite
action (i.e., any value of that mode can be stored in a finite memory)
and

(ii) it is not strongly coercible from itself (since this would lead to
ambiguities in coercion).}

7.4.1. Syntax
a) WHETHER (NOTION) shields SAFE to SAFE(73c} :

where (NOTION) is (PLAIN)
or (NOTION) is (FLEXETY ROWS of)
or (NOTION) is (union of) or (NOTION) is (void),

WHETHER true.
b) WHETHER (PREF) shields SAFE to yin SAFE(73c) : WHETHER true.
c) WHETHER (structured with) shields SAFE to yang SAFE{73c} :

WHETHER true.
d) WHETHER (procedure with) shields SAFE to yin yang SAFE{73c} :

WHETHER true.

(As a by-product of mode equivalencing, modes are tested for. well­
formedness (7.3.1.c). All nonrecursive modes are well formed. For
recursive modes, it is necessary that each cycle in each spelling of that
mode (from 'MU definition of MODE' to 'MU application') passes through
at least one 'HEAD' which is yin, ensuring condition (i) and one (possibly
the same) 'HEAD' which is yang, ensuring condition (ii). Yin 'HEAD's are
'PREF' and 'procedure with'. Yang 'HEAD's are 'structured with' and
'procedure with'. The other 'HEAD's, including 'FLEXETY ROWS of' and
'union of', are neither yin nor yang. This means that the modes specified
by a, b and c in

mode a= struct (Int n, ref a next), b = struct (proc b next), c = proc (c) c
are all well formed. However, mode d = [1: 10] d, e = union (int, e) is not
a mode-declaration.) (Tao produced the one.

The one produced the two.
The two produced the three.
And the three produced the ten thousand
things.
The ten thousand things carry the yin and
embrace the yang, and through the
blending of the material force they achieve
harmony.
Tao-te Ching, 42, Lao Tzu.)

-

108 van Wijngaarden, et al.

PART IV

Elaboration-independent constructions

8. Denotations

{Denotations, e.g., 3.14 or "abc", are constructs whose yields are
independent of any action. In other languages, they are sometimes termed
"literals" or "constants".}

8.0.1. Syntax

a) MOID NEST denoter{5D,A34li} : pragment{92a} sequence option,
MOID denotation{810a,8lla,812a,813a,814a,815a,82a,b,c,83a,-}.

{The meaning of a denotation is independent of any nest.}

8.1. Plain denotations

{Plain-denotations are those of arithmetic values, truth values,
characters and the void value, e.g., 1, 3.14, true, "a" and empty.}

8.1.0.1. Syntax

A) SIZE : : long ; short.
B) * NUMERAL : : fixed point numeral ; variable point numeral ;

floating point numeral.

a) SIZE INTRl<:AL denotation{a,80a} :
SIZE symbol {94d}, INTREAL denotation{a,8lla,812a}.

b) * plain denotation : PLAIN denotation{a,8lla,812a,813a,814a} ;
void denotation{815a}.

{Example:

a) longO}

8.1.0.2. Semantics

The yield W of an INTREAL-denotation is the ""intrinsic value" {8.1.1.2,
8.1.2.2.a,b} of its constituent NUMERAL;
• it is required that W be not greater than the largest value of mode
'INTREAL' that can be distinguished {2.1.3.1.d}.

(An INTREAL-denotation yields an arithmetic value {2.1.3.1.a}, but
arithmetic values yielded by different INTREAL-denotations are not
necessarily different (e.g., 123.4 and 1.23410+2). }

8.1.1. Integral denotations

8.1.1.1. Syntax

a) integral denotation{80a,810a} : fixed point numeral{b}.
b) fixed point numeral{a,812c,d,f,i,A34lh} : digit cypher{c} sequence.
c) digit cypher{b} : DIGIT symbol{94b}.

(Examples:

a) 4096
C) 4)

8.1.1.2. Semantics

ALGOL 68 Revised Report 109

b) 4096

The intrinsic value of a fixed-point-numeral N is the integer of which
the reference-language form of N {9.3.b} is a decimal representation.

8.1.2. Real denotations

8.1.2.l. Syntax

a) real denotation{80a,810a) :
variable point numcral(b) ; floating point numeral(e).

b) variable point numeral{a,f} :
integral part(c) option, fractional part(d).

c) integral part(b) : fixed point numeral{8llb).
d) fractional part(b) : point symbol{94b), fixed point numeral(8llb).
e) floating point numeral(a) : stagnant part(f), exponent part(g).
f) stagnant part(e} :

fixed point numeral{8llb} ; variable point numeral(b).
g) exponent part(e) : times ten to the power choice(h}, power of ten(i).
h) times ten to the power choice(g) :

times ten to the power symbol{94b} ; letter e symbol(94a).
i) power of ten(g) : plusminus(j) option, fixed point numeral(8llb).
j) plusminus(i) : plus symbol{94c) ; minus symbol{94c).

(Examples:

a) 0.00123 • 1.23e-3
c) 0
e) l.23e-3
g) e-3
i) -3

8.1.2.2. Semantics

b) 0.00123
d) .00123
f) 128 • 1.28
h) 10 • e

j) + • - I

a) The intrinsic value V of a variable-point-nunwral N is determined
as follows:
• let I be the intrinsic value of the fixed-point-numeral of its constituent
integral-part, if any, and be O otherwise:
• let F be the intrinsic value of the fixed-point-numeral of its fra<"tional­
part P divided by 10 as many times as there are digit-cyphers contained in
P:
• V is the sum in the sense of numerical analysis of I and F.

b) The intrinsic value V of a floating-point-numeral N is determined as
follows:

110 van Wijngaarden, et al.

• let S be the intrinsic value of the NUMERAL of its stagnant-part:
• let E be the intrinsic value of the constituent fixed-point-numeral of its
exponent-part:
Case A: The constituent plusminus-option of N contains a minus-symbol:

• V is the product in the sense of numerical analysis of S and 1 /10
raised to the power E:

Case B: The direct descendent of that plusminus-option contains a plus­
symbol or is empty:
• V is the product in the sense of numerical analysis of S and 10
raised to the power E.

8.1.3. Boolean denotations

8.1.3.1. Syntax

a) boolean denotation(80a} : true{94b} symbol ; false{94b} symbol.

(Examples:
a) true • false }

8.1.3.2. Semantics

The yield of a boolean-denotation is true (false) if its direct descendent
is a true-symbol (false-symbol) .

8.1.4. Character denotations

(Character-denotations consist of a string-item between two quote­
symbols, e.g., "a". To indicate a quote, a quote-image-symbol (represented
by "") is used, e.g., '""'". Since the syntax nowhere allows character- or
string-denotations to follow one another, this causes no ambiguity.}

8.1.4.1. Syntax

a) character denotation{80a} :
quote{94b} symbol, string item(b}, quote symbol{94b}.

b) string item{a,83b} : character glyph(c} ; quote image symbol{94b} ;
other string item(d}.

c) character glyph(b,92c} : LETTER symbol(94a} ;
DIGIT symbol{94b} ; point symbol{94b} ; open symbol{94f}
close symbol(94f} ; comma symbol{94b} ; space symbol{94b}
plus symbol{94c} ; minus symbol(94c}.

d) A production rule may be added for the notion ·other string item'
{b, for which no hyper-rule is given in this Report} each of whose
alternatives is a symbol (1.1.3.1.f} which is different from any
terminal production of 'character glyph' (c} and which is not
'quote symbol'.

(Examples:

a) "a" b) a• '"' •?
c) a • 1 • . • (•) • , • ~ • + • - }

ALGOL 68 Revised Report 111

8.1.4.2. Semantics

a) The yield of a character-denotation is the intrinsic value of the
symbol descended from its string-item.

b) The intrinsic value of each distinct symbol descended from a string-
item is a unique character. (Characters have no inherent meaning, except
insofar as some of them are interpreted in particular ways by the transput
declarations (10.3). The character-glyphs, which include all the characters
needed for transput, form a minimum set which all implementations
(2.2.2.c) are expected to provide.}

8.1.5. Void denotation

(A void-denotation may be used to assign a void value to a llNlTED­
variable, e.g., union (l]real, void) u : = empty.}

8.1.5.1. Syntax

a) void denotation(80a) : empty(94b} symbol.

(Example:

a) empty}

8.1.5.2. Semantics

The yield of a void-denotation is empty.

8.2. Bits denotations

8.2.1. Syntax

A) RADIX : : radix two ; radix four ; radix eight ; radix sixteen.

a) structured with row of boolean field
LEN(;TH LENGTHETY letter aleph modt• denotation(a,80a} :

long{94d} symbol, structured with row of boolean field
LENGTHETY letter aleph mode denotation (a,c).

b) structured with row of boolean field
SHORTH SHORTHETY letter aleph mode denotation(b,80a} :
short{94d} symbol, structured with row of boolean field
SHORTHET'\ letter aleph mode denotation(b,c}.

c) structured with row of boolean field
letter aleph mode denotation{a,b,80a) :

RADIX{d,e,f,g}, le.tter r symbol(94a}, RAl>IX digit{h,i,j,k} sequence.
d) radix two{c,A347b) : digit two{94b} symbol.
e) radix four{c,A347b} : digit four{94b) symbol.
f) radix eight{c,A347b} : digit eight{94b} symbol.
g) radix sixteen(c,A347b} : digit one symbol{94b}, digit six symbol{94b}.
h) radix two digit{c,i} : digit zero symbol(94b) ; digit one symbol{94b}.
i) radix four digit(c,j) : radix two digit{h} ; digit two symbol(94b} ;

digit three symbol{94b}.

112 van Wijngaarden, et al.

j) radix eight digit(c,k) : radix four digit(i) ; digit four symbol(94b} ;
digit five symbol(94b} ; digit six symbol{94b) ;
digit seven symbol(94b).

k) radix sixteen digit(c) : radix eight digit(j) ; digit eight symbol(94b) ;
digit nine symbol(94b) ; letter a symbol(94a} ;
letter b symbol(94a) ; letter c symbol(94a) ; letter d symbol(94a) ;
letter e symbol(94a) ; letter f symbol(94a}.

I) • bits denotation : BITS denotation(a,b,c].
(HITS : : structured with

row of boolean field SITHET\ letter aleph mode.]
m) • radix digit : RADIX digit(h,i,j ,k}.

(Examples:

a) long2rl01
c) 8r231 I

8.2.2. Semantics

b) short 16rffff

a) The yield V of a bits-denotation D is determined as follows:
• let W be the intrinsic boolean value (bl of its constituent IUDl\.-digit­
sequence:
• let m be the length of W:
• let n be the value of L bits width (10.2.1.j], where L stands for as many
times long (short) as there are long-symbols (short-symbols) contained in
D:
• it is required that m be not greater than n:
• V is a structured value (whose mode is some 'HITS'} whose only field is
a multiple value having
(i) a descriptor ((1, n)) and
(ii) n elements. that selected by (i) being false if 1 ~ i ~ n - m, and being
the (i + m - n)-th truth value of (the sequence) W otherwise.

b) The intrinsic boolean value of a HADl\.-digit-sequence S is the
shortest sequence of truth values which, regarded as a binary number
(true corresponding to 1 and false to 0) , is the same as the intrinsic:
integral value (c) of S.

c) The intrinsic integral value of a radix-two- (radix-four-.
radix-eight-, radix-sixteen-) -digit-sequence S is the integer of which the
reference-language form of S (9.3.b) is a binary, (quaternary, octal.
hexadecimal) representation, where the representations a. b, c, d. e and l.
considered as digits, have values 10, 11, 12, 13, 14 and 15 respectively.

8.3. String denotations

(String-denotations are a convenient way of specifying "strings", i.e ..
multiple values of mode 'row of character'.
Example:

string message := "all is well" I

ALGOL 68 Revised Report

8.3.1. Syntax

a) row of character denotation{80a} :
quote{94b} symbol, string{b) option, quote symbol{94b).

b) string(a) : string item{814b), string item(814b) sequence.

c) * string denotation : row of character denotation{a).

{Examples:

a) "abc" b) abc I

8.3.2. Semantics

113

The yield of a string-denotation D is a multiple value V determined as
follows:
• let n be the number of string-items contained in D;
• the descriptor of V is ((1, n));
• for i = 1, ... , n, the element of V with index (i) is the intrinsic value
(8.1.4.2.b) of the i-th constituent symbol of the string of D.

("a" is a character-denotation, not a string-denotation. However, in all
strong positions, e.g., string s := "a", it can be rowed to a multiple value
(6.6). Elsewhere, where a multiple value is required, a cast (5.5. l.l.a)
may be used, e.g., union (char, string) cs : = string ("a").)

9. Tokens and symbols

9.1. Tokens

{Tokens (9.1.1.f) are symbols (9.1.1.h) possibly preceded by pragments
(9.2.1.a). Therefore, pragments may appear between symbols wherever
the syntax produces a succession of tokens. However, in a few places, the
syntax specifically produces symbols rather than tokens, notably within
denotations (8), format-texts (10.3.4.1.1.a) and, of course, within
pragments. Therefore, pragments may not occur in these places.)

9.1.1. Syntax

a) CHOICE STYLE start{34a) :
where (CHOICE) is (choice using boolean),

STYLE if{94f,-) token ;
where (CHOICE) is (CASE), STYLE case{94f,-) token.

b) CHOICE STYLE in{34e) :
where (CHOICE) is (choice using boolean),

STYLE then{94f,-) token ;
where (CHOICE) is (CASE), STYLE in{94f,-) token.

c) CHOICE STYLE again{341} :
where (CHOICE) is (choice using boolean),

STYLE else if{94f,-) token ;
where (CHOICE) is (CASE), STYLE ouse{94f,-) token.

I 14 van Wijngaarden, et al.

d) CHOICE STYLE out{34l} :
where (CHOICE) is (choice using boolean),

STYLE else{94f,-) token ;
where (CHOICE) is (CASE), STYLE out{94f,-) token.

e) CHOICE STYLE finish(34a} :
where (CHOICE) is (choice using boolean),

STYLE fi(94f,-) token ;
where (CHOICE) is (CASE), STYLE esac{94f,-) token.

f) NOTION token : pragment{92a) sequence option,
NOTION symbol(94a,b,c,d,e,f,g,h).

g) * token : NOTION token({).
h) * symbol : NOTION symbol{94a,b,c,d,e,f,g,h).

9.2. Comments and pragmats

(A source of innocent merriment.
Mikado, W.S.Gilbert.J

(A pragment is a comment or a pragmat. No semantics of pragments
is given and therefore the meaning (2.1.4.1.a) of any program is quite
unaffected by their presence. It is indeed the intention that comments
should be entirely ignored by the implementation, their sole purpose being
the enlightenment of the human interpreter of the program.

Pragmats may, on the other hand, convey to the implementation some
piece of information affecting some aspect of the meaning of the program
which is not defined by this Report, for example:

• the action to be taken upon overflow (2.1.4.3.h) or if the scope
rule is violated (as in 5.2.1.2.b), e.g., prover/low check onpr,
pr overflow check off pr. pr scope check on pr or pr scope check off pr:
• the action to be taken upon completion of the compilation
process, e.g., pr compile only pr, pr dump pr or pr run pr:
• that the language to be implemented is some sublanguage or
superlanguage of ALGOL 68, e.g., pr nonrec pr (for a routine-text
which may be presumed to be non-recursive):
• that the compilation may check for the truth, or attempt to prove
the correctness, of some assertion, e.g.:
int a, b; read((a, b)) pr assert a LO II b > 0 pr;
intq := 0, r := a;

while r L b pr assert a = b x q + r 11 0 5,,. r pr
do (q +:= 1, r -:= b) od
pr assert a = b x q + r 11 0 5,_ r II r < b pr .

They may also be used to c_onvey to the implementation that the source
text is to be augmented with some other text, or edited in some way, for
example:

ALGOL 68 Revised Report 115

• some previously compiled portion of the particular-program is to
be invoked, e.g., prwlth segment from albumpr;
• the source text is continued on some other document, e.g., prread
from another file pr;
• the end of the source text has been reached, e.g., pr finish pr.

The interpretation of pragmats is not defined in this Report, but is left to
the discretion of the implementer, who ought, at least, to provide some
means whereby all further pragmats may be ignored, for example:

pr pragmats off pr.)

(pr algol 68 pr
begin
proc pr nonrec pr pr= void: pr;
pr

end
pr run pr pr? pr
Revised Report on the Algorithmic

Language ALGOL 68.)

9.2.1. Syntax

A) PRAGMENT : : pragmat ; comment.

a) pragment{80a,9lf,A34lb,h,A348a,b,c,A349a,A34Ab) : PRAGMENT{b).
b) PRAGMENT(a) : STYLE PRAGMENT symbol(94h,-},

STYLE PRAGMENT item[c) sequence option,
STYLE PRAGMENT symbol(94h,-).

(STYLE : : brief ; bold ; style TALLY.)
c) STYLE PRAGMENT item(b) : character glyph(814c) ;

STYLE other PRAGMENT item(d).

d) A production rule may be added for each notion designated by
'STYLE other PRAGMENT item' [c, for which no hyper-rule is
given in this Report) each of whose alternatives is a symbol
(1.1.3.l.f}. different from any terminal production of "character
glyph' (8.1.4.1.c}, and such that no terminal production of any
'STYLE other PRAGMENT item· is the corresponding 'ST\ u:
PRAGMENT symbol'. (Thus comment q: comment might be a
comment, but q: q: q: could not.)

(Examples:

a) pr list pr • q: source program to be listed q:
c) l •? I

9.3. Representations

a) A construct in the strict language must be represented in some
"representation language" such as the "reference language", which is used
in this Report. Other representation languages specially suited to the

-

116 van Wijngaarden, et al.

supposed preference of some human or mechanical interpreter of the
language may be termed "publication" or "hardware" languages. (The
reference language is intended to be used for the representation of
particular-programs and of their descendents. It is, however, also used in
Chapter 10 for the definition of the standard environment.)

b) A "construct in a representation language" is obtained from the
terminal production T (1.1.3.2.f} of the corresponding construct in the strict
language {1.1.3.2.e) by replacing the symbols in T by their representations,
as specified in 9.4 below in the case of the reference language.

{Thus, the strict-language particular-program whose terminal
production is

'bold begin symbol' 'skip symbol' 'bold end symbol'
gives rise to the reference language particular-program

begin skip end .)

c) An implementation {2.2.2.c) of ALGOL 68 which uses
representations which are sufficiently close to those of the reference
language to be recognized without further elucidation, and which does not
augment or restrict the available representations other than as provided
for below {9.4.a,b,c), is an "implementation of the reference language".

(E.g., begin, begin, BEGIN, 'begin and 'begin' could all be
representations of the bold-begin-symbol in an implementation of the
reference language; some combination of holes in a punched card might
be a representation of it in some hardware language.)

9.4. The reference language

a) The reference language provides representations for various
symbols, including an arbitrarily large number of TAX-symbols (where
TAX :: TAG ; TAB ; TAD ; TAM.). The representations of some of them
are specified below {9.4.1), and to these may be added suitable
representations for style-TALLY-letter-ABC-symbols and style-TALLY­
monad-symbols and any terminal productions of 'STYLE other PRAGMENT
item' (9.2.1.d) and of 'other string item· (8.1.4.1.d}. Representations are not
provided for any of these (but they enable individual implementations to
make available their full character sets for use as characters, to provide
additional or extended alphabets for the construction of TAG- and TAB­
symbols, and to provide additional symbols for use as operators). There is
not, however, (and there must not be,} except in representations of the
standard-, and other, preludes {10.1.3.Step 6), any representation of the
letter-aleph-symbol or the primal-symbol. (For the remaining TAX­
symbols, see 9.4.2. There are, however, some symbols produced by the
syntax, e.g., the brief-pragmat-symbol, for which no representation is
provided at all. This does not preclude the representation of such symbols
in other representation languages.)

ALGOL 68 Revised Report 117

b) Where more than one representation of a symbol is given, any of
them may be chosen. Moreover, it is sufficient for an implementation of
the reference language to provide only one. Also, it is not necessary to
provide a representation of any particular MONAD-symbol or NOMAD­
symbol so long as those that are provided are sufficient to represent at
least one version {10.1.3.Step 3) of each operator declared in the standard­
prelude.

(For certain different symbols, one same or nearly the same
representation is given; e.g., the representation ":" is given for the routine­
symbol, the colon-symbol and the up-to-symbol and ":" for the Iabel­
symbol. It follows uniquely from the syntax which of these four symbols is
represented by an occurrence, outside comments, pragmats and string.
denotations, of any mark similar to either of those representations. It is
also the case that " .. " could be used, without ambiguity, for any of them,
and such might indeed be necessary in implementations with limited
character sets. It may be noted that, for such implementations, no
ambiguity would be introduced were "(/" and "/)" to be used as
representations of the style-ii-sub-symbol and the style-ii-bus-symbol,
respectively.

Also, some of the given representations appear to be composite;
e.g., the representation ":=" of the becomes-symbol appears to consist of
": ", the representation of the routine-symbol, etc., and "=" the
representation of the equals-symbol and of the is-defined-as-symbol. It
follows from the syntax that ":=" can occur, outside comments, pragmats
and string-denotations, as a representation of the becomes-symbol only
(since "=" cannot occur as the representation of a monadic-operator).
Similarly, the other given composite representations do not cause
ambiguity.)

c) The fact that the representations of the letter-Am:-symbols given
(9.4.1.a) are usually spoken of as small letters is not meant to imply that
the corresponding capital letters could not serve equally well. (On the
other hand, if both a small letter and the corresponding capital letter
occur, then one of them is presumably the representation of some style­
TALLY-letter-ABC-symbol or of a bold-letter-Am:-symbol. See also 1.1.5. b
for the possibility of additional · ABC's in a variant of the language.)

d) A "typographical display feature" is a blank, or a change to a new
line or a new page. Such features, when they appear between the symbols
of a construct in the reference language, are of no significance and do not
affect the meaning of that construct. However, a blank contained within a
string. or character-denotation is one of the representations of the space­
symbol (9.4.1.b} rather than a typographical display feature. Where the
representation of a symbol in the reference language is composed of
several marks (e.g., to, : =}, those marks form one (indivisible) symbol and,
unless the contrary is explicitly stated {9.4.2.2.a,c). typographical display
features may not separate them.

-

118 van Wijngaarden, et al.

9.4.l. Representations of symbols

a) Letter symbols

symbol

letter a symbol(814c,82k,942B,A346b}
letter b symbol{814c,82k,942B,A344b}
letter c symbol(814c,82k,942B.A348a}
letter d symbol{814c,82k,942B,A342f}
letter e symbol(812h,814c,82k,942B,A343e}
letter f symbol{814c,82k,942B.A349a}
letter g symbol(814c ,942B,A34Aa}

represent:11 ion

a

letter h symbol{814c,942B}
letter i symbol{814c,942B,A345b}
letter j symbol(814c,942B}
letter k symbol(814c,942B,A34lf}
letter I symbol(814c,942B,A34lf}
letter m symbol(814c,942B}
letter n symbol{814c,942B,A34lh}
letter o symbol{814c,942B}
letter p symbol{814c,942B,A34lf}
letter q symbol{814c,942B,A34lf}
letter r symbol{814c,82c.942B,A347c}
letter s symbol(814c,942B,A3411}
letter t symbol{814c,942B}
letter u symbol{814c,942B}
letter v symbol(814c,942B}
letter w symbol{814c,942B}
letter x symbol(814c,942B,A34lf)
letter y symbol{814c .942B,A34 l f}
letter z symbol(814c,942B,A:342d}

b) Denotation symbols

h
('

d
e

l

J
h

m
n
()

/J

</
/'

s

u
LI

I{'

X

y

z

symbol represent;it ion

digit zero symbol(8llc,814c,82h,942C) O

digit one symbol(43b,8llc,814c,82g.h.942C} I

digit two symbol{43b,8llc,814c,82d.i,942C} 2

digit three symbol{43b.8llc,814c,82i,942C} :J
digit four symbol{43b,8llc,814c,82e,j,942C} 4
digit five symbol{43b,8llc,814c,82j,942C} :5
digit six symbol{43b,8llc,814c,82g,j.942CJ 6
digit seven symbol(43b,8llc,814c,82j ,942C} 7
digit eight symbol{43b,8llc,814c,82f,k,942C} H
digit nine symbol{43b,8llc,814c,82k,942C) .9
point symbol(812d,814c,A343d}
times ten to the power symbol(812h) JO \

true symbol{813a}
false symbol{813a}

ALGOL 68 Revised Report

true
false

quote symbol{814a,83a}
quote image symbol{814b}
space symbol{814c}
comma symbol{814c}
empty symbol{815a}

c) Operator symbols

symbol

or symbol(942H}
and symbol(942H}
ampersand symbol{942H}
differs from symbol(942H}
is less than symbol{942I}
is at most symbol(942H}
is at least symbol{942H}
is greater than symbol(942I}
divided by symbol(942I}
over symbol(942H}
percent symbol(942H}
window symbol(942H}
floor symbol(942H}
ceiling symbol{942H}
plus i times symbol(942H}
not symbol(942H}
tilde symbol{942H}
down symbol(942H}
up symbol(942H}
plus symbol(812j,814c,942H,A342e}
minus symbol(812j,814c,942H,A342e}
equals symbol(942I}
times symbol(942IJ
asterisk symbol(942IJ
assigns to symbol{942J)
becomes symbol{44f,52la,942JJ

d) Declaration symbols

symbol

is defined as symbol(42b,43b,44c,45c)
long symbol{810a,82a)
short symbol(810a,82b}
reference to symbol{46c)
local symbol(523a,b}
heap symbol{523a,b}

empty

represent :11 ion

V

A

&

i:
<

s.
~

>

I

%

D

1

+

X

*

representation

long
short
ref
Joe
heap

119

120 van Wijngaarden, et al.

structure symbol{46d}
flexible symbol (46g}
procedure symbol{44b,46o}
union of symbol{46s}
operator symbol{45a}
priority symbol{43a}
mode symbol{42a}

e) Mode standards

symbol

integral symbol{942E}
real symbol{942E}
boolean symbol(942E}
character symbol{942E}
format symbol[942E}
void symbol(942E}
complex symbol{942E}
bits symbol{942E}
bytes symbol(942E}
string symbol{942E}
sema symbol{942E}
file symbol[942E}
channel symbol(942E}

f) Syntactic symbols

symbol

bold begin symbol(I33d}
bold end symbol{l33d}
brief begin symbol{l33d,A348b,A34Ab)
brief end symbol{l33d,A348b,A34Ab)
and also symbol[l33c,33b,f ,34h,4la,b,46e,i,

q,t,532b,54le,543b,A348b,A34Ac,d)
go on symbol{32b)
completion symbol{32b}
label symbol{32c)
parallel symbol{33c}
open symbol(814c}
close symbol{814c}
bold if symbol(9Ia}
bold then symbol(9lb)
bold else if symbol{9lc}
bold else symbol[9ld)
bold fi symbol{9le}
bold case symbol{9la}
bold in symbol{9lb)

struct
flex
proc
union
op
prio
mode

representation

int
real
boo/
char
format
void
comp/
bits
bytes
string
sema
file
channel

representation

begin
end
(

)

exit

par
(

)

if
then
elif
else
Ii
case
in

ALGOL 68 Revised Report

bold ouse symbol{9lc)
bold out symbol{9ld)
bold esac symbol[9le}
brief if symbol[9la)
brief then symbol[9lb}
brief else if symbol[9lc}
brief else symbol[9ld)
brief fi symbol[9le}
brief case symbol[9la}
brief in symbol[9lb}
brief ouse symbol[9lc}
brief out symbol[9ld)
brief esac symbol{9le}
colon symbol[34j,k)
brief sub symbol[l33e)
brief bus symbol{l33e}
style i sub symbol[l33e)
style i bus symbol{l33e)
up to symbol[46j,k,l,532f)
at symbol{532g)
is symbol[522b}
is not symbol[522b}
nil symbol{524a}
of symbol{53la}
routine symbol[54la,b)
bold go to symbol[544b)
bold go symbol[544b}
skip symbol[552a)
formatter symbol[A34la)

g) Loop symbols

symbol

bold for symbol[35b)
bold from symbol[35d}
bold by symbol[35d}
bold to symbol[35d,544b}
bold while symbol[35g)
bold do symbol{35h}
bold od symbol[35h)

h) Pragment symbols

symbol

brief comment symbol{92b)
bold comment symbol{92b)
style i comment symbol{92b}

ouse
out
esac
(

I
I:
I
)

(

I
I:
I
)

l
J
(
)

@ at

- is

:i: : I=:
0 nil
of

goto
go
~ skip

$

representation

for
from
by
to
while
do
od

representation

(/:

comment
co

121

isnt

122 van Wijngaarden, et al.

style ii eomnwnt symbol(92b)
bold pragmat symbol{92b}
style i pragmat symbol{92b)

t;

pragmat
pr

9.4.2. Other TAX symbols

9.4.2.l. Metasyntax

A) TAG{D,F,K,48a,b,c,d) ::
LETTER(B) ; TA(; LETTER(B) ; TAG UU;rr(C).

B) LETTER(A) : :
letter AHC{94a} ; letter aleph(-) ; styll' TALI.\ letter A.Ht:(-).

C) DIGIT{A) : : digit zero{94b) ; digit one{94b) ; digit two{94b) ;
digit three{94b) ; digit four(94b) ; digit five{94b) ; digit six(94b) ;
digit seven{94b) ; digit eight{94b) ; digit nine{94b).

D) TAB{48a,b) :: bold TAG{A,-) ; SIZETY STANDARD(E}.
E) STANDARD{D) : : integral{94e) ; real{94e) ; boolean{94e) ;

character{94e) ; format{94e) ; void{94e) ; complex{94e} ; bits{94e) ;
bytes{94e) ; string{94e) ; sema{94e) ; file{94e} ; channel{94e}.

F) TAD{48a,b) : : bold TAG(A,-) ; DY AD(G) BECOMESETY(J) ;
DYAD(G) cum NOMAD(!} BECOMESETY(J}.

G) DYAD(F) :: MONAD(H) ; NOMAD(!).
H) MONAD{G,K) : : or{94c} ; and{94c) ; ampersand{94c) ;

differs from{94c) ; is at most{94c} ; is at least(94c) ; over{94c) ;
percent{94c) ; window{94c) ; floor{94c) ; ceiling{94c} ;
plus i times{94c) ; not{94c) ; tilde{94c) ; down(94c) ; up(94c) ;
plus(94c) ; minus{94c) ; style TALLY monad(-).

I) NOMAD{F,G,K) : : is less than{94c) ; is greater than{94c) ;
divided by{94c) ; equals{94c) ; times{94c} ; asterisk{94c).

J) BECOMESETY{F,K) :: cum becomes{94c) ; cum assigns to{94c) ;
EMPTY.

K) TAM{48a,b) :: bold TAG{A,-) ; MONAD(H) BECOMESETY(J) ;
MONAD(H) cum{9422e) NOMAD(!) BECOMESETY(J).

L) ABC(B) : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; 1 ; m ; n ; o ; p ;
q ; r ; S ; t ; U ; V ; W ; X ; y ; Z.

M) • DOP : : DYAD(G) ; DYAD(G) cum NOMAD(!}.

(The metanotion "ABC" is provided, in addition to the metanotion
"ALPHA", in order to facilitate the definition of variants of ALGOL 68
(1.1.5.b) .)

9.4.2.2. Representation

a) The representation of each TAG-symbol not given above {9.4.1) is
composed of marks corresponding, in order, to the 'LETTER's or 'DIGIT's
contained in that 'TAG'. These marks may be separated by typographical

ALGOL 68 Revised Report 123

display features (9.4.d}. The mark corresponding to each 'LETTER'
('DIGIT') is the representation of that LETTER-symbol (DIGIT-symbol).
(For example, the representation of a letter-x-digit-one-symbol is xl, which
may be written x 1. TAG-symbols are used for identifiers and field­
selectors.}

b) The representation, if any, of each bold-TAG-symbol is composed of
marks corresponding, in order, to the 'LETTER's or 'DIGIT's contained in
that 'TAG' {but with no typqgraphical display features in between}. The
mark corresponding to each 'LETTER' ('DIGIT') is similar to the mark
representing the corresponding LETTER-symbol (DIGIT-symbol), being, in
this Report, the corresponding bold faced letter (digit). {Other methods of
indicating the similarity which are recognizable without further
elucidation are also acceptable, e.g., person, person, PERSON, 'person and
'person' could all be representations of the bold-letter-p-letter-e-letter-r­
letter-s-letter-o-letter-n-sym bol.)

However, the representation of a bold-TAG-symbol may not be the
same as any representation of any other symbol {; thus there may be a
finite number of bold-TAG-symbols which have no representation; e.g.,
there is no representation for the bold-letter-r-letter-e-letter-a-letter-1-
symbol because real is a representation of the real-symbol; note that the
number of bold-TAG-symbols available is still arbitrarily large). If,
according to the convention used, a given sequence of marks could be
either the representation of one bold-TAG-symbol or the concatenation of
the representations of two or more other symbols, then it is always to be
construed as that one symbol {; the inclusion of a blank can always force
the other interpretation; e.g., refreal is one symbol, whereas ref real must
always be two). {Bold-TAG-symbols are used for mode-indications and for
operators.)

c) The representation of each SIZE-SIZETY-STANDARD-symbol is
composed of the representation of the corresponding SIZE-symbol, possibly
followed by typographical display features, followed by the represention of
the corresponding SIZETY -STANDARD-symbol. {For example, the
representation of a long-real-symbol is long real, or perhaps 'long"real'
(but not, according to section b above, longreal or 'longreal', for those
would be representations of the bold-letter-l-letter-o-letter-n-letter-g-letter-r­
letter-e-letter-a-letter-1-symbol). SIZETY -STANDARD-symbols are used for
mode-indications.)

d) The representation of each DOP-cum-becomes-symbol (DOP-cum-
assigns-to-symbol) is composed of the mark or marks representing the
corresponding DOP-symbol followed (without intervening typographical
display features) by the marks representing the becomes-symbol (the
assigns-to-symbol). (For example, the representation of a plus-cum­
becomes-symbol is +: =. DOP-cum-becomes-symbols are used for
operators.)

-

124 van Wijngaarden, et al.

e) The representation of each DY AD-cum-NOMAD-symbol is composed
of the mark representing the corresponding DYAD-symbol followed
{without intervening typographical display features) by the mark
representing the corresponding NOMAD-symbol. (For example, the
representation of an over-cum-times-symbol is .;.x. DYAD-cum-NOMAl)­
symbols are used for operators, but note that NOMAIH-cum-NOMAD2-
symbols may be only dyadic-operators.)

PARTV

Environment and Examples

10. Standard environment

(The "standard environment" encompasses the constituent EXTERNAL­
preludes, system-tasks and particular-postludes of a program-text.)

10.1. Program texts

{The programmer is concerned with particular-programs (10.1.1.g).
These are always included in a program-text (10.1.l.a) which also contains
the standard-prelude, a library-prelude, which depends upon the
implementation, a system-prelude and system-tasks, which correspond to
the operating environment, possibly some other particular-programs. one
or more particular-preludes (one for each particular-program) and one or
more particular-postludes.)

10.l.l. Syntax

A) EXTERNAL : : standard ; library ; system ; particular.
B) STOP : : label letter s letter t letter o letter p.

a) program text : STYLE begin{94f) token, new LA YER l preludes{bl,
parallel{94f) token, new LAYER! tasks(d) PACK,
STYLE end{94f} token.

b) NESTI preludes{a) : NESTI standard prelude with DECSI{c),
NESTI library prelude with DECSETY2{c},
NESTI system prelude with DECSETY3{c), where (NESTI) is
(new EMPTY new DECSI DECSETY2 DECSETY3).

c) NESTI EXTERNAL prelude with DECSETYI {b,f} :
strong void NESTI series with DECSETY I (32b), go on(94f} token ;
where (DECSETYI) is (EMPTY), EMPTY.

d) NESTI tasks(a} : NESTI system task(e) list, and also{94f) token,
NESTI user task(f) PACK list.

e) NESTI system task(d) : strong void NESTI unit{32d).

ALGOL 68 Revised Report

f) NESTI user task(d) : NEST2 particular prelude with DECS(c},
NEST2 particular program(g) PAl:K, go on(94f) token,
NEST2 particular postlude(i),
where (NEST2) is (NESTI new DEl:S STOP).

g) NEST2 particular program(f) :
NEST2 new LABSETY3 joined label definition of LABSETY3(h),

strong void NEST2 new LABSETY:J
ENl:LOSED clause(3la,33a,c,34a,35a).

h) NEST joined label definition of LABSETY(g,h) :
where (LABSETY) is (EMPTY), EMPTY ;
where (LABSETY) is (LAB1 LABSETn),

NEST label definition of LABI (32c),
NEST joined label definition of LABSET\ I (h).

i) NEST2 particular postlude(f) :
strong void NEST2 series with STOP(32b).

(Examples:

a) (c standard-prelude c; c library-prelude c; c system-prelude c;
par begin c system-task-I c, c system-task-2 c,

(c particular-prelude c;
(start: commence: begin skip end);
c particular-postlude c),

(c another user-task c)
end)

b) c standard-prelude (10.2, 10.3) c; c library-prelude c;
c system-prelude (10.4.1) c;

d) c system-task-I (10.4.2.a) c, c system-task-2 c,
(c particular-prelude c;

(start: commence: begin skip end);
c particular-postlude c),

(c another user-task c)
f) c particular-prelude (10.5.1) c;

(start: commence: begin skip end);
c particular-postlude (10.5.2) c

g) start: commence: begin skip end
h) start: commence:
i) stop: lock (stand in); lock (stand out); lock (stand back))

10.1.2. The environment condition

125

a) A program in the strict language must be akin (1.1.3.2.k) to some
program-text whose constituent EXTERNAL-preludes and particular­
postludes are as specified in the remainder of this section.

(It is convenient to speak of the standard-prelude, the library-prelude,
the particular-programs, etc. of a program when discussing those parts of
that program which correspond to the constituent standard-prelude, etc. of
the corresponding program-text.)

......,

126 van Wijngaarden, et al.

b) The constituent standard-prelude of all program-texts is that
standard-prelude whose representation is obtained (10.1.3} from the forms
given in sections 10.2 and 10.3.

c) The constituent library-prelude of a program-text is not specified in
this Report (but must be specified for each implementation: the syntax of
'program text' ensures that a declaration contained in a library-prelude
may not contradict any declaration contained in the standard-prelude).

d) The constituent system-prelude (system-task-list) of all program-
texts is that system-prelude (system-task-list) whose representation is
obtained from the forms given in section 10.4, with the possible addition of
other forms not specified in this Report (but to be specified to suit the
operating environ nent of each implementation} .

.!..

e) Each constituent particular-prelude (particular-postlude) of all
program-texts is that particular-prelude (particular-postlude) whose
representation is obtained from the forms given in section 10.5, with the
possible addition of other forms not specified in this Report (but to be
specified for each implementation}.

10.1.3. The method of description of the standard environment

A representation of an EXTERNAL-prelude, system-task or parti(·ular­
postlude is obtained by altering each form in the relevant sections of this
chapter in the following steps:

Step l: If a given form F begins with op (the operator-symbol} followed by
one of the marks P, Q, R or E, then F is replaced by a number of new
forms each of which is a copy of F in which that mark (following the
op) is (all other occurrences in F of that mark are) replaced, in each
respective new form, by:

Case A: The mark is P:
• -, +, {x,*t or/
(-, +, x or/):

Case B: The mark is Q:
• {minusab, -:=}, {plusab,+:=t. {timesab,x:=,*:=t or
{divab, /:=t
(-:=, +:=, x:= or/:=):

Case C: The mark is R:
• {<,It},{~<=, Jet,{=, eqt, { ::f., I=, net, {L, >=, get or
{>, gt}
(< , ~. =, -:/; , L Or >) ;

Case D: The mark is E:
• {=, eqt or {i. I=, net
(=Ori):

Step 2: If, in some form, as possibly made in the step above, 9- occurs
followed by an INDICATOR (a field-selector) I, then that occurrence of

ALGOL 68 Revised Report 127

?- is deleted and each INDICATOR (field-selector) akin (1.1.3.2.k} to I
contained in any form is replaced by a copy of one same INDICATOR
(field-selector) which does not occur elsewhere in the program and
Step 2 is taken again;

Step 3: If a given form F, as possibly modified or made in the steps above,
begins with op (the operator-symbol} followed by a chain of TAO­
symbols separated by and-also-symbols, the chain being enclosed
between t and t, then F is replaced by a number of different
"versions" of that form each of which is a copy of F in which that
chain, together with its enclosing t and t, has been replaced by one of
those TAO-symbols (; however, an implementation is not· obliged to
provide more than one such version (9.4.b) }:

Step 4: If, in a given form, as possibly modified or made in the steps
above, there occurs a sequence S of symbols enclosed between t and t
and if, in that S, L int, L real, L comp/, L bits or L bytes occurs, then S
is replaced by a chain of a sufficient number of sequences separated by
and-also-symbols, the n-th of which is a copy of S in which copy each
occurrence of L (L, K, S) is replaced by (n - 1) times long (long, Ieng,
shorten), followed by an and-also-symbol and a further chain of a
sufficient number of sequences separated by and-also-symbols, the m-th
of which is a copy of S in which copy each occurrence of L (L, K, S)

has been replaced by m times short (short shorten, Ieng): the t and t
enclosing that S are then deleted;

Step 5: If, in a given form F, as possibly modified or made in the steps
above, L int (L real, L comp/, L bits, L bytes) occurs, then F is
replaced by a sequence of a sufficient number of new forms, the n-th of
which is a copy of F in which copy each occurrence of L (L, K, S) is
replaced by (n - 1) times long (long, Ieng, shorten), and each
occurrence of long L (long L) by n times long (long), followed by a
further sequence of a sufficient number of new forms, the m-th of
which is a copy of F in which copy each occurrence of L (L, K. S) is
replaced by m times short (short, shorten, Ieng), and each occurrence
of long L (long L) by (m - 1) times short (short);

Step 6: Each occurrence of F (PRIM) in any form, as possibly modified
or made in the steps above, is replaced by a representation of a letter­
aleph-symbol (primal-symbol) (9.4.a};

Step 7: If a sequence of representations beginning with and ending with c
occurs in any form, as possibly modified or made in the steps above,
then this sequence, which is termed a "pseudo-comment", is replaced
by a representation of a declarer or closed-clause suggested by the
sequence;

128 van Wijngaarden, et al.

Step 8: If, in any form, as possibly modified or made in the steps above, a
routine-text occurs whose calling involves the manipulation of real
numbers, then this routine-text may be replaced by any other routine­
text whose calling has approximately the same effect (: the degree of
approximation is left undefined in this Report (see also 2.1.3.1.e)}:

Step 9: In the case of an EXTERNAL-prelude, a form consisting of a skip­
symbol followed by a go-on-symbol (skip;) is added at the end.

(The term "sufficient number", as used in Steps 4 and 5 above. implies
that no intended particular-program should have a different meaning or
fail to be produced by the syntax solely on account of an insufficiency of
that number.)

Wherever (in the transput declarations) the representation 10 (\, 1)
occurs within a character-denotation or string-denotation, it is to be
interpreted as the representation of the string-item (8.1.4.1.b) used to
indicate "times ten to the power" (an alternative form {, if any,) of "times
ten to the power", "plus i times") on external media. (Clearly, these
representations have been chosen because of their similarity to those of
the times-ten-to-the-power-symbol (9.4.1.b) and the plus-i-times-symbol
(9.4.1.c), but, on media on which these characters are not available, other
string-items must be chosen (and the letter-e-symbol and the letter-i­
symbol are obvious candidates).)

(The declarations in this chapter are intended to describe their effe<:t
clearly. The effect may very well be obtained by a more efficient method.)

10.2. The standard prelude

(The declarations of the standard-prelude comprise "environment
enquiries", which supply information concerning a specific property of the
implementation (2.2.2.c), "standard modes", "standard operators and
functions", "synchronization operations" and "transput declarations"
(which are given in section 10.3) .)

10.2.1. Environment enquiries

a) Int int lengths= c 1 plus the number of extra lengths of integers
(2.1.3.1.d) C;

b) int int shorths = c 1 plus the number of extra shorths of integers
(2.1.3.1.d) C;

c) L Int L max int= c the largest L integral value (2.2.2.b} c;

d) int real lengths= c 1 plus the number of extra lengths of real
numbers {2.1.3.1.d} c;

e) int real shorths = c 1 plus the number of extra shorths of real
numbers {2.1.3.1.d) c;

ALGOL 68 Revised Report 129

f) L real L max real= c the largest L real value (2.2.2.b) c;

g) L real L small real= c the smallest L real value such that both L 1 +
L small real > L 1 and L 1 - L small real < L 1 (2.2.2.b} c;

h) Int bits lengths = c 1 plus the number of extra widths Lil of bits c ;

i) int bits shorths = c 1 plus the number of extra shorths Lil of bits c;

j) Int L bits width= c the number of elements in L bits; see L bits
(10.2.2.g); this number increases (decreases) with the "size", i.e.,
the number of 'Long's (minus the number of 'short's) of which 'L'
is composed, until a certain size is reached, viz., "the number of
extra widths" (minus "the number of extra shorths") of bits, after
which it is constant c ;

k) int bytes lengths= c 1 plus the number of extra widtJis (m) of bytes c;

1) Int bytes shorths = c 1 plus the number of extra shorths (m) of
bytes c;

m) int L bytes width= c the number of elements in L bytes; see L bytes
(10.2.2.h); this number increases (decreases) with the "size", i.e.,
the number of 'Long's (minus the number of 'short's) of which 'L'
is composed, until a certain size is reached, viz., "the number of
extra widths" (minus "the number of extra shorths") of bytes, after
which it is constant c;

n) op abs= (char a) int: c the integral equivalent (2.1.3.1.g} of the
character 'a' c;

o) op repr = (int a) char: c that character 'x', if it exists, for which abs
x = ac;

p) int max abs char= c the largest integral equivalent (2.1.3.1.g) of a
character c ;

q) char null character = c some character c ;

r) char flip= c the character used to represent 'true' during trans put
(10.3.3.1.a, 10.3.3.2.a) c;

s) char flop= c the character used to represent 'false' during trans put c;

t) char errorchar = c the character used to represent unconvertible
arithmetic values (10.3.2.1.b,c,d,e,f) during transput c;

u) char blank="/';

10.2.2. Standard modes

a) mode void= can actual-declarer specifying the mode 'void' c;

b) mode boo/= can actual-declarer specifying the mode 'boolean' c;

c) mode L Int= can actual-declarer specifying the mode 'L integral' c;

130 van Wijngaarden, et al.

d) mode L real= can actual-declarer specifying the mode 'L real' c;

e) mode char= can actual-declarer specifying the mode 'character' c;

f) mode L comp/= struct (L real re, im);

g) mode L bits= struct (LI : L bits width] boo/L F); (See 10.2.1.j}
(The field-selector is hidden from the user in order that he may not
break open the structure; in particular, he may not subscript the field.)

h) mode L bytes= struct (LI : L bytes width J char L F); (See 10.2.1.m)

i) mode string= flex l 1 : OJ char;

10.2.3. Standard operators and functions

10.2.3.0. Standard priorities

a) prio minusab = 1, plusab = 1, timesab = 1, divab = 1, overab = 1,
modab = 1, plusto = 1,
-:==1, +:==1, x:==1, *:==1, l:==1, +:==l, 'fii,:==1, +x:==1,
+*:==1, 11t1X:==l, 11''*:==1, +=: =1,

v =2, or=2,

"=3, &=3, and=3,

==4, eq=4, i=4, 1==4, ne=4,

< =5, lt=5, s.=5, <==5, le=5, ?..=5, >==5, ge=5, >=5, gt=5,

-=6, +=6,

x = 7, * = 7, I= 7, + = 7, % = 7, over= 7,
+x= 7, +*= 7, %x = 7, %*= 7, mod= 7,
0 = 7, elem = 7,

1 =8,**=8, I =8, up=8, down=B, shl=B, shr=B,
lwb=8, upb=B, , =8, r =8,

l = 9, +x = 9, +*= 9, I= 9;

10.2.3.1. Rows and associated operations

a) mode 9- rows= can actual-declarer specifying a mode united from
(2.1.3.6.a) a sufficient set of modes each of which begins with
'row' c;

b) op {lwb, '}=(Int n, rows a) int: c the lower bound in the n-th bound
pair of the descriptor of the value of 'a', if that bound pair
exists c;

ALGOL 68 Revised Report 131

c) op { upb, r t = (Int n, rows a) int: c the upper bound in the n-th
bound pair of the descriptor of the value of 'a', if that bound pair
exists c;

d) op {lwb, L t = (rows a) Int: 1 L a;

e) op{upb, '}=(rowsa)int: 1 r a;

(The term "sufficient set", as used in a above and also in 10.3.2.2.b and
d, implies that no intended particular-program should fail to be produced
(nor any unintended particular-program be produced) by the syntax solely
on account of an insufficiency of modes in that set.)

10.2.3.2. Operations on boolean operands

a) op { v, ort =(boo/a, b) boo/: (a I true I b);

b) op { 11 , &, and}= (boo/ a, b) boo/: (a I b I false);

c) op { ~, -, not}= (boo/ a) boo/: (a I false I true);

d) op{=, eq} =(boo/a, b)boo/: (a II b) v (~a" ~ b);

e) op{~, I=, net=(boo/a,b)bool: ~ (a=b);

f) opabs=(boola)int: (al 11 O);

10.2.3.3. Operations on integral operands

a) op { <, It}= (L int a, b) boo/: c true if the value of 'a' is smaller than
(2.1.3.1.e) that of 'b' and false otherwise c;

b) op{~<=, le}=(L lnta,b)boo/: ~ (b< a);

c) op{=,eq}=(Linta,b)bool: a~br.b~a;

d) op{~, I=, ne}=(L inta,b)bool: ~ (a=b);

e) op{~,>=, ge}=(L inta,b)bool: b~a;

f) op{>, gt}=(L inta,b)bool: b< a;

g) op - = (L Int a, b) L int: c the value of 'a' minus (2.1.3.1.e) that of
'b' C;

h) op - = (L int a) L int: L O - a;

i) op+= (L Int a, b) L Int: a - -b;

j) op+= (L int a) L int: a;

k) op abs= (L int a) L Int: (a< L O I -a I a);

I) op{x,*}=(Linta,b)Lint:
begin L int s : = L 0, i : = abs b;

whilei ~L 1

dos : = s + a; i : = i - L 1 od;
(b < L o I - s I s)

end;

-

132 van Wijngaarden, et al.

m) op{;., 'Mi, overt= (L int a, b) L int:
if b ;J; Lo
then L int q : = L 0, r : = abs a;

while (r: = r - abs b) ~ L O do q: = q + L 1 od;
(a< L O" b ~ L Ova~ L O" b < L O I - q I q)

fl;

n) op f +x, +*, %x, 'Ml*, mod}= (L int a, b) L Int:
(Int r = a - a + bx b; r < 0 I r + abs b I r);

o) opl=(L lnta,b)L real: L real(a)IL real(b);

p) opf 1,**, up}=(L inta,intb)L int:
(b ~ 0 I L int p: = L 1; to b do p: = p x a od; p);

q) op Ieng= (L int a) long L int: c the long L integral value lengthened
from (2.1.3.1.e) the value of 'a' c;

r) op shorten= (tong L int a) L int: c the L integral value, if it exists,
which can be lengthened to (2.1.3.1.e) the value of 'a' c;

s) opodd=(L inta)bool: absa+xL 2=L 1;

t) op sign= (L int a) int:
(a> L O I I I: a< L O I - JI 0);

u) op fl, +x, +*, i} = (L int a, b) L comp/: (a, b);

10.2.3.4. Operations on real operands

a) op f <, It}= (L real a, b) bool: c true if the value of 'a' is smaller
than (2.1.3.1.e} that of 'b' and false otherwise c;

b) opf5., <=, le}=(L reala,b)bool: ~ (b< a);

c) op f=, eq} =(L real a, b)bool: a ~b" b ~a;

d) op f;J;, I=, net= (L real a, b) bool: ~(a= b);

e) opf~, >=, ge}=(L reala,b)bool: b~a;

f) opf>, gt}=(L reala,b)bool: b< a;

g) op - = (L real a, b) L real: c the value of 'a' minus (2.1.3.1.e} that of
'b' C;

h) op - = (L real a) L real : L O - a;

i) op+= (L real a, b) L real : a - - b;

j) op+=(L reala)L real: a;

k) op abs= (L real a) L real: (a< L O I - a I a);

1) op f x, *t = (L real a, b) L real: c the value of 'a' times (2.1.3.1.e) that
of 'b' C;

ALGOL 68 Revised Report

m) op I= (L real a, b) L real: c the value of 'a' divided by (2.1.3.l.e) that
of'b'c;

n) op Ieng= (L real a) long L real: c the long L real value lengthened
from {2.1.3.l.e) the value of 'a' c;

o) op shorten= (long L real a) L real: c if abs a 5. Ieng L max real, then
a L real value 'v' such that, for any L real value 'w',
abs (Ieng v - a) 5. abs (Ieng w - a) c ;

p) op round= (L real a) L Int: ca L integral value, if one exists, which
is widenable to (2.1.3.l.e} a L real value differing by not more
than one-half from the value of 'a' c;

q) op sign= (L real a) int: (a> L O I 11: a< L O I - JI 0);

r) op t entier, L f = (L real a) L int:
beginL lntj:=L O;

while}< a do}:=j+L 1 od;
while j > a do j : = j - L 1 od;
j

end;

s) opt 1, +x, +*, if= (L real a, b) L comp/: (a, b);

10.2.3.5. Operations on arithmetic operands

a) op P= (L real a, Lint b) L real: aP L real (b);

b) opP=(L inta,L realb)L real: L real(a)Pb;

c) op R = (L real a, L int b) boo/: a R L real (b);

d) opR=(L inta,L realb)bool: L real(a)Rb;

e) op tl, +x, +*, if= (L real q, Lint b) L comp/: (a, b);

f) opt 1, +x, +*, if= (L int a, L real b) L comp/: (a, b);

g) opt 1, **, upf = (L real a, int b) L real:
(L real p: = L 1; to abs b do p: = p x a od; (b z. 0 Ip IL 1 Ip));

10.2.3.6. Operations on character operands

al opR=(chara, b)bool: absaRabsb; fl0.2.l.n)

b) op+= (char a, b) string: (a, b);

10.2.3.7. Operations on complex operands

a) op re= (L comp/ a) L real: re of a;

b) opim=(L compla)L real: imofa;

133

134 van Wijngaarden, et al.

c) opabs=(L compla)L real: L sqrt(rea 1 2+ima 1 2);

d) op arg = (L comp/ a) L real:
if L real re = re a, im = im a;

re -I- L O v im -I- L 0
then if abs re > abs im

fl;

then L arctan (im I re) + L pi IL 2 x
(im < L O I sign re - 111 - sign re)

else -L arctan (re I im) + L pi IL 2 x sign im

fi

e) op conj= (L comp/ a) L comp/: real -im a;

f) op 'f =, eq t = (L comp/ a, b) boo/: re a= re b " im a= im b;

g) op {-I-, I=, net= (L comp/ a, b) boo/: ~(a= b);

h) op - = (L comp/ a, b) L comp/: (re a - re b) l (im a - im b);

i) op-=(L compla)L comp/: -real -ima;

j) op+= (L comp/ a, b) L comp/: (re a+ re b) l (im a+ im b);

k) op+=(L compla)L comp/: a;

I) op{x,*t=(L compla,b)L comp/:
(re ax re b - Im ax Im b) l (re ax im b + im ax re b);

m) op I= (L comp/ a, b) L comp/:
(L real d = re (bx conj b); L comp/ n = a x conj b;
(re n Id) l (Im n Id));

n) op Ieng= (L comp/ a) long L comp/: Ieng re a l Ieng im a;

o) op shorten = (long L comp/ a) L comp/ :
shorten re a l shorten im a ;

p) opP=(L compla,L intb)L comp/: a PL compl(b);

q) op P = (L comp/ a, L real b) L comp/: a PL comp/ (b);

r) opP=(L inta,L complb)L comp/: L compl(a)Pb;

s) op P = (L real a, L comp/ b) L comp/: L comp/ (a) Pb;

t) op 'f I,**, up}= (L comp/ a, int b).L comp/:
(L comp/ p: = L 1; to abs b do p: = p x a od; (b ~ O Ip I L 1 Ip));

u) op E = (L comp/ a, L int b) boo/: a E L comp/ (b);

v) op E= (L comp/ a, L real b) boo/: a EL comp/ (b);

w) op E = (L int a, L comp/ b) boo/ : b Ea;

x) opE=(L reala,L complb)bool: bEa;

ALGOL 68 Revised Report

10.2.3.8. Bits and associated operations

a) op{=, eq} = (L bits a, b) boo/:
begin boo/ c;

for i to L bits width
whi/ec:=(L Fofa) [i]=(L Fotb)[i]
doskipod;
C

end;

b) op {i, I=, net= (L bits a, b) boo/: - (a= b);

c) op{v, od=(L bitsa,b)L bits:
begin L bits c;

for i to L bits width
do (L Fofc) [i] := (L Fofa) [i] v (L Foth) [i] od;
C

end;

d) opt", &, and}= (L bits a, b) L bits:
begin L bits c;

for i to L bits width
do (L Fofc) [i] := (L Fofa) [i] "(L Fof h) [i] od;
C

end;

e) op {5., <=,le}= (L bits a, b)bool: (av h)= b;

f) op{~,>=, ge}=(L bitsa,b)bool: b5'.a;

g) op f 1, up, shl} = (L bits a, int b) L bits:
if_abs b 5'.L hits width
then L bits c : = a;

fi;

to abs b
do if b > 0 then

for i from 2 to L bits width
do (L Fofc) [i-1] := (L Fote) [i] od;
(L Fofc) [L bits-width] := false

else
for i from L bits width by -1 to 2
do(L Fofc)[i] := (L Fofc) [i-J]od;
(L Fote) [1] := false

flod;
C

h) opt l, down, shr} = (L bitsx, int n) L bits: x 1 - n;

135

136 van Wijngaarden, et al.

i) op abs= (L bits a) L Int:
begin L Int c : = L O;

for i to L bits width
do c : = L 2 x c + K abs (L F ofa) [i J od;
C

end;

j) op bin= (L int a) L bits:
ifa ?..Lo
then L Int b : = a; L bits c;

ti;

for i from L bits width by - 1 to 1
do (L Fofc) [i] := odd b; b := b ""'L 2od;
C

k) op {elem, D l =(int a, L bits b) boo/: (L Fof b) [aJ;

I) proc L bits pack= ([] boo/ a) L bits :
if int n = r a [@ 1];

n 5. L bits width
then L bits c;

ti;

for i to L bits width
do(L Fofc) [i] :=

(i 5.L bits width - n I false I a [@1] [i - L bits width+ n])
od;
C

m) op { ", -, nott = (L bits a) L bits:
begin L bits c;

for i to L bits width do (L F of c) [i] : = " (L F of a) [i] od;
C

end;

n) op Ieng= (L bits a) long L bits: long L bits pack (a);

o) op shorten= (long L bits a) L bits : L bits pack I[] boo/ (a)
[long L bits width - L bits width+ 1 :]);

10.2.3.9. Bytes and associated operations

a) op R = (L bytes a, b) boo/: string (a) R string (b);

b) op {elem, Dl = (int a, L bytes b) char: (L Fof b) [a];

c) proc L bytes pack= (string a) L bytes :
if int n = r a [@ 1] ;

n 5.L bytes width
then L bytes c;

fl;

for i to L bytes width
do(L Fote) [i] := (i5.nl a [@1] [i] I nullcharacter)od;
C

ALGOL 68 Revised Report

d) op Ieng= (L bytes a) long L bytes: long L bytes pack (a);

e) op shorten= (long L bytes a) L bytes:
L bytes pack (string (a) l : L bytes width]) ;

10.2.3.10. Strings and associated operations

a) opt<, ttt = (string a, b) boot:
begin int m = r a[@ 1], n = r b [@ 1]; int c: = O;

for i to (m < n I m I n)
while(c:=absa[@l] [iJ-absb[@JJ [i])=O
doskipod;
(c = 0 I m < n" n > 0 I c < 0)

end;

b) opt~ <=, let= (string a, b) boot: ~ (b <a);

c) op f=, eqt = (string a, b) boot: as. b" b s.a;

d) op f J, I=, net= (string a, b) boot: ~(a= b);

e) opt~. >=, get= (string a, b) boot: b s. a;

f) opf>, gtt=(stringa,b)bool: b< a;

g) op R = (string a, char b) boot: a R string (b);

h) op R = (char a, string b) boot: string (a) Rb;

i) op+= (string a, b) string:
(int m = (int la= r a [@ 1]; la < 0 I O I la),

n = Ont lb= r b [@ 1 J; lb< o I a I lb);
[J: m+n] charc;
c [1 : m] : = a [@ 1] ; c [m + 1 : m + n] : = b [@ 1] ; c) ;

j) op+= (string a, char b) string: a+ string (b);

k) op+= (char a, string b) string : string (a)+ b;

l) op f x, *t = (string a, Int b) string: (string c; to b doc:= c + a od; c);

m) op t x, *t = (int a, string b) string : b x a;

n) opt x, *t = (char a, int b) string: string (a) x b;

o) opfx, 4=(inta,charb)string: bxa;

(The operations defined in a, g and h imply that if abs "a"< abs "b",
then "" < "a" ; "a"< "b" ; "aa" < "ab" ; "aa" < "ba" ; "ab"< "b" and
"ab"< "ba" .)

10.2.3.11. Operations combined with assignations

a) opfminusab, -:=t=(refLinta,Lintb)refL int: a:=a-b;

b) op f minusab, -: = t = (ref L real a, L real b) ref L real: a:= a - b;

c) op f minusab, -: = t = (ref L compl a, L compl b) ref L compl:
a:=a-b;

137

138 van Wijngaarden, et al.

d) op{plusab, +:=}=(refL inta,L intb)refL int: a:=a+b;

e) op {plusab, +: = t = (ref L real a, L real b) ref L real: a:= a+ b;

f) op {plusab, +: = t = (ref L comp/ a, L comp/ b) ref L comp/: a:= a+ b;

g) op { timesab, x: =, *: = t = (ref L int a, L int b) ref L int: a : =ax b;

h) op { timesab, x: =, *: = t = (ref L real a, L real b) ref L real: a : =ax b;

i) op { timesab, x: =, *: = t = (ref L comp/ a, L comp/ b) ref L comp/:
a:=axb;

j) op { overab, .,.: =, 17,,: = t = (ref L int a, L int b) ref L int: a : =a.,. b;

k) op {modab, .,.x: =, .,.*: =, %x:=, %*: = t =
(ref L int a, L int b) ref L int: a : = a .,.x b;

I) op {divab, /:=t = (ref L real a, L real b) ref L real: a:= a I b;

m) op { divab, I:= t = (ref L comp/ a, L comp/ b) ref L comp/: a : = a I b;

n) op Q = (ref L real a, L int b) ref L real: a Q L real (b);

o) op Q = (ref L comp/ a, L int b) ref L comp/: a Q L comp/ (b);

p) op Q = (ref L comp/ a, L real b) ref L comp/: a Q L comp/ (b);

q) op { plusab, +: = t = (ref string a, string b) ref string : a : =a+ b;

r) op { plusto, +=: t = (string a, ref string b) ref string: b : =a+ b;

s) op {plusab, +: = t = (ref string a, char b) ref string: a+:= string (b);

t) op {plusto, +=: t = (char a, ref string b) ref string: string (a)+=: b;

u) op { timesab, x: =, *: = t = (ref string a, int b) ref string: a:= ax b;

10.2.3.12. Standard mathematical constants and functions

a) L realL pi= ca L real value close ton; see Math. of Comp. u. 16,
1962, pp. 80-99 C;

b) proc L sqrt= (L real x) L real: c if x 2'.. L 0, a L real value close to
the square root of 'x' c;

c) proc L exp= (L real x) L real: ca L real value, if one exists, close to
the exponential function of 'x' c;

d) proc L ln = (L real x) L real: ca L real value, if one exists, close to
the natural logarithm of 'x' c;

e) proc L cos= (L real x) L real: ca L real value close to the cosine of
'x' C;

f) proc L arccos = (L real x) L real: c if abs x 5a.L 1, a L real value close
to the inverse cosine of 'x', L O 5a.L arccos (x) 5a.L pi c;

g) proc L sin= (L real x) L real: ca L real value close to the sine of
'x' C;

ALGOL 68 Revised Report 139

h) procL arcsin=(L realx)L real: cif absx5.L 1, a L real value cluse
to the inverse sine of 'x', abs L arcsin (x) 5. L pi IL 2 c;

i) proc L tan= (L real x) L real: ca L real value, if one exists, close tu
the tangent of 'x' c;

j) proc L arctan = (L real x) L real: ca L real value close to the
inverse tangent of 'x', abs L arctan (x) 5. L pi IL 2 c;

k) proc L next random= (ref L int a) L real :
(a := cthe next pseudo-random L integral value after 'a' {rum a

uniformly distributed sequence on the interval
[L 0, L max int] c;

c the real value corresponding to 'a' according to sume mapping
of integral values [L 0, L max int j into real values [L 0, L 1)
(i.e., such that O 5. x < 1) such that the sequence of real values
so produced preserves the properties of pseudo-randomness
and uniform distribution of the sequence of integral values c);

10.2.4. Synchronization operations

The elaboration of a parallel-clause P {3.3.1.c} in an environ E is termed
a "parallel action'". The elaboration of a constituent unit of P in E is
termed a "process'" of that parallel action.

Any elaboration A (in some environ) of either of the ENCLOSED-clauses
delineated by the pragmats {9.2.l.b) pr start of incompatible part pr and
pr finish of incompatible part pr in the forms 10.2.4.d and 10.2.4.e is
incompatible with {2.1.4.2.e} any elaboration B of either of those
ENCLOSED-clauses if A and B are descendent actions {2.1.4.2.b) of different
processes of some same parallel action.

a) mode sema = struct (ref int F);

b) op level= (int a) sema: (sema s; F of s : = heap int:= a; s);

c) op level= (sema a) int: F of a;

d) op down= (sema edsger) void:
begin ref int dijkstra = F of edsger;

while
pr start of incompatible part pr

if dijkstra ~ 1 then dijkstra -: = 1; false
else

fi

c let P be the process such that the elaboration of
this pseudo-comment (10.1.3.Step 7) is a descendent
action of P, but not of any other process descended
from P; the process P is halted (2.1.4.3.f) c;
true

pr finish of incompatible part pr
doskipod

end;

140 van Wijngaarden, et al.

e) op up= (sema edsger) void:
pr start of incompatible part pr

if ref int dijkstra = F of edsger; (dijkstra +: = 1) ~ 1
then

fi

call processes are resumed (2.1.4.3.g} which are halted
because the integer referred to by the name yielded by
'dijkstra' was smaller than one c

pr finish of incompatible part pr;

(For the use of down and up, see E.W. Dijkstra, Cooperating Sequential
Processes, contained in Programming Languages, Genuys, F. (ed.),
London etc., Academic Press, 1968; see also 11.12.)

10.3. Transput declarations

("So it does!" said Pooh. "It goes in!"
"So it does!" said Piglet. "And it comes out!"
"Doesn't it?" said Eeyore. "It goes in and out like
anything."
Winnie-the-Pooh, A.A. Milne.}

(Three ways of "transput" (i.e., input and output) are provided by the
standard-prelude, viz., formatless transput (10.3.3), formatted transput
(10.3.5) and binary transput (10.3.6) .}

10.3.l. Books, channels and files

("Books", "channels" and "files" model the transput devices of the
physical machine used in the implementation.}

10.3.l.l. Books and backfiles

(aa) All information within the system is to be found in a number of
"books". A book (a) is a structured value including a field text of the mode
specified by f/extext (b) which refers to information in the form of
characters. The text has a variable number of pages, each of which may
have a variable number of lines, each of which may have a variable
number of characters. Positions within the text are indicated by a page
number, a line number and a character number. The book includes a field
lpos which indicates the "logical end" of the book, i.e., the position up to
which it has been filled with information, a string id{, which identifies the
book and which may possibly include other information, e.g., ownership,
and fields putting and users which permit the book to be opened
(10.3.1.4.d) on more than one file simultaneously only if putting is not
possible on any of them.

ALGOL 68 Revised Report 141

bb) The books in the system are accessed via a chain of backfiles.
The chain of books available for opening (10.3.1.4.dd) is referenced by
chainbfile. A given book may be referenced by more than one backfile on
this chain, thus allowing simultaneous access to a single book by more
than one process (10.2.4). However such access can only be for reading a
book, since only one process may access a book such that it may be
written to (aa). The chain of books which have been locked (10.3.1.4.o) is
referenced by lockedbfile.

cc) Simultaneous access by more than one process to the chain of
backfiles is prevented by use of the semaphore bfileprotect, which provides
mutual exclusion between such processes.

dd) Books may be created (e.g., by input) or destroyed (e.g., after
output) by tasks (e.g., the operating system) in the system-task-list
(10.4.2), such books being then added to or removed from the chain of
backfiles.)

a) mode 1?- book=
struct (flextext text,

pos lpos ¢ logical end of book¢,
string id{ ¢identification¢,
boot putting ¢ true if the book may be written to¢,
Int users ¢ the number of times the book is opened ¢) ;

b) mode 1?-text= ref [] [] [] char,
mode 1?- flextext = ref flex [] flex [] flex [] char;

c) mode 1?- pos = struct (Int p, l, c);

d) prlo 1?- beyond= 5,
op beyond= (pos a, b) boo/ :

If p of a < p of b then false
e/if p of a > p of b then true
elif l of a < l of b then false
e/lf l of a > l of b then true
else c of a > c of b
fi;

e) mode 1?- bfile = struct (ref book book, ref bfile next);

f) ref bf/le 1?- chainbfile : = nil;

g) ref bf/le 1?- lockedbfile : = n//;

h) sema 1?- bfileprotect = (sema s; Fof s := PRIM int:= 1; s);

10.3.1.2. Channels

(aa) A "channel" corresponds to one or more physical devices (e.g., a
card reader, a card punch or a line printer, or even to a set up in nuclear

142 van Wijngaarden, et al.

physics the results of which are collected by the computer) , or to a
filestore maintained by the operating system. A channel is a structured
value whose fields are routines returning truth values which determine the
available methods of access to a book linked via that channel. Since the
methods of access to a book may well depend on the book as well as on
the channel (e.g., a certain book may have been trapped so that it may be
read, but not written to), most of these properties depend on both the
channel and the book. These properties may be examined by use of the
environment enquiries provided for files (10.3.1.3.ff). Two environment
enquiries are provided for channels. These are:

• estab possible, which returns true if another file may be "established"
(10.3.1.4.cc) on the channel;
• standconv, which may be used to obtain the default "conversion key"
(bb) for the channel.

bb) A "conversion key" is a value of the mode specified by conv which
is used to convert characters to and from the values as stored in
"internal"· form and as stored in "external" form in a book. It is a
structured value comprising a row of structures, each of which contains a
value in internal form and its corresponding external value. The
implementation may provide additional conversion keys in its library.
prelude.

cc) Three standard channels are provided, with properties as defined
below (e,f ,g). The implementation may provide additional channels in its
library-prelude. The channel number field is provided in order that
different channels with otherwise identical possibilities may be
distinguished.)

a) mode channel=
struct (proc (ref book) bool r reset, r set, r get, r put, r bin,

r compress, r reidf,
proc bool r estab, proc pos r max pas,
proc (ref book) conv r standconv, int r channel number);

b) moder conv = struct ([1 : int (skip)] struct (char internal, external) F);

c) proc estab possible= (channel chan) bool : estab of chan;

d) proc standconv = (channel chan) proc (ref book) conv :
standconv of chan ;

e) channel stand in channel= ca channel value whose field selected by
'get' is a routine which always returns true, and whose other
fields are some suitable values c;

f) channel stand out channel= ca channel value whose field selected by
'put' is a routine which always returns true, and whose other
fields are some suitable values c;

ALGOL 68 Revised Report

g) channel stand back channel= ca channel value whose fields selected
by 'set', 'reset', 'get', 'put' and 'bin' are routines which always
return true, and whose other fields are some suitable values c;

10.3.1.3. Files

143

(aa) A "file" is the means of communication between a particular­
program and a book which has been opened on that file via some channel.
It is a structured value which includes a reference to the book to which it
has been linked (10.3.1.4.bb) and a separate reference to the text of the
book. The file also contains information necessary for the transput
routines to work with the book, including its current position cpos in the
text, its current "state" (bb), its current "format" (10.3.4) and the channel
on which it has been opened.

bb) The "state" of a file is determined by five fields:
• read mood, which is true if the file is being used for input:
• write mood, which is true if the file is being used for output:
• char mood, which is true if the file is being used for character
trans put;
• bin mood, which is true if the file is being used for binary
transput:
• opened, which is true if the file has been linked to a book.

cc) A file includes some "event routines", which are called when
certain conditions arise during transput. After opening a file, the event
routines provided by default return false when called, but the programmer
may provide other event routines. Since the fields of a file are not directly
accessible to the user, the event routines may be changed by use of the
"on routines" (l,m,n,o,p,q,r). The event routines are always given a
reference to the file as a parameter. If the elaboration of an event routine
is terminated, then the transput routine which called it can take no further
action: otherwise, if it returns true, then it is assumed that the condition
has been mended in some way, and, if possible, transput continues, but if
it returns false, then the system continues with its default action. The on
routines are:

• on logical file end. The corresponding event routine is called when,
during input from a book or as a result of calling set, the logical end of
the book is reached (see 10.3.1.6.dd).
Example:

The programmer wishes to count the number of integers on his
input tape. The file intape was opened in a surrounding range. If he
writes:

begin int n : = O; on logical file end (intape, (ref file file) boo/: goto f);
do get (intape, loc int); n +: = 1 od;
f: print (n)

end,

144

-

van Wijngaarden, et al.

then the assignment to the field of intape violates the scope
restriction, since the scope of the routine (ref file file) boo/: goto f is
smaller than the scope of intape, so he has to write:

begin Int n : = O; file auxin : = intape;
on logical file end (auxin, (ref file file) boo/: goto f);
do get (auxin, toe int); n +: = 1 od;
{:print (n)

end.

• on physical file end. The corresponding event routine is called when
the current page number of the file exceeds the number of pages in the
book and further transput is attempted (see 10.3.1.6.dd).

• on page end. The corresponding event routine is called when
the current line number exceeds the number of lines in the current page
and further transput is attempted (see 10.3.1.6.dd).

• on line end. The corresponding event routine is called when
the current character number of the file exceeds the number of
characters in the current line and further transput is attempted (see
10.3.1.6.dd).

Example:
The programmer wishes automatically to give a heading at the start
of each page on his file /:

on page end (f, proc (ref file file) boo/:
(put (file, (newpage, "page number ", whole (i +: = 1, 0),

newline)); true)
<tit is assumed that i has been declared elsewhere <t) .

• on char error. The corresponding event routine is called when a
character conversion was unsuccessful or when, during input, a
character is read which was not "expected" (10.3.4.1.ll). The event
routine is called with a reference to a character suggested as a
replacement. The event routine provided by the programmer may
assign some character other than the suggested one. If the event
routine returns true, then that suggested character as possibly modified
is used.
Example:

The programmer wishes to read sums of money punched as
"$123.45", "~$23.45", "~~$3.45", etc.:

on char error (stand in, (ref file f, ref char sugg) boo/ :
lfsugg= 110"
then char c; backspace (f); get (f, c);

(c = "$" I get (f, sugg); true I false)
else false
ti);

Int cents; read{(($ 3z "." dd $, cents))

ALGOL 68 Revised Report 145

• on value error. The c;orresponding event routine is called when:
(i) during formatted transput an attempt is made to transput a value

under the control of a "picture" with which it is incompatible, or when
the number of "frames" is insufficient. If the routine returns true, then
the current value and picture are skipped and transput continues; if
the routine returns false, then first, on output, the value is output by
put, and next undefined is called;

(ii) during input it is impossible to convert a string to a value of some
given mode (this would occur if, for example, an attempt were made to
read an integer larger than max int (10.2.l.c)).

• onformatend. The corresponding event routine is called when,
during formatted transput, the format is exhausted while some value
still remains to be transput. If the routine returns true, then undefined
is called if a new format has not been provided for the file by the
routine; otherwise, the current format is repeated.

dd) The conv field of a file is its current conversion key (10.3.1.2.bb).
After opening a file, a default conversion key is provided. Some other
conversion key may be provided by the programmer by means of a call of
make conv (j). Note that such a key must have been provided in the
library-prelude.

ee) The routine make term is used to associate a string with a file.
This string is used when inputting a variable number of characters, any of
its characters serving as a terminator.

ff) The available methods of access to a book which has been opened
on a file may be discovered by calls of the following routines (note that the
yield of such a call may be a function of both the book and the channel,
and of other environmental factors not defined by this Report) :

• get possible, which returns true if the file may be used for input;
• putpossible, which returns true if the file may be used for output;
• binpossible, which returns true if the file may be used for binary
transput;
• compressible, which returns true if lines and pages will be
compressed (10.3.1.6.aa) during output, in which case the book is said
to be "compressible";
• reset possible, which returns true if the file may be reset, i.e., its
current position set to (1, 1, 1);
• setpossible, which returns true if the file may be set, i.e., the current
position changed to some specified value; the book is then said to be a
"random access" book and, otherwise, a ··sequential access·· book:
• reidf possible, which returns true if the idf field of the book may be
changed;
• chan, which returns the channel on which the file has been opened
(this may be used, for example, by a routine assigned by
on physical file end. in .order to open another file on the same channel).

146 van Wijngaarden, et al.

gg) On sequential access books, undefined (10.3.1.4.a) is called if
binary and character transput is alternated, i.e., after opening or resetting
(10.3.1.6.j), either is possible but, once one has taken place, the other maj
not until after another reset.

hh) On sequential access books, output immediately causes the logical
end of the book to be moved to the current position (unless both are in the
same line); thus input may not follow output without first resetting
(10.3.1.6.j).

Example:

begin file fl, f2; [1: 10000] int x; int n: = O;
open (f 1, "", channel 2);
f2:=fl;

</: now f 1 and f2 can be used interchangeably </:
make conv (fl, flexocode); make conv (f2, telexcode);

</: now fl and f2 use different codes; flexocode and telexcode are
defined in the library-prelude for this implementation </:

reset (fl);
<t consequently, f2 is reset too </:

on logical file end (fl, (ref file f) boo/: goto done);
tori do get (fl, x [i]); n := i od;

</: too bad if there are more than 10000 integers in the input </:
done:

reset (fl); for i ton do put (f2, x [i]) od;
close (f2) </: fl is now closed too <t

end)

a) mode file =
struct (ref book~ book, union (flextext, text) ~ text, channel~ chan,

ref format~ format, ref int~ forp,
ref boo/~ read mood, ~ write mood, ~ char mood, ~ bin mood,

~opened,
ref pos ~ cpos <t current position</:,
string ~ term <t string terminator</:,
conv ~ conv </: character conversion key</:,
proc (ref file) boo/~ logical file mended, ~ physical file mended,

~ page mended, ~ line mended, ~ format mended,
~ value error mended,

proc (ref file, ref char) boo/~ char error mended);

b) proc get possible= (reffile f) boo/:
(opened off I (get of chan off) (book off) I undefined; skip);

c) proc put possible= (ref file f) boo/:
(opened off I (put of chan off) (book off) I undefined; skip);

d) proc bin possible= (ref file f) boo/:
(opened off I (bin of chan off) (book off) I undefined; skip);

ALGOL 68 Revised Report

e) proc compressible= (ref file f) boo/:
(opened off I (compress of chan off) (book off) I undefined; skip);

f) proc reset possible= (ref file f) boo/ :
(opened off I (reset of chan off) (book off) I undefined; skip);

g) proc set possible= (ref file f) boo/:
(opened off I (set of chan off) (book off) I undefined; skip);

h) proc reidf possible= (ref file f) boo/ :
(opened off I (reidf of chan off) (book off) I undefined; skip);

i) proc chan = (ref file f) channel :
(opened off I chan off I undefined; skip);

j) proc make conv = (ref file f, proc (ref book) conv c) void:
(opened off I conv off:= c (book ol f) I undefined);

k) proc make term= (ref file f, string t) void : term off:= t;

1) proc on logical file end= (ref file f, proc (ref file) boo/ p) void:
logical file mended off:= p;

m) proc on physical file end= (ref file f, proc (ref file) boo/ p) void :
physical file mended off:= p;

n) proc on page end= (ref file f, proc (ref file) boo/ p) void :
page mended off:= p ;

o) proc on line end= (ref file f, proc (ref file) boo/ p) void:
line mended off:= p ;

p) proc on format end= (ref file f, proc (ref file) boo/ p) void:
format mended off:= p ;

q) proc on value error= (ref file f, proc (ref file) boo/ p) void:
value error mended off:= p ;

r) proc on char error= (ref file f, proc (ref file, ref char) boo/ p) void :
char error mended off:= p ;

s) proc reidf = (ref file f, string idf) void:
if opened off" reidf possible (f) " idf ok (idf)
then idf of book off:= idf
ti;

10.3.1.4. Opening and closing files

147

(aa) When, during transput,, something happens which is left undefined,
for example by explicitly ,calling undefined (a), this does not imply that
the elaboration is catastrophically and immediately interrupted (2.1.4.3.h),
but only that some sensible action is taken which is not or cannot be
described by this Report alone and is generally implementation-dependent.

148 van Wijngaarden, et al.

bb) A book is "linked" with a file by means of establish (b), create (c)
or open (d). The linkage may be terminated by means of close (n), lock
(o) or scratch (p).

cc) When a file is "established" on a channel, then a book is generated
(5.2.3) with a text of the given size, the given identification string, with
putting set to true, and the logical end of the book at (1, 1, 1). An
implementation may require (g) that the characters forming the
identification string should be taken from a limited set and that the string
should be limited in length. It may also prevent two books from having the
same string. If the establishing is completed successfully, then the value 0
is returned: otherwise, some nonzero integer is returned (the value of this
integer might indicate why the file was not established successfully) .

When a file is "created" on a channel, then a file is established with a
book whose text has the default size for the channel and whose
identification string is undefined.

dd) When a file is "opened", then the chain of backfiles is searched for
the first book which is such that match (h) returns true. (The precise
method of matching is not defined by this Report and will, in general, be
implementation dependent. For example, the string supplied as parameter
to open may include a password of some form.) If the end of the chain of
backfiles is reached or if a book has been selected, but putting of the book
yields true, or if putting to the book via the channel is possible and the
book is already open, then the further elaboration is undefined. If the file
is already open, an up gremlins provides an opportunity for an appropriate
system action on the book previously linked (in case no other copy of the
file remains to preserve that linkage).

ee) The routine associate may be used to associate a file with a value
of the mode specified by either ref [] char, ref [] [] char or ref l] [] []
char, thus enabling such variables to be used as the book of a file.

ff) When a file is "closed", its book is attached to the chain of
backfiles referenced by chainbfile. Some system-task is then activated by
means of an up gremlins. (This may reorganize the chain of backfiles,
removing this book, or adding further copies of it. It may also cause the
book to be output on some external device.)

gg) When a file is "locked", its book is attached to the chain of
backfiles referenced by lockedbfile. Some system-task is then activated by
means of an up gremlins. A book which has been locked cannot be re­
opened until some subsequent system-task has re-attached the book to the
chain of backfiles available for opening.

hh) When a file is "scratched", some system-task is activated by
means of an up gremlins. (This may cause the book linked to the file to be
disposed of in some manner.))

!

ALGOL 68 Revised Report

~
·I

149

a) proc ~ undefined = Int: c some sensible system action yielding an
integer to indicate what has been done; it is presumed that the
system action may depend on a knowledge of any values
accessible f2.l.2.c) inside the locale of any environ which is older
than that in which this pseudo-comment is being elaborated
{notwithstanding that no ALGOL 68 construct written here could
access those values) c;

b) proc establish=
(ref file file, string id{, channel chan, int p, l, c) int:
begin

down bfileprotect;
PRIM book book : =

(PRIMflex [1: p] flex [1: l] flex [1: c] char, (1, 1, 1), id{,
true, 1);

If file available (chan) " (put of chan) (book)
" es tab of chan " ~ (pos (p, l, c) beyond max pos of chan)
" ~ (pos (1, 1, 1) beyond pos (p, l, c)) " id{ ok (id{)

then
(opened of file I up gremlins I up bfileprotect);
file:=

(book, text of book, chan, skip, skip,
<r: state: <r: heap boo/:= false, heap boo/:= true,

heap boo/ : = false, heap boo/ : = false, heap boo/:= true,
heap pos: = (1, 1, 1), '"', (standconv of chan) (book),
<r: event routines: <r: false, false, false, false, false, false,

(ref file{, ref char a) boo/ : false);
(~ bin possible (file) I set char mood (file));
0

else up bfileprotect; undefined
ti

end;

c) proc create= (ref file file, channel chan) Int :
begin pos max pos = max pos of chan;

establish (file, skip, chan, p of max pos, l of max pos,
cofmaxpos)

end;

d) proc open= (ref file file, string id{, channel chan) int:
begin

down bfileprotect;
If file available (chan)
then ref ref bf/le bf:= chainbfile; boo/ found:= false;

while (ref bf/le (bf) : ~: nil) " ~ found

150

do

od;

van Wijngaarden, et al.

if match (id{, chan, book of bf)
then found : = true
else bf:= next of bf
fi

if, found
then up bfileprotect; undefined
else ref book book : = book of bf;

if putting of book v (put of chan) (book) " users of book > 0
then

up bfileprotect; undefined q: in this case opening is
inhibited by other users - the system may either
wait, or yield nonzero (indicating unsuccessful
opening) immediately q:

else

fi
fi

users of book+:= 1;
((put of chan) (book) I putting of book : = true);
ref ref bfile (bf) : = next of bf; q: remove bfile from chain q:
(opened of file I up gremlins I up bfileprotect);
file:=

(book, text of book, chan, skip, skip,
q: state: q: heap boot : = false, heap boot:= false,

heap boot : = false, heap boot:= false,
heap boot:= true,

heap pos: = (1, 1, 1), "", (standconv of chan) (book),
q: event routines: q: false, false, false, false, false,

false, (ref file{, ref char a) boot: false);
(, bin possible (file) I set char mood (file));
(, get possible (file) I set write mood (file));
(, put possible (file) I set read mood (file));
0

else up bfileprotect; undefined
fi

end;

e) proc associate=
(ref file file, ref l J l J l J char sss) void:
if int p = lwb sss; inti= lwb sss [p]; int c = lwb sss Ip I IL I;

p=l"l=l"c=l
then

proc t = (ref book a) boot : true;
proc f = (ref book a) boot : false;
channel chan = (t, t, t, t, f, f, {, boot: false,

pos : (max int, max int, max int), skip, skip);
(opened of file I down bfileprotect; up gremlins);

ALGOL 68 Revised Report

file:=
(heap book:= (skip, (upb sss + 1, 1, 1), skip, true, 1). sss, chan,
skip, skip,
q: state: q: heap boo/:= false, heap boo/:= false,

heap boo/:= true, heap boo/:= false, heap boo/:= true.
heappos := (], 1, 1), '"', skip,
({: event routines: ({: false, false, false, false, false, false,

(ref file f, ref char a) boo/ : false)
else undefined
fi;

f) proc 9- file available= (channel chan) boo/:
c true if another file, at this instant of time, may be opened on

'chan' and false otherwise c;

g) proc 9- idf ok = (string idf) boo/ :
c true if 'id{' is acceptable to the implementation as the

identification of a new book and false otherwise c;

h) proc 9- match =

(string id{, channel chan, ref book book name) boo/:

151

c true if the book referred to by 'book name' may be identified by
'id{', and if the book may legitimately be accessed through
'chan', and false otherwise c;

i) proc 9- false= (ref file file) boo/: false
({: this is included for brevity in 'establish', 'open' and 'associate' q:;

j) proc 9- set write mood= (ref file f) void:
if - put possible (f) v

- set possible (f) " bin mood off" read mood off
then undefined
else ref boo/ (read mood off) : = false; ref boo/ (write mood of/) : = true
fi;

k) proc 9- set read mood= (ref file f) void :
if - get possible (f) v

- set possible (f) " bin mood off" write mood off
then undefined
else ref boo/ (read mood off) : = true; ref boo/ (write mood of{) : = false
fi;

I) proc 9- set char mood= (ref file f) void :
if - set possible (f) " bin mood off
then undefined
else ref boo/ (char mood off):= true; ref boo/ (bin mood off):= false
fl;

152 van Wijngaarden, et al.

m) proc 9- set bin mood= (ref file f) void :
if~ bin possible (f) v ~ set possible (f) " char mood off
then undefined
else ref boo/ (char mood off):= false; ref boo/ (bin mood off):= true
fl;

n) proc close= (ref file file) void :
if opened of file
then

fi;

down bfileprotect;
ref boo/ (opened of file) : = false;
ref book book = book of file;
putting of book : = false; users of book -: = 1;
(text of file I (flextext): chainbfile: =

PRIM bfile: = (book, chainbfile));
up gremlins

o) proc lock= (ref file file) void:
If opened of file
then

fl;

down bfileprotect;
ref boo/ (opened of file) : = false;
ref book book= book of file;
putting of book:= false; users of book-:= 1;
(text of file I (flextext): lockedbfile : =

PRIM bf/le:= (book, lockedbfile));
up gremlins

p) proc scratch= (ref file file) void:
If opened of file
then

down bfileprotect;
ref boo/ (opened of file) : = false;
putting of book of file : = false;
users of book of file -: = 1;

up gremlins
fl;

10.3.1.5. Position enquiries

(aa) The "current position" of a book opened on a given file is the
value referred to by the cpos field of that file. It is advanced by each
transput operation in accordance with the number of characters written or
read.

If c is the current character number and lb is the length of the
current line, then at all times 1 i. c i. lb + 1. c = 1 implies that the next

ALGOL 68 Revised Report 153

transput operation will be to the first character of the line and c = lb + 1
implies that the line has overflowed and that the next transput operation
will call an event routine. If lb = 0, then the line is empty and is therefore
always in the overflowed state. Corresponding restrictions apply to the
current line and page numbers. Note that, if the page has overflowed, the
current line is empty and, if the book has overflowed, the current page
and line are both empty (e).

bb) The user may determine the current position by means of the
routines char number, line number and page number (a, b, c).

cc) If the current position has overflowed the line, page or book, then
it is said to be outside the "physical file" (f, g, h).

dd) If, on reading, the current position is at the logical end, then it is
said to be outside the "logical file" (i) .}

(Each routine in this section calls undefined if the file is not open on
entry.}

a) proc char number= (ref file f) Int :
(openedoffl cofcposoffl undefined);

b) proc line number= (reffile f) int:
(opened off I l of cpos off I undefined);

c) proc page number= (ref file f) int :
(opened off Ip ofcpos off I undefined);

d) proc I?- current pos = (ref file f) pos :
(opened off I cpos off I undefined; skip);

e) proc I?- book bounds= (ref file f) pos:
begin pos cpos = current pos (f);

int p = p of cpos, l = l of cpos;
case text off In

(text tl):
(int pb = upb tl;
int lb= (p 5. 0 v p > pb I O I upb tl [p]);
intcb=(l5.0vl>lblOjupbtl [p] [l]);
(pb, lb, cb)),

(flextext t2):

esac
end;

(int pb = upb t2;
Int lb= (p 5. 0 v p > pb I O I upb t2 [p]);
intcb= (l 5.0 v l > lb I Oj upb t2 [p] [l]);
(pb, lb, cb))

f) proc I?- line ended= (ref file f) boo/ :
(int c = c of current pos (f); c > c of book bounds (f));

154 van Wijngaarden, et al.

g) proc Ir- page ended= (ref file f) boo#:
(Intl= l of current pos (f); l > l of book bounds (f));

h) proc Ir- physical file ended= (ref file f) boo#:
(Int p = p of current pos (f); p > p of book bounds (f));

i) proc Ir- logical file ended= (ref file f) boo#:
~ (lpos of book off beyond current pos (f));

10.3.l.6. Layout routines

(aa) A book input from an external medium by some system-task may
contain lines and pages not all of the same length. Contrariwise, the lines
and pages of a book which has been established (10.3.l.4.cc) are all
initially of the size specified by the user. However if, during output to a
compressible book (10.3.l.3.ff), newline (newpage) is called with the
current position in the same line (page) as the logical end of the book,
then that line (the page containing that line) is shortened to the character
number (line number) of the logical end. Thus print (("abcde", newline))
could cause the current line to be reduced to 5 characters in length. Note
that it is perfectly meaningful for a line to contain no characters and for a
page to contain no lines.

Although the effect of a channel whose books are both compressible
and of random access (10.3.l.3.ff) is well defined, it is -not anticipated that
such a combination is likely to occur in actual implementations.

bb) The routines space (a), newline (c) and newpage (d) serve to advance
the current position to the next character, line or page, respectively. They
do not, however, (except as provided in cc below) alter the contents of the
positions skipped over. Thus print (("a", backspace, space)) has a different
effect from print (("a", backspace, blank)).

The current position may be altered also by calls of backspace (b), set
char number (k) and, on appropriate channels, of set (i) and reset (j).

cc) The contents of a newly established book are undefined and both its
current position and its logical end are at (1, 1, 1). As output proceeds, it
is filled with characters and the logical end is moved forward accordingly.
If, during character output with the current position at the logical end of
the book, space is called, then a space character is written (similar action
being taken in the case of newline and newpage if the book is not
compressible).

A call of set which attempts to leave the current position beyond the
logical end results in a call of undefined (a sensible system action might
then be to advance the logical end to the current position, or even to the
physical end of the book) . There is thus no defined way in which the
current position can be made to be beyond the logical end, nor in which
any character within the logical file can remain in its initial undefined
state.

ALGOL 68 Revised Report 155

dd) A reading or writing operation, or a call of space, newline, newpage,
set or set char number, may bring the current position outside the physical
or logical file (10.3.1.5.cc, dd), but this does not have any immediate
consequence. However, before any further transput is attempted, or a
further call of space, newline or newpage (but not of set or set char
number) is made, the current position must be brought to a "good"
position. The file is "good" if, on writing (reading), the current position is
not outside the physical (logical) file (10.3.1.5.cc, dd). The page (line) is
"good" if the line number (character number) has not overflowed. The
event routine (10.3.1.3.cc) corresponding to on logical file end, on physical
file end, on page end or on line end is therefore called as appropriate.
Except in the case of formatted transput (which uses check pos,
10.3.3.2.c), the default action, if the event routine returns false, is to call,
respectively, undefined, undefined, new page or newline. After this (or if
true is returned) , if the position is still not good, an event routine (not
necessarily the same one) is called again.

ee) The state of the file (10.3.1.3.bb) controls some effects of the
layout routines. If the read/write mood is reading, the effect of space,
newline and newpage, upon attempting to pass the logical end, is to call
the event routine corresponding to on logical file end with default action
undefined; if it is writing, the effect is to output spaces (or, in bin mood,
to write some undefined character) or to compress the current line or
page (see cc) . If the read/write mood is not determined on entry to a
layout routine, undefined is called. On exit, the read/write mood present
on entry is restored.}

a) proc space= (ref file f) void:
If ~ opened off then undefined
else

fl;

boot reading=
(readmoodoffl true I: write mood of fl false
I undefined; skip);

(~ get good line (f, reading) I undefined);
ref pos cpos = cpos off;
if reading then c of cpos +: = 1
else

fl

if logical file ended (f) then
if bin mood off then

(text off I (flextext t2):
t2 [p of cpos] [l of cpos J [c of cpos j : = skip);

c of cpos +: = 1; lpos of book off:= cpos
else put char (f, 11 ~ 11)

fl
else c of cpos +: = 1
fi

156 van Wijngaarden, et al.

b) proc backspace= (ref file f) void:
if " opened off then undefined
else ref int c = c of cpos off;

(c > 11 c -: = J I undefined)
ti;

c) proc newline= (ref file f) void:
if , opened off then undefined
else

ti;

boo/ reading=
(read mood off I true I: write mood off I false
I undefined; skip);

(" get good page (f, reading) I undefined);
ref pos cpos = cpos off, lpos = lpos of book off;
if p of cpos = p of lpos " l of cpos = l of lpos
then c of cpos : = c of lpos;

if reading then newline (f)
else

if compressible (f)
then ref int pl= p of lpos, ll = I of lpos;

flextext text= (text off I (flextext t2): t2);
text [pl] [ll] := text [pl] [ll] [: cof lpos -1]

else while , line ended (f) do space (f) od
fi;
cpos : = lpos : = (p of cpos, l of cpos + 1, 1)

fi
else cpos : = (p of cpos, I of cpos + 1, 1)
fi

d) proc new page= (ref file f) void :
If " opened off then undefined
else

boo/ reading=
(read mood off I true I: write mood off I false I undefined;
skip);

(" get good file (f, reading) I undefined);
ref pos cpos = cpos off, !pas = lpos of book off;
if p of cpos = p of lpos
then cpos : = lpos;

if reading then newpage (f)
else

if compressible (f) " I of lpos :5. l of book bounds (f)
then ref int pl= p of lpos, ll = I of /pas;

flextext text= (text off I (flextext t2): t2);
text [pl] [ll] : = text [pl] [ll] l : c oflpos -1];
text [pl] : = text [pl J l : (c of lpos > 1 I II I II - 1) J

ti;

ALGOL 68 Revised Report

else while ~ page ended (f) do newline (f) od
fi;
cpos: = lpos := (p of cpos + l, 1, 1)

fi
else cpos : = (p of cpos + 1, 1, 1)

fi

157

(Each of the following 3 routines either returns true, in which case the
line, page or file is good (dd), or it returns false, in which case the current
position may be outside the logical file or the page number may have
overflowed, or it loops until the matter is resolved, or it is terminated by a
jump. On exit, the read/write mood is as determined by its reading
parameter.}

e) proc I?- get good line= (reffile f, boo/ reading) boo/:
begin boo/ not ended;

while not ended:= get good page (f, reading);
line ended (f) " not ended

do(~ (line mended off) (f) I set mood (f, reading); newline (f)) od;
not ended

end;

f) proc I?- get good page= (ref file f, boo/ reading) boo/ :
begin boo/ not ended;

while not ended : = get good file (f, reading);
page ended (f) " not ended

do (~ (page mended off) (f) / set mood (f, reading); new page (f)) od;
not ended

end;

g) proc I?- get good file= (ref file f, boo/ reading) boo/:
begin boo/ not ended : = true;

while set mood (f, reading);
not ended"
(reading I logical file ended I physical file ended) (f)

do not ended : = (reading I logical file mended off
I physical file mended off) (f)

od;
not ended

end;

h) proc I?- set mood= (ref file f, boo/ reading) void:
(reading/ set read mood (f) / set write mood (f));

i) proc set= (ref file f, int p, l, c) void :
if~ opened off v ~ set possible (f) then undefined
else boo/ reading =

(readmoodoffl true/: writemoodoff/ false I undefined; skip);

158

fi;

van Wijngaarden, et al.

ref pos cpos = cpos off, lpos = lpos of book off;
pos ccpos = cpos;
if (cpos: = (p, l, c)) beyond lpos
then cpos : = lpos;

(~ (logical file mended off) (f) I undefined);
set mood (f, reading)

ellf pos bounds= book bounds (f);
p < 1 v p > p of bounds + 1
v l < 1 v l > l of bounds + 1
v c < 1 v c > c of bounds + 1

then cpos : = ccpos; undefined
fi

j) proc reset= (ref file f) void:
If ~ opened off v ~ reset possible (f) then undefined
else

fl;

ref bool (read mood off) : = ~ put possible (f);
ref bool (write mood off) : = ~ get possible (f);
ref bool (char mood off) : = ~ bin possible (f);
ref bool (bin mood off) : = false;
ref pos (cpos off):= (1, l, 1)

k) proc set char number= (ref file f, int c) void :
if ~ opened off then undefined
else ref ref pos cpos = cpos off;

while c of cpos i c
do

od
fi;

if c < 1 v c > c of book bounds (f) + 1
then undefined
elif c > c of cpos
then space (f)
else backspace (f)
fi

10.3.2. Transput values

10.3.2.l. Conversion routines
(The routines whole, fixed and float are intended to be used with the

formatless output routines put, print and write when it is required to have
a little extra control over the layout produced. Each of these routines has
a width parameter whose absolute value specifies the length of the string
to be produced by conversion of the arithmetic value V provided. Each of
fixed and float has an after oarameter to specify the number of digits
required after the decimal point, and an exp parameter in float specifies
the width allowed for the exponent. If V cannot be expressed as a string

r

ALGOL 68 Revised Report 159

within the given width, even when the value of after, if provided, has been
reduced, then a string filled with errorchar (10.2.1.t) is returned instead.

Leading zeroes are replaced by spaces and a sign is normally included.
The user can, however, specify that a sign is to be included only for
negative values by specifying a negative width. If the width specified is
zero, then the shortest possible string into which V can be converted,
consistently with the other parameters, is returned. The following
examples illustrate some of the possibilities:

print (whole (i, -4))
which might print ",.,.,.O", ",.,.99", ",.-99", "9999" or, if i were
greater than 9999, "****", where "*" is the yield of errorchar;

print (whole (i, 4))
which would print ",. +99" rather than ",.,.99";

print (whole (i, 0))
which might print "O", "99", "-99", "9999" or "99999";

print (fixed (x, -6, 3))
which might print ",.2.718", "27.183" or "271.83" (in which one
place after the decimal point has been sacrificed in order to fit
the number in);

print (fixed (x, 0, 3))
which might print "2.718", "27.183" or "271.828";

print (float (x, 9, 3, 2))
which might print "-2.71810+0", "+2.71810-1", or "+2.7210+11" (in
which one place after the decimal point has been sacrificed in
order to make room for the unexpectedly large exponent).)

a) mode ?-number= union ({L real:t', {L intt);

b) proc whole= (number v, int width) string:
case vin

{(L Int x):
(int length : = abs width - (x < LO v width > 0 I 11 0),
L int n : = abs x;
If width = 0 then

fi;

Lint m : = n; length : = O;
while m .;.:= L 10; length+:= 1; mi:. LO
doskipod

strings : = subwhole (n, length);
if length= 0 v char in string (errorchar, loc int, s)
then abs width x errorchar
else

(x< LOI "-"I: width>O/ "+"/ "")plustos;
(width i:. 0 I (abs width - upb s) x '!:.!' plusto s);
s

fi)t'
t(L real x): fixed (x, width, OJ}

esac;

160 van Wijngaarden, et al.

c) proc fixed= (number v, int width, after) string:
case v in

{ (L real x):
if int le'ngth : = abs width - (x < LO v width> 0 I J I O);

after z. 0 11 (length> after v width= 0)
then L real y = abs x;

if width= 0
then length : =(after= 0 I I I O);

while y + L .5 x L .1 I after z. L JO I length
do length+:= 1 od;
length+:= (after= 0 IO I after+ 1)

fi;
strings:= subfixed (y, length, after);
if~ char in string (errorchar, toe int, s)
then (length > upb s II y < L 1.0 I "0" plusto s);

(x < LO I "-"I: width> 0 I "+" I '11') plusto s;
(width ct O I (abs width - upb s) x '!:..." plusto s);
s

elif after > 0
then fixed (v, width, after - 1)
else abs width x errorchar
ti

else undefined; abs width x errorchar
fit,

{(Lint x): fixed (L real (x), width, after) t
esac;

d) proc float= (number v, int width, after, exp) string:
case v in

t(L realx):
if int before= abs width - abs exp - (after ct O I after+ I I 0) - 2;

sign before+ sign after> 0
then strings, L real y: = abs x, int p: = O;

L standardize (y, before, after, p);
s:=

fixed (sign xx y, sign width x (abs width - abs exp - 1),
after)+ "10" + whole (p, exp);

if exp= 0 v char in string (errorchar, toe int, s)
then

float (x, width, (after ct O I after - 11 0),
(exp> 0 I exp+ I I exp - 1))

else s

fi
else undefined; abs width x errorchar
fit,

{(Lint x): float (L real (x), width, after, exp) t
esac;

ALGOL 68 Revised Report

e) proc ~ subwhole = (number v, int width) string:
</: returns a string of maximum length 'width' containing a

decimal representation of the positive integer 'v' (f:

case vin
{(Lint x):

esac;

begin strings, Lint n: = x;
while dig char (S (n mod L 10)) plusto s;

nc-:=LlO; nf.LO
do skip od;
(upb s > width I width x errorchar I s)

end t

f) proc ~ subfixed = (number v, int width, after) string:
</: returns a string of maximum length 'width' containing a

rounded decimal representation of the positive real number
'v'; if 'after' is greater than zero, this string contains a
decimal point followed by 'after' digits q:

case v in
{(L realx):

begin strings, int before:= O;
Lrealy:=x+L.5xL.11 after;
proc choosedig = (ref L real y) char:

dig char ((int c: = S entier (y x: = L 10.0); (c > 9 I c: = 9);
y -:=Kc; c));

while y ~ L 10.0 1 before do before+:= I od;
y I:= L 10.0 1 before;
to before dos plusab choosedig (y) od;
(after> 0 Is plusab ".");
to after dos plusab choosedig (y) od;
(upb s > width I width x errorchar I s)

end t
esac;

g) proc ~ L standardize= (ref L real y, int before, after, ref int p) void:
(f: adjusts the value of 'y' so that it may be transput acrnrdin;.;

to the format$ n(before)d. n(after)d $; 'p' is set so that
y x 10 1 p is equal to the original value of 'y' <r

begin
Lrealg=LlO.O 1 before; Lrealh=gxL.1;
while y ~ g do y x: = L . I; p +: = J od;
(yf. LO.O I while y < h do yx:= L 10.0; p -:= I od);
(y + L .5 x L .1 I after ~g I y: = h; p +:=I)

end;

h) proc ~ dig char= (int x) char: "O 1234567H9a bcdef" Ix + I I :

161

162 van Wijngaarden, et al.

i) proc ~ string to Lint= (strings, int radix, ref Lint ii boo/:
<t returns true if the absolute value of the r!'l:;u/t is s. L max int f/.'

begin
Lint Lr= K radix; boo/ safe : = true;
L Int n : = L 0, Lint m = L max int"" lr;
L int ml = L max int - m x Lr;
for i from 2 to upb s

while Lint dig= K char dig (s Ii j);
safe:= n < m v n=m "digs.ml

don : = n x lr + dig od;
if safe then i: = (s l 1 j = "+" I n I - n); true else false fi

end;
j) proc ~ string to L real= (strings, ref L real r) boo/:

<t returns true if the absolute value of the result is s.
Lmax real<t

begin
int e : = upb s + 1;
char in string ("10", e, s);
int p : = e; char in string(".", p, s);
lntj := 1, length:= U, L real x := LU.U;
<t skip leading zeroes: <t
for i from 2 to e - 1
whiles li j = "U" v s l ij = "." v s Ii l = "/'
doj := i od;
for i from j + 1 toe - 1 while length < L real width
do

od;

ifs li j * ".,,
then x: =xx L 10.U + K char dig (s [j: = i]); length+:= 1
fi <tall significant digits converted f/.'

<t set preliminary exponent: <t
int exp : = (p > j I p - j - 11 p - j), expart : = U;
<t convert exponent part: <t
boo/safe:=

if e < upb s
then string to Lint (s le+ 1 :]. 10, expart)
else true
fi;

<t prepare a representation of L max real to compare with the
L real value to be delivered: q:

L real max stag:= L max real, int max exp : = 0;
L standardize (max stag, length, U, max exp); exp+:= expart;
if~ safe v (exp> max exp v exp= max exp " x > max stag)
then false
else r: = (s l1 j ="+"Ix I - x) x L 10.0 1 exp; true
fi

end;

ALGOL 68 Revised Report

k) proc ?- char dig= (char x) int:
(x ="/'I O I inti; char in string (x, i, "0128466789abcdef"); i - lJ;

1) proc char in string= (char c, ref Inti, strings) boo/:
(boo/ found:= false;
fork from lwb s to upb s while ~ found
do (c=s lkJ Ii:= k; found:= true) od;
found);

m) int L int width=
q: the smallest integral value such that 'L max int' may be
converted without error using the pattern n(L int width)d q:

(int C: = 1;
while L 10 1 (c - 1) < L .1 x L max int doc+:= 1 od;
c);

n) int L real width=

163

q: the smallest integral value such that different strings are
produced by conversion of '1.0' and of '1.0 + L small real' using
the pattern d. n(L real width - l)d q:

1 - S entier(L ln (L small real) IL ln (L 10));

o) int L exp width=
q: the smallest integral value such that 'L max real' may be
converted without error using the pattern
d. n(L real width - l)d e n(L exp width)d q:

1 + S entler (L ln (L ln (L max real) I L ln (L 10)) IL in (L JO));

10.3.2.2. Transput modes

a) mode?-simplout= union({L lntt, {L real}, {L complt, boot.
f L bits t, char, l J char);

b) mode?- outtype = can actual-declarer specifying a mode united from
(2.1.3.6.a} a sufficient set of modes none of which is ·void' or
contains 'flexible', 'reference to', 'procedure' or 'union of' c;

c) mode?- slmplin = union ({ref Lint}, {ref L realt, {ref L complt,
ref boo/, f ref L bits}, ref char, ref l J char, ref string) ;

d) mode ?- in type = c an actual-declarer specifying a mode united from
(2.1.3.6.a} 'reference to flexible row of character' together with a
sufficient set of modes each of which is 'reference to' followed by
a mode which does not contain 'flexible', 'reference to',
'procedure' or 'union of' c;

{See the remarks after 10.2.3.l concerning the term "sufficient set".}

10.3.2.3. Straightening

a) op?- straightout = (outtype x) [J simp/out:
c the result of "straightening" 'x' c;

164 van Wijngaarden, et al.

b) op~ straightin = (intype x) [] simplin:
c the result of straightening 'x' c;

c) The result of "straightening" a given value V is a multiple value W
{of one dimension) obtained as follows:
• it is required that V {if it is a name) be not nil:
• a counter i is set to O;
• V is "traversed" {d) using i;
• W is composed of a descriptor ((1. i)) and the elements obtained by
traversing V:
• if V is not (is) a name, then the mode of the result is the mode specified
by [] simplout (l] simplin) .

d) A value V is "traversed", using a counter i, as follows:
If V is. (refers to) a value from whose mode that specified by simptout is

united,
then

• i is increased by one;
• the element of W selected by (i) is V:

otherwise,
Case A: V is (refers to) a multiple value {of one dimension) having a

descriptor ((I, u)):
• for j = I, ... , u, the element (the subname) of V selected by (j) is
traversed using i;

Case B: V is (refers to) a multiple value {of n dimensions, n ~ 2) whose
descriptor is ((11, u1), (12, u2), ... , (In, un)) where n ~ 2:

• for j = 11, ... , u1, the multiple value selected (2.1.3.4.i} by (the

name generated {2.1.3.4.j) by) the trim (j, (1 2, u2, 0), ... ,

(I , u , 0)) is traversed using i;
n n

Case C: V is (refers to) a structured value V1:
• the fields (the subnames of V referring to the fields) of V1, taken
in order, are traversed using i.

10.3.3. Formatless transput

(In formatless transput, the elements of a "data list" are transput, one
after the other, via a specified file. Each element of the data list is either
a layout routine of the mode specified by proc (ref file) void (10.3.1.6) or a
value of the mode specified by outtype (on output) or intype (on input). On
encountering a layout routine in the data list, that routine is called with
the specified file as parameter. Other values in the data list are first
straightened (10.3.2.3) and the resulting values are then transput via the
given file one after the other.

Transput normally takes place at the current position but, if there is no
room on the current line (on output) or if a readable value is not present
there (on input), then first, the event routine corresponding to on line end

ALGOL 68 Revised Report 165

(or, where appropriate, to on page end, on physical file end or
on logical file end) is called, and next, if this returns false, the next "good"
character position of the book is found, viz., the first character position of
the next nonempty line.)

10.3.3.1. Formatless output

(For formatless output, put (a) and print (or write) (10.5.l.d) may be
used. Each straightened value V from the data list is output as follows:

aa) If the mode of V is specified by L int, then first, if there is not
enough room for L int width + 2 characters on the remainder of the
current line, a good position is found on a subsequent line (see 10.3.3);
next, when not at the beginning of a line, a space is given and then V is
output as if under the control of the picture n(L int width - l)z + d.

bb) If the mode of V is specified by L real, then first, if there is not
enough room for L real width + L exp width + 5 characters on the current
line, then a good position is found on a subsequent line; next, when not at
the beginning of a line, a space is given and then V is output as if under
control of the picture

+d. n(L real width - l)den(L exp width - l)z +d.

cc) If the mode of V is specified by L comp/, then first, if there is not
enough room for 2 x (L real width + L exp width) + 11 characters on the
current line, then a good position is found on a subsequent line; next,
when not at the beginning of a line, a space is given and then V is output
as if under control of the picture

+d. n(L real width - l)den(L exp width - l)z +d" /'i
+d. n(L real width - l)den(L exp width - l)z +d.

dd) If the mode of V is specified by boo/, then first, if the current line
is full, a good position is found on a subsequent line; next, if V is true
(false), the character yielded by flip (flop) is output (with no intervening
space).

ee) If the mode of V is specified by L bits, then the elements of the
only field of V are output (as in dd) one after the other (with no
intervening spaces, and with new lines being taken as required).

ff) If the mode of V is specified by char, then first, if the current line
is full, a good position is found on a subsequent line; next V is output (with
no intervening space).

gg) If the mode of V is specified by [J char, then the elements of V
are output (as in ff) one after the other (with no intervening spaces, and
with new lines being taken as required).)

166 van Wijngaarden, et al.

a) proc put= (ref file f, L] union (outtype, proc (ref file) void) x) void:
if opened off then

fori to upbx
do case set write mood (f); set char mood (f); x Li J in

(proc (ref file) void pf): pf (f),
(outtype ot):
begin

[J simplout y = stralghtout ot;
f proc L real conu = (L real r) string:

float (r, L real width+ L exp width+ 4,
L real width -1, L exp width+ l}t;

for j toupb y
do case y Li] In

(union (number, f L complt} nc):
begin string s : =

case ncin
f (Lint k): whole (k, Lint width+ 1) t,
f (L real r): L real conu (r) t ,
f (L. compl z): L real conu (re z) + "~l"
+ L real conu (im z) t

esac;
ref ref pos cpos = cpos off, int n = upb s;
while

next pos (f);
(n > c of book bounds (f) I undefined);
c of cpos + (c of cpos = 11 n I n + 1) >

c of book bounds (f) + 1

do(~ (line mended off) (f) I put (f, newline));
set write mood (f)

od;
(c of cpos # 11 "/' plusto s);
fork to upb s do put char (f, s [k]) od

end (/: numeric (/: ,
(boot b): (next pos (f); put char (f, (b I flip I flop))),
f (L bits lb):

fork to L bits width
doput(f, (L Foflb) [k])odt,

(char k): (next pos (f); put char (f, k)),
([] char ss):

fork from lwb ss to upb ss
do next pos (f); put char (f, ss [k]) od

esacod
end

esacod
else undefined
Ii;

ALGOL 68 Revised Report

b) proc ~ put char= (ref file f, char char) void:
if opened off 11 ~ line ended (f)
then ref pos cpos = cpos off, lpos = lpos of book off;

set char mood (f); set write mood (f);
ref int p = p of cpos, l = l of cpos, c = c of cpos;
char k; boo If ound : = false;
case text off in

(text): (k : = char; found : = true),
(flextext):

esac;

for i to upb F of conv off while ~ found
do struct (char internal, external) key= (F of conv off) li J;

(internal of key= char I k : = external of key;
found : = true)

od

if found then
case text off in

(texttl): tl [pJ LlJ [cJ :=k,
(flextext t2): t2 LP J [l] [c] : = k

esac;
C +:= 1;
if cpos beyond lpos then lpos : = cpos
elif ~ set possible (f) 11 pos (p of lpos, l of lpos, 1) beyond cpos
then lpos : = cpos;

(compressible (f) I

167

c the size of the line and page containing the logical
end of the book and of all subsequent lines and
pages may be increased {e.g., to the sizes with
which the book was originally established
(10.3.1.4.cc) or to the sizes implied by max pos of
chan off} c)

fi
elsek := ".,_";

if~ (char error mended off) (f, k)
then undefined; k : = ".,_"
fi;
check pos (f); put char (f, k)

fi
else undefined
fi ({: write mood is still set ({: ;

c) proc ~ next pos = (reffile f) void:
(~ get good line (f, read mood off) I undefined)

({: the line is now good {10.3.1.6.dd} and the read/write mood is
as on entry ({:;

L

168 van Wijngaarden, et al.

10.3.3.2. Formatless input

(For formatless input, get (a) and read (10.5.l.e) may be used. Values
from the book are assigned to each straightened name N from the data list
as follows:

aa) If the mode of N is specified by ref L int, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary): next, the largest string is read from
the book that could be "indited" (10.3.4.1.l.kk) under the control of some
picture of the form + n(kl)" /' n(k2)d d or n(k2)d d (where kl and k2 yield
arbitrary nonnegative integers): this string is converted to an integer and
assigned to N; if the conversion is unsuccessful, the event routine
corresponding to on value error is called.

bb) If the mode of N is specified by ref L real, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary); next, the largest string is read from
the book that could' be indited under the control of some picture of the
form + n(kl)" /' n(k2)d or n(k2)d followed by . n(k3)d d or by ds., possibly
followed again by e n(k4)" /' + n(k5)" /' n(k6)d d or by e n(k5)" /' n(k6)d d;
this string is converted to a real number and assigned to N; if the
conversion is unsuccessful, the event routine corresponding to on value
error is called.

cc) If the mode of N is specified by ref L comp/, then first, a real
number is input (as in bb) and assigned to the first subname of N: next,
the book is searched for the first character that is not a space; next, a
character is input and, if it is not II l II or "i", then the event routine
corresponding to on char error (10.3.1.3.cc) is called, the suggestion being
"1"; finally, a real number is input and assigned to the second subname
of N.

dd) If the mode of N is specified by ref boo/, then first, the book is
searched for the first character that is not a space (finding good positions
on subsequent lines as necessary) ; next, a character is read; if this
character is the same as that yielded by flip (flop), then true (false) is
assigned to N; otherwise, the event routine corresponding to on char error
is called, the suggestion being flop.

ee) If the mode of N is specified by ref L bits, then input takes place
(as in dd) to the subnames of N one after the other (with new lines being
taken as required) .

ff) If the mode of N is specified by ref char, then first, if the current
line is exhausted, a good position is found on a subsequent line: next, a
character is read and assigned to N.

gg) If the mode of N is specified by ref [J char, then input takes place
(as in ff) to the subnames of N one after the other (with new lines being
taken as required) .

ALGOL 68 Revised Report 169

hh) If the mode of N is specified by refstring, then characters are read
until either

(i) a character is encountered which is contained in the string
associated with the file by a call of the routine make term, or
(ii) the current line is exhausted, whereupon the event routine
corresponding to on line end (or, where appropriate, to on page end, on
physical file end or on logical file end) is called; if the event routine
moves the current position to a good position (see 10.3.3), then input of
characters is resumed.

The string consisting of the characters read is assigned to N (note that, if
the current line has already been exhausted, or if the current position is at
the start of an empty line or outside the logical file, then an empty string
is assigned to N) .)

a) proc get= (ref file f, [] union (in type, proc (ref file) void) x) void:
if opened off then
tori to upb x
do case set read mood (f); set char mood (f); x [i] in

(proc (ref file) void pf): pf (f),
(intype it):
begin

[] simplin y = straightin it; char k; boo/ k empty;
op ? =(strings) boot :

rt true if the next character, if any, in the current line
is contained in 's' (the character is assigned to 'k')
and false otherwise rt

if k empty" (line ended (f) v logical file ended (f))
then false
else (k empty I get char (f, k));

k empty:= char in string (k, Joe int, s)
ti;

op ? = (char c) boot: ? string (c);

prio ! =8;
op!= (strings, char c) char:

rt expects a character contained in 's'; if the character
read is not in 's', the event routine corresponding to
'on char error' is called with the suggestion 'c' rt

if (k empty 1. check pas (f); get char (f, k));
k empty : = true;
char in string (k, foe int, s)

thenk
else char sugg: = c;

if (char error mended off) (f, sugg) then
(char in string (sugg, foe int, s)
lsugg
I undefined; c)

170 van Wijngaarden, et al.

else undefined; c
Ii;
set read mood (f)

Ii;
op!= (chars, c) char: string (s) ! c;

proc skip initial spaces = void :
while (k empty I next pos (f));? "," do skip od;

proc skip spaces = void :
while ? "/' do skip od;

proc read dig= string :
(string t: = "0123456789" ! "O";
while? "0123456789" dot plusab k od; t);

proc read sign= char:
(chart= (skip spaces; ? "+-" I k I "+");
skip spaces; t);

proc read num = string :
(chart= read sign; t + read dig);

proc read real= string :
(string t: = read sign;
(~ ? "." I t plusab read dig I k empty : = false);
(? "." I t p/usab "."+read dig);
(? "10\e" I t plusab "10" + read num); t);

for j to upb y

do boo/ incomp : = false; k empty : = true;
case y U] in
{ (ref L int ii):

(skip initial spaces;
incomp: = ~ string to Lint (read num, 10, ii))t,

{ (ref L real rr):
(skip initial spaces;

incomp : = ~ string to L real (read real, rr))},
{ (ref L comp/ zz):

(skip initial spaces;
incomp : = ~ string to L real (read real, re of zz);
skip spaces; "il" ! "1 ";
incomp : = incomp v

~ string to L real (read real, im of zz))t ,
(ref boo/ bb):

(skip initial spaces;
bb : =(flip+ flop)! flop= flip),

{ (ref L bits lb):
for i to L bits width
do get (f, (L Foflb) [i]) od},

(ref char cc): (next pos (f); get char (f, cc)),
(ref [] char ss):

od
end

esacod

ALGOL 68 Revised Report

for i from lwb ss to upb ss
do next pos (f); get char (f, ss l i]) od,

(ref string ss):
begin string t;
while check pos (f);

if line ended (f) v logical file ended (f)
then false
else get char (f, k);

k empty : = ~ char in string (k, loc int, term off)
ti

do t p/usab k od;
ss := t
end

esac;
(~ k empty I backspace (f));
if incomp
then(~ (value error mended off) (f) I undefined);

set read mood (f)
ti

else undefined
ti;

b) proc 9' get char= (ref file f, ref char char) void:
if opened off" ~ line ended (f) " ~ logical file ended (f)
then ref pos cpos = cpos off;

set char mood (f); set read mood (f);
int p = p of cpos, l = l of cpos, c = c of cpos;
cofcpos+:= 1;
char : = case text off in

(text tl): ti [p] ll J le J,
(flextext t2):

(char k : = t2 [p J [l J l c J;
boo/ found : = false;.
for i to upb F of conv off while ~ found
do struct (char internal, external) key= (F of conv off) Ii J;

(external of key= k I k : = internal of key; found:= true)
od;
if found then k
else k : = 11 ~ 11;

if (char error mended off) (f. k)
thenk
else undefined; 11 ,"

fi;

171

172

esac

van Wijngaarden, et al.

set read mood (f)
fi)

else undefined
fi <f read mood is still set <f ;

c) proc ~ check pos = (ref file f) void:
begin boo/ reading= read mood off;

boo/ not ended : = true;
while not ended : = not ended " get good page (f, reading);

line ended (f) " not ended
do not ended:= (line mended off) (f) od

end;

(The routine check pos is used in formatted transput before each call of
put char or get char. If the position is not good (10.3.1.6.dd), it calls the
appropriate event routine, and may call further event routines if true is
returned. If the event routine corresponding to on page end returns false,
newpage is called but, if any other event routine returns false, no default
action is taken and no more event routines are called. On exit, the
read/write mood is as on entry, but the current position may not be good,
in which case undefined will be called in the following put char or get
char. However, check pos is also called when getting strings (hh), in which
case the string is then terminated if the current position is not good.)

10.3.4. Format texts

(In formatted transput, each straightened value from a data list
(cf. 10.3.3) is matched against a constituent picture of a format-text
provided by the user. A picture specifies how a value is to be converted to
or from a sequence of characters and prescribes the layout of those
characters in the book. Features which may be specified include the
number of digits, the position of the decimal point and of the sign, if any,
suppression of zeroes and the insertion of arbitrary strings. For example,
using the picture -d.3d "/' 3d "/' e z+d, the value 1234.567 would be
transput as the string ",_l.234,_567,_10,_+3".

A "format" is a structured value (i.e., an internal object) of mode
'FORMAT', which mirrors the hierarchical structure of a format-text
(which is an external object). In this section are given the syntax of
format-texts and the semantics for obtaining their corresponding formats.
The actual formatted transput is performed by the routines given in
section 10.3.5 but, for convenience, a description of their operation is given
here, in association with the corresponding syntax.)

10.3.4.1. Collections and pictures

10.3.4.1.1. Syntax

{The following mode-declarations (taken from 10.3.5.a) are reflected in
the metaproduction rules A to K below.

ALGOL 68 Revised Report I 73

A) mode format= struct (flex [1 : 0] piece F);
B) mode piece= struct (int cp, count, bp, flex [1 : a] collection c);

C) mode collection =union (picture, col/item);
D) mode col/item =

struct (insertion il, proc int rep, int p, insertion i2);
E) mode insertion=

flex [1 : 0] struct (proc int rep, union (string, char) sa);
F) mode picture = struct

(union (pattern, cpattern, fpattern, gpattern, void) p, insertion i);
G) mode pattern= struct (int type, flex [1 : 0] frame frames);
H) mode frame =

struct (insertion i, proc int rep, boo/ supp, char marker);
I) mode cpattern =

struct (insertion i, int type, flex [1 : a] insertion c) ;

J) mode fpattern = struct (insertion i, proc format pf) ;

K) mode gpattern = struct (insertion i, flex [1 : 0] proc int spec);}

A) FORMAT : : structured with row of PIECE field letter aleph mode.
B) PIECE : : structured with integral field letter c letter p

integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of COLLECTION field letter c mode.

C) COLLECTION : : union of PICTURE COLLITEM mode.
D) COLLITEM : : structured with INSERTION field letter i digit one

procedure yielding integral field letter r letter e letter p
integral field letter p
INSERTION field letter i digit two mode.

E) INSERTION : : row of structured with procedure yielding integral
field letter r letter e letter p
union of row of character character mode field
letter s letter a mode.

F) PICTURE : : structured with union of
PATTERN CPATTERN FPATTERN GPATTERN void mode
field letter p INSERTION field letter i mode.

G) PATTERN : : structured with
integral field letter t letter y letter p letter e
row of FRAME field
letter f letter r letter a letter m letter e letter s mode.

H) FRAME : : structured with INSERTION field letter i
procedure yielding integral field letter r letter e letter p
boolean field letter s letter u letter p letter p character field
letter m letter a letter r letter k letter e letter r mode.

I) CPATTERN : : structured with INSERTION field letter i
integral field letter t letter y letter p letter e
row of INSERTION field letter c mode.

174 van Wijngaarden, et al.

J) FPATTERN : : structured with INSERTION field letter i
procedure yielding FIVMAT field letter p letter f mode.

K) GPATTERN :: structured with INSERTION field letter i
row of procedure yielding integral field
letter s letter p letter e letter c mode.

L) FIVMAT ::
mui definition of structured with

row of structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of union of

structured with
union of PATTERN CP ATTERN

structured with INSERTION field letter i
procedure yielding mui application field
letter p letter f

mode
GPATTERN void

mode field letter p
INSERTION field letter i

mode
COLLITEM

mode field letter c
mode field letter aleph

mode.
{'FIVMAT 0 is equivalent (2.1.1.2.a) to 't'ORMAT".)

M) MARK : : sign ; point ; exponent ; complex ; boolean.
N) COMARK : : zero ; digit ; character.
0) UNSUPPRESSETY : : unsuppressible ; EMPTY.
P) TYPE : : integral ; real ; boolean ; complex ; string ; bits ;

integral choice ; boolean choice ; format ; general.

a) FORMAT NEST format text(5D) : formatter{94f} token,
NEST collection(b) list, formatter{94f} token.

b) NEST collection{a,b) :
pragment(92a) sequence option, NEST picture(c) ;
pragment{92a) sequence option, NEST insertion(d),

NEST replicator(g), NEST collection(b) list brief pack,
pragment(92a} sequence option, NEST insertion(d).

c) NEST picture(b) : NEST TYPE pattern(A342a,A343a,A344a,
A345a,A346a,A347a,A348a,b,A349a,A34Aa) option,

NEST insertion(d).
d) NEST insertion{b,c,j,k,A347b,A348a,b,A349a,A34Aa) :

NEST literal(i) option, NEST alignment(e) sequence option.
e) NEST alignment(d) :

NEST replicator(g), alignment code(f), NEST literal(i) option.

ALGOL 68 Revised Report 175

f) alignment code{e) : letter k{94a) symbol ; letter x{94a) symbol ;
letter y{94a) symbol ; letter 1{94a) symbol ; letter p{94a) symbol ;
letter q(94a) symbol.

g) NEST replicator{b,e,i,k) : NEST unsuppressible replicator(h) option.
h) NEST unsuppressible replicator(g,i) : fixed point numeral(Bllb} ;

letter n(94a) symbol,
meek integral NEST ENCLOSED clause(3la,34a,-},
pragment(92a) sequence option.

i) NEST UNSUPPRESSETY literal(d,e,i,A348c) :
NEST l!NSUPPRESSETY replicator(g,h),

strong row of character NEST denoter(80a} coercee(6la),
NEST unsuppressible literal(i) option.

j) NEST l!NSUPPRESSETY MARK frame(A342c,A343b,c,A344a,A345a) :
NEST insertion(d), UNSUPPRESSETY suppression(l),

MARK marker(A342e,A343d,e,A344b,A345b).
k) NEST UNSUPPRESSETY COMARK frame(A342b,c,A346a} :

NEST insertion(d), NEST replicator(g),
UNSUPPRESSETY suppression(l),
COMARK marker(A342d,f ,A346b).

I) UNSlJPPRESSETY suppression(j,k,A347b) :
where (l!NSUPPRESSETY) is (unsuppressible), EMPTY
where (UNSUPPRESSETY) is (EMPT\'),

letter s(94a) symbol option.
m) * frame : NEST UNSUPPRESSETY MARK frame(j) ;

NEST UNSUPPRESSETY COMARK frame(k) ;
NEST RADIX frame(A347b}.

n) * marker : MARK marker(A342e,A343d,e,A344b,A345b) ;
COMARK marker(A342d,f ,A346b) ; radix marker(A347c}.

o) *pattern : NEST TYPE pattern(A342a,A343a,A344a,A345a,
A346a,A347a,A348a,b,A349a,A34Aa).

(Examples:

a) $ p "table of"x lOa,l n (Lim -1) ("x=" 12z+d 2x,
+.12de+2d 3q"+jx"3"~" si +.10de+2d l) p $

b) p "table o{"x 10a • l n (Lim -1) ("x=" 12z+d 2x,
+.12de+2d 3q"+jx"3" ~" si +.10de+2d l) p

c) l 20k c ("man", "tues", "wednes", "thurs", "fri", "satur", "sun")
"day"

d) p "table of"x
e) p "table of"
h) 10 • n (Lim - 1)

i) "+jx"3" ~"
j) si
k) "x=" 12z
I) s I

r

L

176 van Wijngaarden. et al.

(The positions where pragments (9.2.1.a) may occur in format-texts are
restricted. In general (as elsewhere in the language), a pragment may not
occur between two DIGIT- or LETTER-symbols.)

(aa) For formatted output, put{ (10.3.5.1.a) and print{ (or write{)
(10.5.1.f) may be used and, for formatted input, get{ (10.3.5.2.a) and read{
(10.5.l.g). Each element in the data list (cf. 10.3.3) is either a format to be
associated with the file or a value to be transput (thus a format may be
included in the data list immediately before the values to be transput
using that format) .

bb) During a call of put{ or get{, transput proceeds as follows:
For each element of the data list, considered in turn,

If it is a format,
then it is made to be the current format of the file by associate format

(10.3.5.k):
otherwise, the element is straightened (10.3.2.3.c) and each element of

the resulting multiple value is output (hh) or input (ii) using the
next "picture" (cc, gg) from the current format.

cc) A "picture" is the yield of a picture. It is composed of a "pattern"
of some specific 'TYPE' (according to the syntax of the TYPE-pattern of
that picture), followed by an "insertion" (ee). Patterns, apart from
'choice·, 'format' and 'general' patterns, are composed of "frames",
possibly "suppressed", each of which has an insertion, a "replicator" (dd),
and a "marker" to indicate whether it is a "d", "z", "i" etc. frame. The
frames of each pattern may be grouped into "sign moulds", "integral
moulds", etc., according to the syntax of the corresponding pattern.

dd) A "replicator" is a routine, returning an integer, constructed from
a replicator (10.3.4.1.2.c). For example, the replicator 10 gives rise to a
routine composed from int: JO: moreover, n (lim -1) is a "dynamic"
replicator and gives rise to int: (lim - 1). Note that the scope of a
replicator restricts the scope of any format containing it, and thus it may
be necessary to take a local copy of a file before associating a format with
it (see, e.g., 11.13). A replicator which returns a negative value is treated
as if it had returned zero ("k" alignments apart).

When a picture is "staticized", all of its replicators and other routines
(including those contained in its insertions) are called collaterally. A
staticized pattern may be said to "control" a string, and there is then a
correspondence between the frames of that pattern, taken in order, and
the characters of the string. Each frame controls n consecutive characters
of the string, where n is O for an "r" frame and, otherwise, is the integer
returned by the replicator of the frame (which is always 1 for a "+", "-",
".", "e", "i" or "b" frame). Each controlled character must be one of a
limited set appropriate to that frame.

ALGOL 68 Revised Report 177

ee) An "insertion", which is the yield of an insertion (10.3.4.1.2.d), is a
sequence of replicated "alignments" and strings; an insertion containing
no alignments is termed a "literal". An insertion is "performed" by
performing its alignments (ff) and on output (input) writing ("'expecting"
(II)) each character of its replicated strings (a string is replicated by
repeating it the number of times returned by its replicator).

ff) An "alignment" is the character yielded by an alignment-code
(10.3.4.1.2.d). An alignment which has been replicated n times is
performed as follows:

• "k" causes set char number to be called, with n as its second
parameter;
• "x" causes space to be called n times;
• "y" causes backspace to be called n times;
• "l" causes newline to be called n times;
• "p" causes newpage to be called n times;
• "q" on output (input) causes the character blank to be written
(expected) n times.

gg) A format may consist of a sequence of pictures, each of which is
selected in turn by get next picture (10.3.5.b). In addition, a set of pictures
may be grouped together to form a replicated "collection" (which may
contain further such collections). When the last picture in a collection has
been selected, its first picture is selected again, and so on until the whole
collection has been repeated n times, where n is the integer returned by
its replicator. A collection may be provided with two insertions, the first to
be performed before the collection, the second afterwards.

A format may also invoke other formats by means of 'format' patterns
(10.3.4.9.1).

When a format has been exhausted, the event routine corresponding to
on format end is called; if this returns false, the format is repeated;
otherwise, if the event routine has failed to provide a new format,
undefined is called.

hh) A value V is output, using a picture P, as follows:
If the pattern Q of P is a 'choice' or 'general' pattern,
then V is output using P (see 10.3.4.8.1.aa,dd, 10.3.4.10.1.aa);
otherwise, V is output as follows:

• P is staticized;
If the mode of V is "output compatible'" with Q (see the separate

section dealing with each type of pattern),
then

• V is converted into a string controlled (dd) by Q (see the
appropriate section);

If the mode is not output compatible, or if the conversion is
unsuccessful,

178 van Wijngaarden, et al.

then
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is called;

otherwise, the string is "edited" (jj) using Q;
• the insertion of P is performed.

ii) A value is input to a name N, using a picture P, as follows:
If the pattern Q of P is a 'choice' or ·general' pattern,
then a value is input to N using P (see 10.3.4.8.1.bb,ee, 10.3.4.10.1.bb);
otherwise,

• P is staticized;
• a string controlled by Q is "indited" (kk);
If the mode of N is "input compatible" with Q (see the appropriate

section),
then

• the string is converted to an appropriate value suitable for N
using Q (see the appropriate section);
• if the conversion is successful, the value is assigned to N;

If the mode is not input-compatible, or if the conversion is
unsuccessful,

then
• the event routine corresponding to on value error is called;
• if this returns false, undefined is called;

• the insertion of P is performed.

jj) A string is "edited", using a pattern P, as follows:
In each part of the string controlled by a sign mould,

• if the first character of the string (which indicates the sign) is fl+fl
and the sign mould contains a "-" frame, then that character is
replaced by "/';
• the first character (i.e., the sign) is shifted to the right across all
leading zeroes in this part of the string and these zeroes are replaced
by spaces (for example, using the sign mould 4z+, the string fl+0003"
becomes "~~~ +3") ;

In each part of the string controlled by an integral mould,
• zeroes controlled by "z" frames are replaced by spaces as follows:

• between the start of the string and the first nonzero digit;
• between each "dfl, "e" or "ifl frame and the next nonzero digit;

(for example, using the pattern zdzd2d, the string fl180168" becomes
fl18~168fl;)

For each frame F of P,
• the insertion of F is performed;
• if F is not suppressed, the characters controlled by F are written;

(for example, the string "+0003.5fl, when edited using the pattern 4z+ s. fl fl
d, causes the string fl~~~+3,5fl to be written and the string "180168fl, using
the pattern zd"-"zdfl-J9fl2d, gives rise to fl18-~1-1968").

ALGOL 68 Revised Report 179

kk) A string is "indited", using a pattern P, as follows:
For each frame F of P,

• the insertion of F is performed:
For each element of the string controlled by F, a character is obtained

as follows:
If F is contained in a sign mould,
then

• if a sign has been found, a digit is expected, with "O" as
suggestion:
• otherwise, either a "+" or a "-" is expected, with "+" as
suggestion, and, in addition, if the sign mould contains a "-"
frame, then a space preceding the first digit will be accepted as
the sign (and replaced by "+"):

otherwise, if F is contained in an integral mould,
then

If F is suppressed,
then "O" is supplied;
otherwise,

Case A: F is a "d" frame:
• a digit is expected, with "O" as suggestion:

Case B: F is a "z" frame:
• a digit or space is expected, with "O" as suggestion, but
a space is only acceptable as follows:

• between the start of the string and the first nonzero
digit:
• between each "d", "e" or "i" frame and the next
nonzero digit;

• such spaces are replaced by zeroes:
otherwise, if F is an "a" frame,
then if F is not suppressed, a character is read and supplied:

otherwise ".,_" is supplied;
otherwise, if F is not suppressed,
then if F is a "." ("e", "i", "b") frame, a "." ("10" or "Y' or "e", "l"

or "i", flip or flop) is expected, with "." ("10", "1", flop) as
suggestion:

otherwise, if F is a suppressed "." ("e", "i") frame, the character "."
("10", "1") is supplied.

ll) A member of a set of characters S is "expected", with the
character C as suggestion, as follows:
• a character is read:
If that character is one of the expected characters (i.e .. a member of S).
then that character is supplied:
otherwise, the event routine corresponding to on char error is called, with

C as suggestion: if this returns true and C, as possibly replaced, is one
of the expected characters, then that character is supplied: otherwise.
undefined is called.)

-

180 van Wijngaarden, et al.

10.3.4.1.2. Semantics

(A format is brought into being by means of a format-text. A format is
best regarded as a tree, with a collection at each node and a picture at
each tip. In order to avoid violation of the scope restrictions, each node of
this tree is, in this Report, packed into a value of mode 'PIECE'. A format
is composed of a row of such pieces and the pieces contain pointers to
each other in the form of indices selecting from that row. An implementer
will doubtless store the tree in a more efficient manner. This is possible
because the field-selector of a format is hidden from the user in order that
he may not break it open.

Although a format-text may contain ENCLOSED-clauses (in replicators
and format-patterns) or units (in general-patterns), these are not
elaborated at this stage but are, rather, turned into routines for
subsequent calling as and when they are encountered during formatted
transput. Indeed, the elaboration of a format-text does not result in any
actions of any significance to the user.}

a) The yield of a format-text F, in an environ E, is a structured value
whose only field is a multiple value W, whose mode is 'row of PIECE',
composed of a descriptor ((1, n)) and n elements determined as follows:
• a counter i is set to 1 ;
• F is "transformed" (bl in E into W, using i.

b) A format-text or a collection-list-pack C is "transformed" in an
environ E into a multiple value W whose mode is 'row of PIECE', using a
counter i, as follows:
• the element of W selected by (i) is a structured value, whose mode is
'PIECE' and whose fields, taken in order, are

• {cp) undefined;
• (count} undefined;
• (bp) undefined;
• (c) a multiple value V, whose mode is 'row of COLLECTION', having
a descriptor ((1, m)), where m is the number of constituent collections
of C, and elements determined as follows:
For j = 1, ... , m, letting C. be the j-th constituent collection of C,

I
Case A: The direct descendents of C. include a picture P:

I
• the constituent pattern T, if any, and the insertion I of P are
elaborated collaterally;
• the j-th element of V is a structured value, whose mode is
'PICTURE' and whose fields, taken in order, are

• (p) the yield of T, if any, {e, 10.3.4.8.2, 10.3.4.9.2, 10.3.4.10.2)
and, otherwise, empty;
• (i) the yield of I (d);

ALGOL 68 Revised Report 181

Case B: The direct descendents of C. include a first insertion 11, a
J

replicator REP, a collection-list-pack P and a second insertion 12:
• i is increased by 1 ;
• 11, REP and 12 are elaborated collaterally;
• the j-th element of V is a structured value whose mode is
'COLLITEM' and whose fields, taken in order, are

• (il) the yield of 11 (d);
• [rep) the yield of REP (c};
• (p) i;

• (i2) the yield of 12;
• P is transformed in E into W, using i.

c) The yield, in an environ E, of a NEST-UNSlJPPRESSETY-replicator
R {10.3.4.1.1.g,h) is a routine whose mode is 'procedure yielding integral',
composed of a procedure-yielding-integral-NEST-routine-text whose uni~ is
U, together with the environ necessary {7.2.2.c) for U in E, where U is
determined as follows:
Case A: R contains a meek-integral-ENCLOSED-clause C:

• U is a new unit akin {1.1.3.2.k} to C;
Case B: R contains a fixed-point-numeral D, but no ENCLOSED-clause:

• U is a new unit akin to D;
Case C: R is invisible:

• U is a new unit akin to a fixed-point-numeral which has an intrinsic
value (8.1.1.2) of 1.

d) The yield of an insertion I {10.3.4.1.1.d) is a multiple value W
whose mode is 'INSERTION', determined as follows:
• let U 1, ... , Un be the constituent UNSUPPRESSETY -replicators of I,

and let A., i = 1, ... , n, be the denoter-coercee or alignment-code
I

(immediately) following U.;
I

• let R1, ... , Rn and D1, ... , Dn be the (collateral) yields of u1, ... , Un

and A1, ... , An, where the yield of an alignment-code is the (character

which is the) intrinsic value {8.1.4.2.b) of its LETTER-symbol;
• the descriptor of W is ((1, n));
• the element of W selected by (i), i = 1, ... , n, is a structured value (of
the mode specified by struct .(proc int rep, union (string, char) sa)) whose
fields, taken in order, are

• (rep) R.;
I

• (sa) D ..
I

e) The yield of an integral-, real-, boolean-, complex-, string- or bits-
pattern P {10.3.4.2.1.a, 10.3.4.3.1.a, ... , 10.3.4.7.1.a} is a structured value W
whose mode is 'PATTERN', determined as follows:

182 van Wijngaarden, et al.

• let V 1, ... , V n be the (collateral) yields of the constituent.frames of P (f);

• the fields of W, taken in order, are
• (type) 1 (2, 3, 4, 5) if P is an integral- (real-, boolean-, complex-,
string-) -pattern and 6 (8, 12, 20) if P is a bits-pattern whose
constituent RADIX is a radix-two (-four, -eight, -sixteen):
• (frames) a multiple value, whose mode is 'row of t'RAME', having a
descriptor ((1, n)) and n elements, that selected by (i) being V ..

I

f) The yield of a frame F {10.3.4.l.l.m) is a structured value W whose
mode is 'FRAME', determined as follows:
• the insertion and the replicator, if any, of Fare elaborated collaterally;
• the fields of W, taken in order, are

• (i) the yield of its insertion:
• (rep) the yield of its replicator (c). if any, and, otherwise, the yield of
an invisible replicator:
• (supp) true if its lJNSUPPRESSETY-suppression contains a letter-s­
symbol and, otherwise, false:
• (marker) (the character which is) the intrinsic value (8.1.4.2.b) of a
symbol S determined as follows:
Case A: F is a constituent unsuppressible-zero-frame of a sign-mould

(such as 3z+) whose constituent sign-marker contains a plus-symbol:
• S is a letter-u-symbol;

Case B: F is a constituent unsuppressible-zero-frame of a sign-mould
(such as 3z-) whose constituent sign-marker contains a minus­
symbol:
• S is a letter-v-symbol:

Other cases:
• S is the constituent symbol of the marker of F.

(Thus the zero-marker z may be passed on as the character "u", "v" or "z"
according to whether it forms part of a sign-mould (with descendent plus­
symbol or minus-symbol) or of an integral-mould.)

10.3.4.2. Integral patterns

10.3.4.2.l. Syntax

a) NEST integral pattern{A34lc,A343c) :
NEST sign mould(c) option, NEST integral mould(b).

b) NEST integral mould(a,A343b,c,A347a) :
NEST digit frame(A34lk) sequence.

c) NEST sign mould{a,A343a) :
NEST unsuppressible zero frame(A34lk) sequence option,

NEST unsuppressible sign frame{A34lj).
d) zero marker(f,A34lk) : letter z(94a) symbol.
e) sign marker(A34lj) : plus{94c) symbol ; minus(94c) symbol.
f) digit marker(A34lk) : letter d(94a) symbol ; zero marker(d).

(Examples:

a) "x=" 12z+d
c) "x=" 12z+)

ALGOL 68 Revised Report

b) d

(For the semantics of integral-patterns see 10.3.4.1.2.e.)

183

(aa) The modes which are output (input) compatib"le with an 'integrar
pattern are those specified by Lint (by ref L Int) .

bb) A value V is converted to a string S using an 'integral' pattern P
as follows:
• if P contains a sign mould, then the first character of S is the sign of V;
otherwise, if V < 0, the conversion is unsuccessful;
• the remainder of S contains a decimal representation of V determined
as follows:

• the elements of S controlled by "d" and "z" frames are the
appropriate digits (thus the pattern specifies the number of digits to be
used);
• if V cannot be represented by such a string, the conversion is
unsuccessful.

(For example, the value 99 could be converted to a string using the
pattern zzd, but 9999 and -99 could not.)

cc) A string S is converted to an integer suitable for a name N, using
an 'integral' pattern, as follows:
• the integer I for which S contains a decimal representation (8.1.1.2) is
considered;
• if I is greater than the largest value to which N can refer, the
conversion is unsuccessful; otherwise, I is the required integer (e.g., if
the mode of N is specified by ref short int, and the value of short max int is
65535, then no string containing a decimal representation of a value
greater than 65535 may be converted).)

10.3.4.3. Real patterns

10.3.4.3.1. Syntax

a) NEST real pattern{A34lc,A345a) : NEST sign mould{A342c) option,
NEST variable point mould(b)
or alternatively NEST floating point mould(c}.

b) NEST variable point mould{a,c) : NEST integral mould(A342b),
NEST point frame{A34lj), NEST integral mould{A342b) option ;

NEST point frame{A34lj), NEST integral mould(A342b}.
c) NEST floating point mould(a) :

NEST variable point mould{b)
or alternatively NEST integral mould{A342b},

NEST exponent frame{A34lj), NEST integral pattern(A342a).
d) point marker{A34lj) : point{94b} symbol.
e) exponent marker(A34lj) : letter e(94a) symbol.

-

184 van Wijngaarden, et al.

(Examples:

a) +zd.lld • +.12de+2d
c) .12de+2d }

b) zd.lld • .12d

(For the semantics of real-patterns see 10.3.4.1.2.e.}

(aa) The modes which are output (input) compatible with a 'real'
pattern are those specified by L real and Lint (by ref L real).

bb) A value V is converted to a string S using a 'real' pattern P as
follows:
• if P contains a sign mould, then the first character of S is the sign of V;
otherwise, if V < 0, the conversion is unsuccessful;
• the remainder of S contains a decimal representation of V determined
as follows:

• if necessary, V is widened to a real number;
• the element of S controlled by the "." ("e") frame, if any, of P is ""
("10");

If P contains an "e" frame,
then

• let W be the sequence of frames preceding, and IP be the
'integral' pattern following, that "e" frame;
• an exponent E is calculated by standardizing V to the largest
value convertible using W (see below) ;
• the part of S controlled by IP is obtained by converting E using
IP (see 10.3.4.2.1.bb);

otherwise,
• let W be the whole of P;

• the elements of S controlled by the "d" and "z" frames of W are the
appropriate digits (thus the pattern specifies the number of digits to be
used, and the number of digits to be placed after the decimal point, if
any);
• if V cannot be represented by such a string, the conversion is
unsuccessful.

cc) A string S is converted to a real number suitable for a name N,
using a 'real' pattern, as follows:
• the real number A for which S contains a decimal representation is
considered;
• if A is greater than the largest value to which N can refer, the
conversion is unsuccessful; otherwise, A is the required real number.}

10.3.4.4. Boolean patterns

10.3.4.4.1. Syntax

a) NEST boolean pattern(A34lc} :
NEST unsuppressible boolean frame(A34lj}.

b) boolean marker(A34lj,A348b} : letter b(94a} symbol.

ALGOL 68 Revised Report 185

(Example:

a) 14x b)

(For the semantics of boolean-patterns see 10.3.4.1.2.e.}

(aa) The mode which is output (input) compatible with a "boolean·
pattern is that specified by boo/ (ref boo/).

bb) A value V is converted to a string using a "boolean· pattern as
follows:
• if V is true (false), then the string is that yielded by flip (flop).

cc) A string S is converted to a boolean value, using a "boolean·
pattern, as follows:
• if S is the same as the string yielded by flip (flop), then the required
value is true (false).}

10.3.4.5. Complex patterns

10.3.4.5.1. Syntax

a) NEST complex pattern(A34lc) : NEST real pattern{A343a},
NEST complex frame(A34lj}, NEST real pattern{A343a}.

b) complex marker{A34lj) : letter i(94a} symbol.

(Example:

a) +.12de+2d 3q"+jx"3"/' si +.10de+2d)

(For the semantics of complex-patterns see 10.3.4.1.2.e.}

(aa) The modes which are output (input) compatible with a ·complex'
pattern are those specified by L comp/, L real and Lint (by ref L comp/).

bb) A value V is converted to a string S using a ·complex' pattern P
as follows:
• if necessary, V is widened to a complex number;
• the element of S controlled by the "i" frame of P is "1 ":
• the part of S controlled by the first (second) 'rear pattern of P is that
obtained by converting the first (second) field of V to a string using the
first (second) 'rear pattern of P (10.3.4.3.1.bb):
• if either conversion is unsuccessful, the conversion of V is unsuccessful.

cc) A string is converted to a complex value C suitable for a name N,
using a ·complex· pattern P, as follows:
• the part of the string controlled by the first (second) ·rear pattern of P
is converted to a suitable real number (10.3.4.3.l.cc), which then forms the
first (second) field of C;
• if either conversion is unsuccessful, the conversion to C is unsuccessful.)

186 van Wijngaarden, et al.

10.3.4.6. String patterns

10.3.4.6.l. Syntax

a) NEST string pattern{A34lc) :
NEST character frame(A34lk} sequence.

b) character marker{A34lk} : letter a{94a} symbol.

(Example:

a) p "table of"x JOa)

(For the semantics of string-patterns see 10.3.4.1.2.e.)

(aa) The modes which are output (input) compatible with a 'string'
pattern are those specified by char and [] char (by ref char, ref [] char
and ref string).

bb) A value V is converted to a string using a 'string' pattern P as
follows:
• if necessary, V is rowed to a string;
• if the length of the string V is equal to the length of the string controlled
by P, then V is supplied; otherwise, the conversion is unsuccessful.

cc) A string S is converted to a character or a string suitable for a
name N, using a 'string' pattern, as follows:
Case A: The mode of N is specified by ref char:

• if S does not consist of one character, the conversion is
unsuccessful; otherwise, that character is supplied;

Case B: The mode of N is specified by ref [] char:
• if the length of S is not equal to the number of characters referred
to by N, the conversion is unsuccessful; otherwise, S is supplied;

Case C: The mode of N is specified by ref string:
• S is supplied.)

10.3.4.7. Bits patterns

10.3.4.7.l. Syntax

a) NEST bits pattern{A34lc) :
NEST RADIX frame(b), NEST integral mould{A342b}.

b) NEST RADIX frame{a) : NEST insertion{A34ld), RADIX(82d,e,f ,g},
unsuppressible suppression{A3411}, radix marker(c).

c) radix marker{b) : letter r{94a} symbol.

[Examples:

a) 2r6d26sd b) 2r I

[For the semantics of bits-patterns see 10.3.4.1.2.e.)

(aa) The modes which are output (input) compatible with a 'bits'
pattern are those specified by L bits (ref L bits).

ALGOL 68 Revised Report 187

bb) A value V is converted to a string using a 'bits' pattern P as
follows:
• the integer I corresponding to V is determined, using the operator abs
(10.2.3.8.i);
If the "r" frame of P was yielded by a radix-two- (-four-, -eight-, -sixteen-)

-frame,
then I is converted to a string, controlled by the integral mould of P,

containing a binary (quaternary, octal, hexadecimal) representation of
I (cf. 10.3.4.2.1.bb);
• if I cannot be represented by such a string, the conversion is
unsuccessful.

cc) A string S is converted to a bits value suitable for a name N,
using a 'bits' pattern P, as follows:
• if the "r" frame of P was yielded by a radix-two- (-four-, -eight-,
-sixteen-) -frame, then the integer I for which S contains a binary
(quaternary, octal, hexadecimal) representation is determined;
• the bits value B corresponding to I is determined, using the operator
bin (10.2.3.8.j);
• if the width of B is greater than that of the value to which N refers, the
conversion is unsuccessful.}

10.3.4.8. Choice patterns

10.3.4.8.1. Syntax

a) NEST integral choice pattern{A34lc} : NEST insertion(A34ld},
letter c{94a} symbol, NEST praglit(c} list brief pack,
pragment(92a} sequence option.

b) NEST boolean choice pattern{A34lc} :
NEST insertion{A34ld}, boolean marker{A344b},

brief begin{94f} token, NEST praglit(c}, and also{94f} token,
NEST praglit(c}, brief end{94f} token,
pragment(92a} sequence option.

c) NEST praglit{a,b} : pragment(92a} sequence option,
NEST literal{A34li}.

(Examples:

a) l 20k c ("mon", "tues", "wednes", "thurs", "fri", "satur", "sun")
b) b ('"', "error")
c) "mon")

(aa) A value V is output using a picture P whose pattern Q was yielded
by an integral-choice-pattern C as follows:
• the insertion of Q is staticized (10.3.4.1.1.dd) and performed
(10.3.4.1.1.ee);
If the mode of V is specified by int, if V > 0, and if the number of

constituent literals in the praglit-list-pack of C is at least V,

L

188 van Wijngaarden, et al.

then
• the literal yielded by the V-th literal is staticized and performed;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is called:

• the insertion of P is staticized and performed.

bb) A value is input to a name N using a picture P whose pattern Q
was yielded by an integral-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
• each of the literals yielded by the constituent literals of the praglit-list­
pack of C is staticized and "searched for" (cc) in turn:
If the mode of N is specified by ref int and the i-th literal is the first one

present,
then i is assigned to N;
otherwise,

• the event routine corresponding to on value error is called:
• if this returns false, undefined is called;

• the insertion of P is staticized and performed.

cc) A literal is "searched for" by reading characters and matching
them against successive characters of the literal. If the end of the current
line or the logical end of the file is reached, or if a character fails to
match, the search is unsuccessful and the current position is returned to
where it started from.

dd) A value V is output using a picture P whose pattern Q was yielded
by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed;
If the mode of V is specified by boo/.
then

• if V is true (false), the literal yielded by the first (second) constituent
literal of C is staticized and performed;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put and undefined is called:

• the insertion of P is staticized and performed.

ee) A value is input to a name N using a picture P whose pattern Q
was yielded by a boolean-choice-pattern C as follows:
• the insertion of Q is staticized and performed:
• each of the literals yielded by the constituent literals of C is staticized
and searched for in turn;
If the mode of N is specified by ref boo/, and the first (second) insertion is

present,
then true (false) is assigned to N;

ALGOL 68 Revised Report

otherwise,
• the event routine corresponding to on value error is called:
• if this returns false, undefined is called:

• the insertion of P is staticized and performed.)

10.3.4.8.2. Semantics

189

The yield of a choice-pattern P is a structured value W whose mode is
'CPATTERN', determined as follows:
• let n be the number of constituent NEST-literals of the praglit-list-pack
of P:
• let S., i = 1, ... , n, be a NEST-insertion akin {l.l.3.2.k) to the i-th of those

I

constituent NEST -literals;
• the insertion I of P and all of S1, S2, ... , Sn are elaborated

collaterally;
• the fields of W, taken in order, are

• (i) the yield of I;
• (type} 1 (2) if P is a boolean- (integral-) -choice-pattern;
• (cl a multiple value whose mode is 'row of INSERTION', having a
descriptor ((1, n)) and n elements, that selected by (i), i = 1, ... , n,
being the yield of S ..

I

10.3.4.9. Format patterns

10.3.4.9.l. Syntax

a) NEST format pattern{A34lc} :
NEST insertion{A34ld), · letter f{94a) symbol,

(Example:

meek FORMAT NEST ENCLOSED clause{3la,34a},
pragment{92a) sequence option.

a) / (uir I (Int): $ 5d $, (real): $ d.3d $) I

(A format-pattern may be used to provide formats dynamically for use
in transput. When a 'format' pattern is encountered during a call of
get next picture, it is staticized and its insertion is performed. The first
picture of the format returned by the routine of the pattern is supplied as
the next picture, and subsequent pictures are taken from that format until
it has been exhausted.)

10.3.4.9.2. Semantics

The yield, in an environ E, of a NEST-format-pattern P is a structured
value whose mode is 'FPATTERN' and whose fields, taken in order, are

• (i) the yield of its insertion;
• (pt} a routine whose mode is 'procedure yielding FORMAT',

190 van Wijngaarden, et al.

composed of a procedure-yielding-FORMAT-NEST-routine-text whose
unit U is a new unit akin {l.l.3.2.k) to the meek-FORMAT-ENCLOSED­
clause of P, together with the environ necessary for U in E.

10.3.4.10. General patterns

10.3.4.10.l. Syntax

a) NEST general pattern{A34lc) : NEST insertion(A34ld},
letter g{94a) symbol, NEST width specification(b) option.

b) NEST width specification(a) : brief begin{94f} token,
meek integral NEST unit{32d},
NEST after specification(c) option, brief end(94f) token,
pragment(92a) sequence option.

c) NEST after specification(b) :
and also(94f) token, meek integral NEST unit{32d),

NEST exponent specification(d) option.
d) NEST exponent specification(c) :

and also(94f} token, meek integral NEST unit{32d).

(Examples:

a) g•g(-18,12,-3)
c) , 12, -3

b) -18, 12, -3
d) , -3)

(aa) A value V is output using a picture P whose pattern Q was yielded
by a general-pattern G as follows:
• P is staticized;
• the insertion of Q is performed;
If Q is not parametrized (i.e., G contains no width-specification),
then V is output using put;
otherwise, if the mode of V is specified by Lint or L real,
then

• if Q contains one (two, three) parameter(s), V is converted to a
string using whole (fixed, float);
• the string is written using put;

otherwise,
• the event routine corresponding to on value error is called;
• if this returns false, V is output using put, and undefined is called;

• the insertion of P is performed.

bb) A value is input to a name N using a picture P whose pattern is a
'general' pattern as follows:
• P is staticized;
• (any parameters are ignored and) the value is input to N using get.)

10.3.4.10.2. Semantics

The yield, in an environ E, of a NEST-general-pattern P is a structured
value whose mode is 'GPATTERN' and whose fields, taken in order, are

• (i} the yield of the insertion of P;

ALGOL 68 Revised Report 191

• {spec) a multiple value W whose mode is 'row of procedure yielding
integral', having a descriptor ((1, n)), where n is the number of
constituent meek-integral-units of the width-specification-option of P,
and n elements determined as follows:
For i = 1, ... , n,

• the i-th element of W is a routine, whose mode is 'procedure
yielding integral', composed of a procedure-yielding-integral-NEST.
routine-text whose unit U is a new unit akin {1.1.3.2.k) to the i-th of
those meek-integral-units, together with the environ necessary for U
in E.

10.3.5. Formatted transput

a) mode format= struct (flex [1 : 0] piece F);
mode 9' piece= struct (int cp q: pointer to current collection f/:,

count q: number of times piece is to be repeated f/:,
bp q: back pointer f/:,
flex [1 : 0] collection c);

mode 9' collection= union (picture, col/item);
mode 9' col/item= struct (insertion il,

proc int rep q: replicator f/:,
int p q: pointer to another piece f/:, insertion i2);

mode 9' insertion = flex [1 : 0] struct (proc int rep q: replicator f/:,
union (string, char) sa);

mode 9' picture =
struct (union (pattern, cpattern, fpattern, gpattern, void) p, insertion i);

mode 9' pattern= struct (int type q: of pattern f/:,
flex [1: O] frame frames);

mode 9' frame = struct (insertion i,
proc int rep q: replicator f/:,
boo/ supp q: true if suppressed f/:,
char marker);

mode 9' cpattern = struct (insertion i,
int type q: boolean or integral f/:,
flex [1 : 0] insertion c) ;

mode 9' fpattern = struct (insertion i, proc format pf);
mode 9' gpattern = struct (insertion i, flex [1 : 0] proc int spec);

b) proc 9' get next picture= (ref file f, boo/ read, ref picture picture) void :
begin
boo/ picture found:= false, format ended:= false;
while ~ picture found
do if forp off= 0 then

if format ended
then undefined
elif ~ (format mended off) (f)
then ref int (forp off) : = 1;

cp of (F of format off) l1 J : = 1;

192 van Wijngaarden, et al.

count of (F of format off) [1] : = 1
else format ended : = true
ti

else
ref int forp = forp off;
ref flex [] piece aleph = F of format off;
case (c of aleph [forp]) [cp of aleph [forp]] In

(collltem cl):
([1 : upb (il of cl)] sinsert si;
bp of aleph [p of cl] : = forp; forp : = skip;
(staticize insertion (il of cl, si),

count of aleph [p of cl] : = rep of cl);
(aleph : ,I.: F of format off I undefined);
(read I get insertion (f, si) I put insertion (f, si));
cp ofaleph [p of cl] : = O;
forp : = p of cl) ,

(picture pict): (picture found:= true; picture : = pict)
esac;
while

(forp :I- 0 I cp of aleph [forp] = upb c of aleph [forp] I false)
do If (count of aleph [forp] -: = 1) 5. 0
then

If (forp : = bp of aleph [forp]) :I- 0
then

ti

insertion extra=
case (c of aleph [forp]) [cp of aleph lforp]] in
(col/item cl):

(bp ofaleph [p of cl] : = O; i2 of cl),
(picture pict):

case p of pict In
(fpattern fpatt):

(Int k : = forp;
while bp of aleph [k] :I- forp do k +: = 1 od;
aleph:= aleph [: k -1 J;
i of pict)

esac
esac;

int m = upb i of picture, n = upb extra;
[1 : m + n] struct (proc Int rep, union (string, char) sa) c;
c[l: m] :=iofpicture; c[m+l: m+n] :=extra;
i of picture : = c

else cp of aleph lforp J : = 0
fiod;
(forp :I- 0 I cp of aleph [forp J +: = 1)

flod
end;

ALGOL 68 Revised Report

c) mode 9- sinsert= struct (int rep, union (string, char) sa);

d) proc 9- staticize insertion= (insertion ins, ref l J sinsert sins) void:
<r: calls collaterally all the replicators in 'ins' <r:

if upb ins= 1
then

rep of sins ll J := rep of ins ll J;
sa of sins [1 J : = sa of ins l 1 J

elif upb ins > 1
then (staticize insertion (ins l 1 J, sins [1 J),

staticize insertion (ins [2: J, sins [2: j))
fi;

e) mode 9- sframe = struct (flex [1 : U J sinsert si, int rep, boo/ supp,
char marker);

f) proc 9- staticize frames =
([] frame frames, ref [] sframe sframes) void:

<r: calls collaterally all the replicators in 'frames' <r:

if upb frames = 1
then

[1 : upb (i of frames [1])] sinsert si;
(staticize insertion (i of frames [1], si),

rep of sframes [1] : = rep of frames [1]);
si of sframes [1] : = si;
supp of sframes [1] : = supp of frames [1];

marker of sf rames [1] : = marker off rames l 1]
elif upb frames > 1
then (staticize frames (frames [1], sframes [1]),

staticize frames (frames [2:], sframes [2:]))
fi;

g) proc 9- put insertion= (ref file f, [] sinsert si) void :
begin set write mood (f);

fork to upb si
do

od
end;

case sa of si [k] in
(char a): alignment (f, rep of si [k], a, false),
(strings):

esac

to rep of si [k]
do

for i to upb s
do check pos (f); put char (f, s l i]) od

od

193

194 van Wijngaarden, et al.

h) proc 9' get insertion= (ref file{, [] sinsert si) void:
begin set read mood({);

fork to upb si
do

od

case sa of si [k] in
(char a): alignment({, rep of si [k], a, true),
(strings):

esac

(charc;
to rep of si [k]
do

od)

for i to upb s
do check pos (/); get char({, c);

(cl- s [i]
I (- (charerrormendedoff) ({, c := s [i])
I undefined);

set read mood(/))
od

end;

i) proc 9' alignment= (ref file{, int r, char a, boot read) void :
if a= "x" then tor do space({) od
elif a= "y" then tor do backspace({) od
elif a= "l" then to r do newline(/) od
elif a= "p" then to r do newpage (/) od
elif a= "k" then set char number({, r)
elifa="q"
then tor

do

od
fi;

if read
then char c; check pos ({); get char({, c);

(cf:. blank
I (- (char error mended of{)({, c: = blank)
I undefined); set read mood(/))

else check pos (/); put char({, blank)
fi

j) proc 9' do {pattern= (ref file{, fpattern {pattern, boot read) void :
begin format pf;

[1 : upb (i of {pattern)] sinsert si;
(staticize insertion (i of {pattern, si),

pf:= pf off pattern);
(read I get insertion({, si) I put insertion({, si));

ALGOL 68 Revised Report

ref Int forp = forp off;
ref flex [] piece aleph = F of format off;
Int m = upb aleph, n = upb (F of pf);
[1: m+n] plecec; c [1: m] := aleph;
c [m + 1 : m + n] : = F of pf;
aleph:= c; bp of aleph [m + 1] : = forp;
forp := m + 1; cp of aleph [forp] := O;
count of aleph [forp] : = 1;
for i from m + 1 to m + n
do

od
end;

for j to upb c olaleph [i]
do

od

case (c olaleph [i]) U] In
(col/Item cl):

(cofaleph [i]) U] :=
collltem (il of cl, rep of cl, p of cl+ m, i2 of cl)

esac

k) proc I?- associate format= (ref file f, format format) void:
begin

format off:=

195

c a newly created name which is made to refer to the yield
of an actual-format-declarer and whose scope is equal to
the scope of the value yielded by 'format' c

:= format;
forp off:= heap Int:= 1;
cp of (Fof format off) [1] := 1;
countof(Fofformatoff) [1] := 1;
bp of (F of format off) [1] : = 0

end;

10.3.5.1. Formatted output

a) proc putf = (ref file f, [] union (outtype, format) x) void:
If opened off then
fork toupbx
do case set write mood (f); set char mood (f); x [k] In

(format format): associate format (f, format) ,
(outtype ot):
begin lntj := O;

picture picture, [] slmplout y = stralghtout ot;
while (j +: = 1) 5'.upb y
do boo# incomp : = false;

get next picture (f, false, picture);

196

-

van Wijngaarden, et al.

set write mood (f);
[1 : upb (i of picture)] slnsert sinsert;
case p of picture in

(pattern pattern):
begin int rep, sfp : = 1;

[1 : upb (frames of pattern)] sframe sframes;
(staticize frames (frames of pattern, sframes),

staticize insertion (i of picture, sinsert));
strings;

op?= (strings) boo/ :
If true if the next marker is one of the elements of

's' and false otherwise If
if sf p > upb sframes
then false
else sframe sf= sframes [sfp];

rep : = rep of sf;

fi;

if char in string (marker of sf, /oc Int, s)
thensfp+:= 1; true
else false
fi

op ? = (char c) boo/ : ? string (c);

proc int pattern= (ref boo/ sign mould) int:
(inti:= O;
while? "zuu" do (rep~ 0 I l +:=rep) od;
sign mould:=?"+-";
while? "zd" do (rep~ 0 I l +:=rep) od; I);

{proc edit Lint= (Lint i) void:
(boo/ sign mould; int l: = int pattern (sign mould);
string t = subwhole (abs i, I);
if char in string (errorchar, /oc int, t) v l = 0

v - sign mould " i < L 0
then incomp : = true
else t plusto s;

(l - upb t) x "O" plusto s;
(sign mould I (i <LO I "-" I "+") p/usto s)

fl) t;
{proc edit L real= (L real r) void:

(int b : = 0, a : = 0, e : = 0, exp : = 0, L real y : = abs r,
boo/ sign], string point:="";
b: = int pattern (sign]);
(? "." I a : = int pattern (loc boo/); point : = ". ");
if? "e"
then L standardize (y, b, a, exp);

fi;

ALGOL 68 Revised Report

edit int (exp);
" 10'.' plusto s

string t = subfixed (y, b +a+ (a i O I I I 0), a);
if char in string (errorchar, loc int, t) v a+ b = 0

v , sign] 11 r < LO .
then incomp : = true
else t [: b] +point+ t [b +2:] plusto s;

(b +a+ (a i O I I I O) - upb t) x "O" plusto s;
(sign] I (r < LO I "-" I "+") plusto s)

fi) };

{proc edit L compl = (L comp/ z) void:
(while , ? "i" do sfp +: = 1 od; edit L real (im z);
"l" plusto s; sfp := l; edit L real (rez))t;

{proc edit L bits= (L bits lb, int radix) void:
(Lint n : = abs lb; ? "r"; int l: = int pattern (loc boo/);
while dig char (S (n mod K radix)) plusto s;

n-i-:=Kradix; niLO
do skipod;
if upb s -5.l
then (l - upb s) x "O" plusto s

else incomp : = true
fi)};

proc charcount = int : (int l : = O;
while? "a" do (rep:;:. 0 I l +:=rep) od; l);

case type of pattern In
If integral If

(y Ul I
t(L inti): edit Lint (i) t
I incomp : =true),

If real If
(y Ul I
{ (L real r): edit L real (r) t,
t(L inti): edit L real (i}t
I incomp : = true),

If boolean If
(y Ul I
(boo/ b): s : = (b I flip I flop)
I incomp : = true),

If complex If
(y U] I
t(L comp/ z): edit L comp! (z)t,
{(Lrealr): editLcompl(r}t,
{(Lint i): edit L comp! (i) t
I incomp : = true),

197

198 van Wijngaarden, et al.

q: string q:

(y Ul I
(char c): (charcount = 11 s: = c I incomp: =true),
([] chart):

(charcount = upb t - lwb t + I
ls:=t[@JJ
I incomp : = true)

I incomp : = true)
out

q: bits q:

(y UJ I
{ (L bits lb): edit L bits (lb, type of pattern - 4) t
I incomp : = true)

esac;
if~ incomp
then edit string (f, s, sframes)
fi

end,

(cpattern choice):
begin

[J : upb (i of choice) J sinsert si;
staticize insertion (i of choice, si);
put insertion (f, si);
int l =

case type of choice in
q: boolean q:

(y ln I
(boo/ b): (b I I 12)
I incomp : = true; skip),

q: integral q:

(y ln I
(inti): i
I incomp : = true; skip)

esac;
if~ incomp
then

if l > upb (c of choice) v l ~O
then incomp : = true
else

fi
fi;

[J : upb ((c of choice) [l])] sinsert ci;
staticize insertion ((c of choice) [l], ci);
put insertion (f, ci)

staticize insertion (i of picture, sinsert)
end,

ALGOL 68 Revised Report

((pattern {pattern):
begin

do {pattern (f, {pattern, false);
for i to upb sinsert do sinsert [i] : = (0, "") od;
j-:= 1

end,

(gpattern gpattern):
begin

[J : upb (i of gpattern)] sinsert si;
[] proc int spec= spec of gpattern; Int n = upb spec;
[1:n]lnts;
(staticize insertion (i of gpattern, si),

staticize insertion (i of picture, sinsert),
s:=(nlspec[lJ, (spec[l],spec[2]),

(spec [1], spec [2], spec [3 VI ()));
put insertion (f, si);
if n = 0 then put (f, y U]J
else

numberyj=
(y U] I {(L Inti): it, ,f(L ,.., r): rt
I incomp : = true; skip);

if~ incomp
then case n in

put (f, whole (yj, s [1])),
put (/,fixed (yj, s [1], s [2])),
put (/,float (yj, s [1], s [2], s [3]))
esac

fl
ti

end,

(void):
(j-: = 1; staticize insertion (i of picture, sinsert))

esac;
ifincomp
then set write mood (f);

fl;

(~ (value error mended off) (f) I put (f, y UV;
undefined)

put insertion (f, sinsert)
od

end
esacod
else undefined
fl;

199

200 van Wijngaarden, et al.

b) proc ~ edit string= (ref file f, strings, [] sframe sf) void:
begin boo/ supp, zs : = true, signput : = false, again, int j: = 0, sign;

proc copy= (char c) void :
(- supp I check pos (f); put char (f, c));

fork to upb sf
do sframe sfk = sf [k]; supp:= supp of sfk;

put insertion (f, si of sfk);

od
end;

to rep of sfk
do again : = true;

while again
do j +: = l; again:= false;

od
od

char sj = s UL marker= marker of sfk;
If marker= "d"
then copy (sj); zs: = true
e/lf marker= "z" then

(sj = "O" I copy ((zs I "~" I sj))
I: sj = "+" I again : = true
I zs: = false; copy (sj))

elifmarker= "u" v marker= "v" then
(sj ="+"I sign:= 1; again:= true
I: sj= "-"I sign :=2; again:= true
I: sj= "O" I copy ((zs I "~" I sj))
I (- signput I

copy ((sign I (marker= "u" I "+" I "~"J, "-"));
signput : = true);
copy (sj); zs: = false)

elifmarker= "+" then
(sj = "+" v sj ="-"I copy (sj)
I (- signput I copy ((sign I "+", "-")));

j-:= 1)
elifmarker= "-" then

(sj ="+"I copy("/')
I: sj ="-"I copy (sj)
I (- signput I copy ((sign I "/', "-")));

j-:= 1)
elif marker= "." then

copy(".")
e/lfm,arker= "e" V marker= "i"

v marker= "a" v marker= "b"
then copy (sj); zs : = true; signput : = false
ellf marker= "r"
thenj-:=1
ti

t

ALGOL 68 Revised Report

10.3.5.2. Formatted input

a) proc get{= (ref file f, l J union (intype, format) x) void :
if opened off then
fork to upbx
do case set read mood({); set char mood({); x[k] in

(format format): associate format({, format),
(intype it):
begin int j: = O;

picture picture, l J simplin y = straightin it;
while (j +: = 1) 5,.upb y

do boo/ incomp : = false;
get next picture (f, true, picture); set read mood({);
l J : upb (i of picture)] sinsert sinsert;
case p of picture in

(pattern pattern):
begin

[1 : upb (frames of pattern)] sframe sf rames;
(staticize frames (frames of pattern, sframes),

staticize insertion (i of picture, sinsert));
strings;
int radix=

(type of pattern 2'.. 6 I type of pattern - 4 I 10);
indit string({, s, sframes, radix);
case type of pattern in

If integral If
(y UJ I
t (ref Lint ii):

incomp: = ~ string to Lint (s, 10, ii) t
I incomp : = true),

If real If
(y [j] I
t(ref L real rr):

incomp : = ~ string to L real (s, rr) t
I incomp : = true),

If boolean If
(y UJ I
(ref boo/ bb): bb : = s = flip
I incomp : = true),

If complex I/:
(y [j] I
t (ref L comp/ zz):

(inti, boo/ bl, b2; char in string(" l ", i, s);
bl :=stringtoLreal(s [: i-1],reofzz);
b2: = string to L real (s [i + 1 :], im of zz);
incomp: = ~ (bl II b2)) t

I incomp : = true),

201

202 van Wijngaarden, et al.

q: string q:

(y Ul I
(ref char cc):

(upb s = 11 cc:= s [1] I incomp: =true),
(ref [J char ss):

(upb ss - lwb ss + 1 = upb s I ss [@ J] : = s
I incomp : = true) ,

(ref string ss): ss : = s
I incomp : = true)

out
q: bits q:

(y UJ I
t (ref L bits lb):

if L Inti; string to Lint (s, radix, i)
then lb:= bin i
else incomp : = true

fit
I incomp : = true)

esac
end,

(cpattern choice):
begin

LI : upb (i of choice) J slnsert si;
staticize insertion (i of choice, si);
get insertion (f, si);
int c = c of cpos off, char kk;
int k : = 0, boot found : = false;
while k < upb (c of choice) " ~ found
dok+:=1;

[1 : upb ((c of choice) [k J)] slnsert si;
boot boot : = true;
staticize insertion ((c of choice) [k], si);
strings;
for i to upb si
dosplusab

(sa of si [i J I (string ss): ss) x rep of si [i]
od;
for jj to upb s

while bool : = boot " ~ line ended (f)
" ~ logical file ended (f)

do get char (f, kk); boot : = kk = s [jj J od;
(~ (found : = bool) I set char number (f, c))

od;
If ~ found then incomp : = true
else

case type of choice in

ALGOL 68 Revised Report

<t boolean <t

(y liJ I
(ref boo/ b): b := k = 1
I incomp : = true) ,

<t integral <t

(y Ul I

ti;

(ref Inti): i : = k
I incomp : = true)

esac

staticize insertion (i of picture, sinsert)
end,

(fpattern /pattern):
begin do /pattern (f, /pattern, true);

for i to upb sinsert do sinsert [i J : = (0, "") od;
j-:= 1

end,

(gpattern gpattern):
([I : upb (i of gpattern) J slnsert si;
(staticize insertion (i of gpattern, si),

staticize insertion (i of picture, sinsert));
get insertion (f, si);
get (f, y UW,

(void):
(j -: = 1; staticize insertion (i of picture, sinsert))

esac;
ifincomp
then set read mood(/);

(~ (value error mended off) (f) I undefined)
ti;
get insertion(/, sinsert)

od
end

esacod
else undefined
ti;

b) proc ~ indit string= (ref file f, ref strings, [] sframe sf, int radix) void:
begin

boo/ supp, zs : = true, sign found:= false, space found : = false,
no sign:= false, Int sp: = J, rep;

prlo ! =B;

203

204 van Wijngaarden, et al.

op!= (strings, char c) char:
q: expects a character contained in 's'; if the character
read is not in 's', the event routine corresponding to 'on
char error' is called with the suggestion 'c' q:

if char k; check pos (f); get char (f, k);
char in string (k, Joe int, s)

then k
else char sugg: = c;

fl;

if (char error mended off) (f, sugg) then
(char in string (sugg, Joe int, s) I sugg \ undefined; c)

else undefined; c
fi;
set read mood (f)

op!= (chars, c) char: string (s) ! c;

[] char good digits= "0123456789abcdef" l : radix];
s: = "+";
fork to upb sf
do sframe sfk = sf [k]; supp:= supp of sfk;

get insertion (f, si of sfk);
to rep of sfk
do char marker= marker of sfk;

if marker= "d" then
s plusab (supp I "O" I good digits! "O"); zs: = true

ellf marker= "z" then
s plusab (supp\ "O"

I char c = ((zs I "~" I "")+good digits)! "O";
(ci "/'I zs := false); c)

e/if marker= "u" v marker="+" then
if sign found
then zs: = false; s plusab ("0123456789" ! "O")
else char c =("+-"+(marker= "u" I "~" I "")) ! "+";

(c= "+" v c= "-"\ sign found:= true;s [sp] := c)
ti

elifmarker= "v" v marker="-" then
if sign found
then zs: = false; s plusab ("0123456789" ! "O")
e/if char c; space found
then c: = "+- ,0123456789" ! "+";

(c = "+" v c ="-"I sign found:= true; s [sp] := c
I: c -:I: "," I zs : ":' false; sign found : = true; s plusab c)

etsec:="+-~"!"+";

ti

(c = "+" v c= "-"\ sign found:= true; s [sp] := c
I space found : = true)

elif marker="." then
splusab(supp\ "."\ "."! ".")

ALGOL 68 Revised Report 205

el/I marker= "e" then
s plusab (supp I "10" I "10\e" ! "10"; "10");sign found:= false;
zs: = true; s plusab "+"; sp: = upb s

od
od;

elif marker= "i" then
s plusab (supp I "1" I "il" ! "1 "; "1 ");
sign found:= false; zs: = true; s plusab "+"; sp: = upb s

ellf marker= "b" then
s plusab (flip+ flop)! flop; no sign : = true

elif marker= "a" then
s plusab (supp I "," I char c; check pos (f); get char (f, c);
c);
no sign : = true

elif marker= "r"
then skip
fi

ifnosign thens:=s[2:]fi
end;

10.3.6. Binary transput

{In binary transput, the values obtained by straightening the elements
of a data list (cf. 10.3.3) are transput, via the specified file, one after the
other. The manner in which such a value is stored in the book is defined
only to the extent that a value of mode M (being some mode from which
that specified by simplout is united) output at a given position may
subsequently be re-input from that same position to a name of mode
'reference to M'. Note that, during input to the name referring to a
multiple value, the number of elements read will be the existing number
of elements referred to by that name.

The current position is advanced after each value by a suitable amount
and, at the end of each line or page, the appropriate event routine is
called, and next, if this returns false, the next good character position of
the book is found (cf. 10.3.3).

For binary output, put bin (10.3.6.l.a) and write bin (10.5.1.h) may be
used and, for binary input, get bin (10.3.6.2.a) and read bin (10.5.1.i) .)

a) proc l?- to bin= (ref file f, simplout x) [] char:
ca value of mode 'row of character' whose lower bound is one

and whose upper bound depends on the value of 'book off'
and on the mode and the value of 'x'; furthermore,
x = from bin (f, x, to bin (f, x)) c;

b) proc l?- from bin= (ref file f, slmplout y, [J char c) simplout:
ca value, if one exists, of the mode of the value yielded by 'y',

such that c = to bin (f, from bin (f, y, c)) c;

206 van Wijngaarden, et al.

10.3.6.1. Binary output

a) proc put bin= (ref file f, [] outtype ot) void:
if opened off then

set bin mood (f); set write mood (f);
fork to upb ot
do [] slmplout y = stralghtout ot [k];

for} to upb y

od

do [] char bin= to bin (f, y UV;
for i to upb bin
do next pos (f);

od
od

set bin mood (f);
ref pos cpos = cpos off, lpos = lpos of book off;
case text off in
(flextext t2):

t2 [pofcpos] [lofcpos] [cofcpos] := bin [i]
esac;
c of cpos +:= I;
If cpos beyond lpos then lpos : = cpos
elif ~ set possible (f)

"pos (p of lpos, l of lpos, 1) beyond cpos
then lpos: = cpos;

fl

(compressible (f) I
c the size of the line and page containing the

logical end of the book and of all
subsequent lines and pages may be
increased c)

else undefined
fl;

10.3.6.2. Binary input

a) proc get bin = (ref file f, [] intype it) void :
If opened off then

set bin mood (f); set read mood (f);
fork to upb it
do [] slmplln y = straightin it [k];

for j to upb y

do
slmplout yj = case y U] in

f(ref L Inti): it, f(ref L real r): rL
f(ref L comp/ z): z L (ref boo/ b): b,
{ (ref L bits lb): lb t , (ref char c): c, (ref [] chars): s,
(ref string ss): ss esac;

od
od

ALGOL 68 Revised Report

[J : upb (to bin (f, yj))] char bin;
for i to upb bin
do next pos (f); set bin mood (f);

ref pos cpos = cpos off;

od;

bin [i] : =
case text off In
(flextext t2):

t2 [p of cpos] [l of cpos] [c of cpos]
esac;

cofcpos +:= 1

case y [j] in
{ (ref L Int ii): (from bin (f, ii, bin) I (L Inti): ii:= i) l ,
{ (ref L real rr):

(from bin (f, rr, bin) I (L real r): rr: = r) l,
{ (ref L comp/ zz):

(from bin (f, zz, bin) I (L comp/ z): zz : = z) l ,
(ref boot bb): (from bin (f, bb, bin) I (boot b): bb : = b),
{ (ref L bits lb):

(from bin (f, lb, bin) I (L bits b): lb : = b) l ,
(ref char cc): (from bin (f, cc, bin) I (char c): cc:= c),
(ref [] char ss):

(from bin (f, ss, bin) I ([] chars): ss : = s),
(ref string ssss):

(from bin (f, ssss, bin) I ([] chars): ssss : = s)
esac

207

else undefined
fl;

(But Eeyore wasn't listening. He was taking
the balloon out, and putting it back again,
as happy as could be
Winnie-the-Pooh, A.A.Milne.}

lJ

208 van Wijngaarden, et al.

10.4. The system prelude and task list

10.4.l. The system prelude

The representation of the system-prelude is obtained from the following
form, to which may be added further forms not defined in this Report.
(The syntax of program-texts ensures that a declaration contained in the
system-prelude may not contradict any declaration contained in the
standard-prelude. It is intended that the further forms should contain
declarations that are needed for the correct operation of any system-tasks
that may be added (by the implementer, as provided in 10.1.2.d) .)

a) sema ?- gremlins= (sema s; F of s: = PRIM int:= O; s);

10.4.2. The system task list

The representation of the (first) constituent system-task of the system­
task-list is obtained from the following form. The other system-tasks, if
any, are not defined by this Report (but may be defined by the
implementer in order to account for the particular features of his
operating environment, especially in so far as they interact with the
running of particular-programs (see, e.g., 10.3.l.l.dd)).

a) do down gremlins; undefined; up bfileprotect od

{The intention is that this call of undefined, which is released by an up
gremlins whenever a book is closed, may reorganize the chain of backfiles
and the chain of locked backfiles, such as by removing the book if it is not
to be available for further opening, or by inserting it into the chain of
backfiles several times over if it is to be permitted for several particular­
programs to read it simultaneously. Note that, when an up gremlins is
given, bfileprotect is always down and remains so until such reorganization
has taken place.)

(From ghoulies and ghosties and long­
leggety beasties and things that go bump
in the night,
Good Lord, deliver us!

10.5. The particular preludes and postludes

10.5.l. The particular preludes

Ancient Cornish litany)

The representation of the particular-prelude of each user-task is
obtained from the following forms, to which may be added such other
forms as may be needed for the proper functioning of the facilities defined
in the constituent library-prelude of the program-text {, e.g., declarations
and calls of open for additional standard files). However, for each
QUALITY -new-new-PROPS l-LA YER2-defining-indicator-with-TAX contained

ALGOL 68 Revised Report 209

in such an additional form, the predicate 'where QUALITY TAX
independent PROPS!· (7.1.1.a,c) must hold (i.e., no declaration contained in
the standard-prelude may be contradicted).

a) L int L last random : = round (L max int IL 2);

b) proc L random= L real: L next random (L last random);

c) file stand in, stand out, stand back;
open (stand in, "11, stand in channel);
open (stand out, 1111, stand out channel);
open (stand back, "11, stand back channel);

d) proc print= ([] union (outtype, proc (rel file) void) x) void:
put (stand out, x),

proc write= ([] union (outtype, proc (rel file) void) x) void :
put (stand out, x);

e) proc read= ([] union (intype, proc (rel file) void) x) void:
get (stand in, x);

f) proc print/= ([] union (outtype, format) x) void: put/ (stand out, x),
proc write/= ([] union (outtype, format) x) void: put/ (stand out, x);

g) proc read/= ([] union (intype, format) x) void: get/ (stand in, x);

h) proc write bin= ([J outtype x) void: put bin (stand back, x);

i) proc read bin= ([J intype x) void: get bin (stand back, x);

10.5.2. The particular postludes

The representation of the particular-postlude of each user-task is
obtained from the following form, to which may be added such other
forms as may be needed for the proper functioning of the facilities defined
in the constituent library-prelude of the program-text (, e.g., calls of lock
for additional standard files).

a) stop: lock (stand in); lock (stand out); lock (stand back)

11. Examples

11.l. Complex square root

proc compsqrt = (comp/ z) comp/:
<f: the square root whose real part is nonnegative of the complex
number 'z' <f:

begin real x = re z, y = im z; real rp = sqrt ((abs x + sqrt (x r 2 + y 1 2)) I 2);
real ip = (rp = 0 I O I y I (2 x rp));

210 van Wijngaarden, et al.

if x LO then rp l ip else abs ip l (y LO I rp I - rp) fl
end

Calls (5.4.3) using compsqrt:
compsqrt (w)
compsqrt (-3.14)
compsqrt(-1)

11.2. Innerproduct 1

proc innerproduct 1 = (int n, proc (int) real x, y) real:
q: the innerproduct of two vectors, each with 'n' comppnents, x (i),
y (i), i = 1, ... , n, where 'x' and 'y' are arbitrary mappings from
integer to real number q:

begin long reals : = long O;
for i ton dos +: = Ieng x (i) x Ieng y (i) od;
shortens

end

Real-calls using innerproduct 1:
innerproduct 1 (m, (int}) real: xl [j], (int}) real: yl U])
innerproduct 1 (n, nsin, ncos)

11.3. Innerproduct 2

proc innerproduct 2 = (ref [] real a, b) real :
If upb a - lwb a = upb b - lwb b
then q: the innerproduct of two vectors 'a' and 'b' with equal numbers

of elements q:

fi

long real s : = long O;
ref [] real al = a [@ 1], bl = b [@ 1];

q: note that the bounds of 'a [@ 1] ' are [1 : upb a - lwb a + 1] q:
for i to upb al dos+:= Ieng al [i] x Ieng bl [i] od;
shortens

Real-calls using innerproduct 2:
innerproduct 2 (xl, yl)
innerproduct 2 (y2 [2,], y2 [,3])

11.4. Largest element

proc absmax =(ref[,] real a, ¢ result q: ref real y,
q: subscripts q: ref inti, k) void :

q: the absolute value of the element of greatest absolute value of
the matrix 'a' is assigned to 'y', and the subscripts of this element
to 'i' and 'k' q:

ALGOL 68 Revised Report

begin y : = - 1;
for p from 1 lwb a to 1 upb a

do

od
end

for q from 2 lwb a to 2 upb a
do

If abs a [p, q] > y then y: = abs a [i: = p, k: = q] fl
od

Calls using absmax:
absmax (x2, x, i,j)
absmax (x2, x, loc int, loc int)

11.5. Euler summation

proc euler = (proc (Int) real f, real eps, Int tim) real:

211

<t: the sum for 'i' from 1 to infinity of 'f (i)', computed by means of
a suitably refined Euler transformation. The summation is
terminated when the absolute values of the terms of the
transformed series are found to be less than 'eps' 'tim' times in
succession. This transformation is particularly efficient in the
case of a slowly convergent or divergent alternating series <t:

begin Int n: = 1, t; real mn, ds: = eps; [1 : 16] realm;
real sum:= (m [1] : = f (1)) 12;
for i from 2 whlle (t : = (abs ds < eps I t + 1 11)) s. tim
do mn : = f (i);

od;

fork ton do mn := ((ds := mn)+ m [k]) 12; m [k] := dsod;
sum+:= (ds := (abs mn < abs m [n] 11 n < 161 n+:= 1; m [n] := mn;

mn/21 mn))

sum
end

A call using euler:
euler ((Inti) real: (odd i I -1 Ii 11 Ii), 110-5, 2)

11.6. The norm of a vector

proc norm= (ref [] real a) real:
<t: the euclidean norm of the vector 'a' <t:

(long reals:= long O;
fork fromlwba toupba dos+:=lenga [k] I 2od;
shorten long sqrt (s))

For a use of norm in a call, see 11.7.

212 van Wijngaarden, et al.

11.7. Determinant of a matrix

proc det =(ref[,] real x, ref [] int p) real:
If ref[,] real a= x [@ 1,@ 1];

1 upb a = 2 upb a A 1 upb a = upb p - lwb p + 1
then Int n = 1 upb a;

fl

(f: the determinant of the square matrix 'a' of order 'n' by the
method of Crout with row interchanges: 'a' is replaced by its
triangular decomposition, l x u, with all u [k, k] = 1. The
vector 'p' gives as output the pivotal row indices; the k-th
pivot is chosen in the k-th column of 'l' such that
abs l [i, k] I row norm is maximal (/:

[J: n] real v; reald := 1, s, pivot;
fori ton dov [i] :=norm(a [i,])od;
fork ton
do int kl= k -1; ref int pk =p [@ 1] [k]; real r := -1;

ref[,]realal=a[,1: kl],au=a[l: kl,];

od;
d

ref [] real ak = a [k,], ka = a [, k], alk = al [k,], kau = au [, k];
for i from k to n
do ref real aik = ka [i];

od;

If (s : = abs (aik -: = innerproduct 2 (al [i,], kau)) Iv [i]) > r
then r : = s; pk : = i
fi

v [pk] : = v [k]; pivot:= ka [pk]; ref [] real apk = a [pk,];
for j ton
do ref real akj = ak [j], apkj = apk [j];

r := akj;

od;

akj : = if j ~ k then apkj
else (apkj - innerproduct 2 (alk, au [,j])) I pivot fi;

if pk -:I. k then apkj : = - r fl

dx:=pivot

A call using det:
det(y2, il)

11.8. Greatest common divisor

proc gcd = (int a, b) int:
(f: the greatest common divisor of two integers (f:

(b =0 I abs a I gcd (b, a mod b))

A call using gcd:
gcd (n, 124)

ALGOL 68 Revised Report

11.9. Continued fraction

op I= ([] real a, [] real b) real :
(f: the value of a I b is that of the continued fraction
al I (bl + a2 I (b2 + ... an I bn) ...) (f:

iflwb a = 1 " lwb b = 1 " upb a = upb b
then(upba=OIOla[l]l(b[lj+a[2:]/b[2:]))
fl

A formula using /:
xl !yl

213

(The use of recursion may often be elegant rather than efficient as in
the recursive procedure 11.8 and the recursive operation 11.9. See,
however, 11.10 and 11.13 for examples in which recursion is of the
essence.)

11.10. Formula manipulation

begin
mode form= union (ref canst, ref var, ref triple, ref call);
mode canst= struct (real value);
mode var= struct (string name, real value);
mode triple = struct (form left operand, Int operator,

form right operand);
mode function= struct (ref var bound var, form body);
mode call= struct (ref function function name, forin parameter);
lntplus=l, minus=2, times=3, by=4, to=5;
heap canst zero, one; value of zero : = O; value of one : = 1;
op== (form a, ref canst b) boo/: (a I (ref canst ec): ec: =: b I false);
op+= (form a, b) form :

(a= zero I b I: b = zero I a I heap triple:= (a, plus, b));
op - = (form a, b) form : (b = zero I a I heap triple:= (a, minus, b));
op x = (form a, b)form: (a= zero v b = zero I zero I: a= one I b I: b = one I a I

heap triple:= (a, times, b));
op I= (form a, b) form : (a= zero " ~ (b = zero) I zero I: b = one I a I

heap triple : = (a, by, b));
op 1 = (form a, ref canst b) form :

(a= one v (b: =: zero) I one I: b :=: one I a I heap triple:= (a, to, b));
proc derivative of= (form e, q: with respect to (f: ref var x) form :

caseein
(ref canst): zero,
(ref var ev): (ev: =: x I one I zero),
(ref triple et):

case form u = left operand of et, v = right operand of et;
form udash = derivative of (u, (f: with respect to q: x),

vdash = derivative of (v, (f: with respect to (f: x);

214

In

van Wijngaarden, et al.

operator of et

udash + vdash,
udash - vdash,
u x vdash + udash x v,
(udash - et x vdash) Iv,
(v I (ref canst ec): v x u I (heap canst c;

value of c : = value of ec - 1; c) x udash)
esac,

(ref call ef):
begin ref function f = function name of ef;

form g = parameter of ef; ref vary= bound var off;
heap function {dash:= (y, derivative of (body off, y));
(heap call:= ({dash, g)) x derivative of (g, x)

end
esac;

proc value of= (form e) real :
caseeln

(ref const ec): value of ec,
(refvarev): valueofev,
(ref triple et):

case real u = value of (left operand of et),
v = value of (right operand of et);
operator of et

in u + v, u - v, u x v, u Iv, exp (v x ln (u))
esac,

(ref call ef):

esac;

begin ref function f =function name of ef;
value of bound var off:= value of (parameter of ef);
value of (body off)

end

heap form f, g;
heap var a:= ("a", skip), b: = ("b", skip), x: = ("x", skip);

q: start here q:

read ((value of a, value of b, value of x));
f: = a+ x I (b + x);
g: = (f + one) I (f - one);
print ((value of a, value of b, value of x,

value of (derivative of (g, q: with respect to q: x))))
end q: example of formula manipulation q:

11.11. Information retrieval

begin
mode ra = ref auth, rb = ref book;

ALGOL 68 Revised Report

mode auth = struct (string hame, ra next, rb book),
book= struct (string title, rb next);
ra auth, first auth : = n//, last auth;
rb book; string name, title; Inti; file input, output;
opf}n (input, '"', remote in); open (output, "'', remote out);
put{ (output, ($p

"to enter a new author, type ""author"", a space,"x
"and his name."l
"to enter a new book, type "''book'"', a space,"x
"the name of the author, a new line, and the title. "l_
"for a listing of the books by an author, type ""list'"',"x
"a space, and his name. "l
"to find the author of a book, type ""find"", a new line,"x
"and the title."l
"to end, type ""end"""al$, "."));

proc update= void :
if ra (first auth): =: nil
then auth : = first auth : = last auth : = heap auth : = (name, nil, nil)
else auth : = first auth;

while ra (auth) : ,I.: nil

do
(name= name of auth I go to known I auth : = next of auth)

od;
last auth : = next of last auth : = auth : =

heap auth : = (name, nil, nil);
known:skip

fl;

do
try again:

get{ (input, ($c("author","book", "list","find","end",'"'), x30al,
80al$, i));

case i in

</:author(/:
(get{ (input, name); update),

</:book</:
begin get{ (input, (name, title)); update;

If rb (book of auth): =: nit
then book of auth : = heap book : = (title, nil)
else book : = book of auth;

while rb (next of book): i:.: nil

do
(title = title of book
I go to try again I book : = next of book)

od;

215

216

od
end

fi
end,

q: list q:

van Wijngaarden, et al.

(title .,J; title of book
I next of book : = heap book : = (title, nil})

begin get{ (input, name); update;
put{ (output, ($p"author: "30all$, name));
If rb (book : = book of auth) : =: nil
then put (output, ("no publications", newline})
else on page end (output,

(ref file f) boo/:
(put{ (f, ($p"author: "30a41k"continued"ll$, name));
true));

while rb (book) : .,J:: nil
do put{ (output, ($l80a$, title of book)); book : = next of book
od;
on page end (output, (ref file f) boo/: false)

fi
end,

q: find q:

begin get{ (input, (loc string, title)); auth : = first auth;
while ra (auth): .,J:: nil
do book : = book of auth;

while rb (book): .,J:: nil
do

od;

if title = title of book
then put/ (output, ($["author: "30a$, name of auth});

go to try again
else book : = next of book
fi

auth : = next of auth
od;
put (output, (newline, "unknown", newline))

end,

q: end q:

(put (output, (new page, "signed off", close)); close (input);
goto stop),

q: error q:

(put (output, (newline, "mistake, try again")); newline (input))
esac

ALGOL 68 Revised Report

11.12. Cooperating sequential processes

begin Int nmb magazine slots, nmb producers, nmb consumers;
read ((nmb magazine slots, nmb producers, nmb consumers));
[1: nmbproducers] fileinfile, [1: nmbconsumers] fileoutfile;
for i to nmb producers do open (infile [i], "", inchannel [i]) od;

</: 'inchannel' and 'outchannel' are defined in a surrounding
range</:

for i to nmb consumers
do open (outfile [i], "", outchannel [i]) od;
mode page= [J : 60, 1 : 132] char;
[1 : nmb magazine slots] ref page magazine;
Int </: pointers of a cyclic magazine </: index : = l, exdex : = 1;
sema full slots= level 0, free slots= level nmb magazine slots,

in buffer busy= level 1, out buffer busy= level 1;
proc par call= (proc (int) void p, int n) void :

</: call 'n' incarnations of 'p' in parallel</:
(n > 0 I par (p (n), par call (p, n -1)));

proc producer = (Inti) void :
do heap page page;

od;

get (infile [i], page);
down free slots; down in buffer busy;

magazine [index] : = page;
index modab nmb magazine slots plusab 1;

up full slots; up in buffer busy

proc consumer= (inti) void :
do page page;

od;

down full slots; down out buffer busy;
page : = magazine [exdex];
exdex modab nmb magazine slots plusab 1;

up free slots; up out buffer busy;
put (outfile [i J, page)

par (par call (producer, nmb producers),
par call (consumer, nmb consumers))

end

11.13. Towers of Hanoi

fork toB
do file f: = stand out;

proc p = (int me, de, ma) void :
lfma > 0 then

p (me, 6 - me - de, ma - 1);
put{ (f, (me, de, ma));

217

218 van Wijngaarden, et al.

q: move from peg 'me' to peg 'de' piece 'ma' q:
p (6 - me - de, de, ma - 1)

fl;
put{ (f, ($l"k = "dl, n((2 I k+15)+ 16)(2(2(4(3(d)x)x)x)l)$, k));
p(l,2,k)

od

12. Glossaries

12.1. Technical terms

Given below are the locations of the defining occurrences of a number
of words which, in this Report, have a specific technical meaning. A word
appearing in different grammatical forms is given once, usually as the
infinitive. Terms which are used only within pragmatic remarks are
enclosed within braces.

abstraction (a protonotion of a protonotion) 1.1.4.2.b
acceptable to (a value acceptable to a mode) 2.1.3.6.d
access (inside a locale) 2.1.2.c
action 2.1.4.l.a
active (action) 2.1.4.3.a
after (in the textual order) 1.1.3.2.i
akin (a production tree to a production tree) 1.1.3.2.k
(alignment) 10.3.4.1.1.ff
alternative 1.1.3.2.c
apostrophe 1.1.3.l.a
arithmetic value 2.1.3.1.a
ascribe (a value or scene to an indicator) 4.8.2.a
assign (a value to a name) 5.2.1.2.b
asterisk 1.1.3.l.a
(balancing) 3.4.1
before (in the textual order) 1.1.3.2.i
blind alley 1.1.3.2.d
(book) 10.3.1.1
bound 2.1.3.4.b
bound pair 2.1.3.4.b
built (the name built from a name) 6.6.2.c
built (the multiple value built from a value) 6.6.2.b
calling (of a routine) 5.4.3.2.b
(channel) 10.3.1.2
character 2.1.3.1.g
chosen (scene of a chooser-clause) 3.4.2.b
(close (a file)} 10.3.1.4.ff
collateral action 2.1.4.2.a
collateral elaboration 2.1.4.2.f
(collection) 10.3.4.1.1.gg

ALGOL 68 Revised Report

colon 1.1.3.1.a
comma 1.1.3.1.a
complete (an action) 2.1.4.3.c, d
(compressible} 10.3.1.3.ff
consistent substitute 1.1.3.4.e
constituent 1.1.4.2.d
construct 1.1.3.2.e
construct in a representation language 9.3.b
contain (by a hypernotion) 1.1.4.1.b
contain (by a production tree) 1.1.3.2.g
contain (by a protonotion) 1.1.4.1.b
(control (a string by a pattern)} 10.3.4.1.1.dd
(conversion key} 10.3.1.2
(create (a file on a channel)} 10.3.1.4.cc
(cross-reference (in the syntax)} 1.1.3.4.f

(data list} 10.3.3
defining range (of an indicator) 7.2.2.a
deflex (a mode to a mode) 2.1.3.6.b
(deproceduring} 6
(dereferencing} 6
descendent 1.1.3.2.g
descendent action 2.1.4.2.b
descriptor 2.1.3.4.b
designate (a hypernotion designating a protonotion) 1.1.4.1.a
designate (a paranotion designating a construct) 1.1.4.2.a
develop (a scene from a declarer) 4.6.2.c
direct action 2.1.4.2.a
direct descendent 1.1.3.2.f
direct parent 2.1.4.2.c
divided by (of arithmetic values) 2.1.3.1.e
(dynamic (replicator)} 10.3.4.1.1.dd

(edit (a string)} 10.3.4.1.1.jj
elaborate collaterally 2.1.4.2.f
elaboration 2.1.4.1.a
element (of a multiple value) 2.1.3.4.a
elidible hypernotion 1.1.4.2.c
endow with subnames 2.1.3.3.e, 2.1.3.4.g

. envelop (a protonotion enveloping a hypernotion) 1.1.4.1.c
environ 2.1.1.1.c
(environment enquiry} 10.2
equivalence (of a character and an integer) 2.1.2.d, 2.1.3.1.g
equivalence (of modes) 2.1.1.2.a
equivalence (of protonotions) 2.1.1.2.a
establish (an environ around an environ) 3.2.2.b
(establish (a file on a channel)} 10.3.1.4.cc
(event routine} 10.3.1.3

219

220

(expect) 10.3.4.1.1.ll
(external object) 2.1.1
field 2.1.3.3.a
(file) 10.3.1.3
(firm (position)) 6.1.1
(firmly related) 7.1.1

van Wijngaarden, et al.

fixed name (referring to a multiple value) 2.1.3.4.f
flat descriptor 2.1.3.4.c
flexible name (referring to a multiple value) 2.1.3.4.f
follow (in the textual order) 1.1.3.2.j
(format) 10.3.4
(frame) 10.3.5.1.bb
generate (a 'TAG' generating a name) 2.1.3.4.l
generate (a trim generating a name) 2.1.3.4.j
ghost element 2.1.3.4.c

halt (an action) 2.1.4.3.f
hardware language 9.3.a
(heap) 5.2.3
hold (of a predicate) 1.3.2
hold (of a relationship) 2.1.2.a
hyper-rule 1.1.3.4.b
hyperalternative 1.1.3.4.c
hypernotion 1.1.3.1.e
hyphen 1.1.3.1.a
identify (an indicator identifying an indicator) 7.2.2.b
implementation (of ALGOL 68) 2.2.2.c
implementation of the reference language 9.3.c
in (a construct in an environ) 2.1.5.b
in place of 3.2.2.a, 5.4.4.2
inactive (action) 2.1.4.3.a
incompatible actions 2.1.4.2.e
(independence (of properties)) 7.1.1
index (to select an element) 2.1.3.4.a
(indit (a string)) 10.3.4.1.1.kk
initiate (an action) 2.1.4.3.b, c
(input compatible) 10.3.4.1.1.ii
inseparable action 2.1.4.2.a
(insertion) 10.3.4. l. l.ee
integer 2.1.3.l.a
integral equivalent (of a character) 2.1.3.1.g
(internal object) 2.1.1
interrupt (an action) 2.1.4.3.h
intrinsic value 8.1.1.2, 8.1.2.2.a, b, 8.1.4.2.b, 8.2.2.b, c
invisible 1.1.3.2.h
is (of hypernotions) 2.1.5.e
large syntactic mark 1.1.3.l.a

ALGOL 68 Revised Report

largest integral equivalent (of a character) 2.1.3.1.g
lengthening (of arithmetic values) 2.1.2.d, 2.1.3.1.e
(link (a book with a file)) 10.3.1.4.bb
(literal) 10.3.4.1.1.ee
local environ 5.2.3.2.b
locale 2.1.1.1.b
(lock (a file)) 10.3.1.4.gg
(logical end) 10.3.1.1.aa
(logical file) 10.3.1.5.dd
lower bound 2.1.3.4.b
make to access (a value inside a locale) 2.1.2.c
make to refer to (of a name) 2.1.3.2.a
(marker) 10.3.4.1.1.cc
meaning 1.1.4, 2.1.4.1.a
meaningful program 1.1.4.3.c
(meek (position) I 6.1.1
member 1.1.3.2.d
metanotion 1.1.3.1.d
metaproduction rule 1.1.3.3.b
minus (of arithmetic values) 2.1.3.1.e
mode 2.1.1.2.b, 2.1.5.f
(multiple selection) 5.3.1
multiple value 2.1.3.4.a
name 2.1.3.2.a
necessary for (an environ for a scene) 7.2.2.c
nest 3.0.2
newer (of scopes) 2.1.2.f
newly created (name) 2.1.3.2.a
nil 2.1.3.2.a
nonlocal 3.2.2.b
notion 1.1.3.1.c
number of extra lengths 2.1.3.1.d
number of extra shorths 10.2.1.j, l, 2.1.3.1.d
number of extra widths 10.2.1.j, l
numerical analysis, in the sense of 2.1.3.1.e
object 2.1.1
of (construct of a construct) 2.1.5.a
of (construct of a scene) 2.1.1.1.d
of (environ of a scene) 2.1.1.1.d
of (nest of a construct) 3.0.2
older (of scopes) 2.1.2.f
(on routine) 10.3.1.3
(open (a file)) 10.3.1.4.dd
original 1.1.3.2.f
other syntactic mark 1.1.3.1.a
(output compatible) 10.3.4.1.1.hh

221

\

222

(overflow) 2.1.4.3.h
(overload) 4.5
parallel action 10.2.4
paranotion 1.1.4.2.a

van Wijngaarden, et al.

(perform (an alignment)) 10.3.4.1.1.ff
(perform (an insertion)) 10.3.4.1.1.ee
(pattern) 10.3.4.1.1.cc
permanent relationship 2.1.2.a
(physical file) 10.3.1.5.cc

· (picture) 10.3.4.1.1.cc
plain value 2.1.3.1.a
point 1.1.3.1.a
pragmatic remark 1.1.2
(pre-elaboration) 2.1.4.1.c
precede (in the textual order) 1.1.3.2.j
predicate 1.3.2
primal environ 2.2.2.a
process 10.2.4
produce 1.1.3.2.f
production rule 1.1.3.2.b
production tree 1.1.3.2.f
program in the strict language 1.1.1.b, 10.1.2
(property) 2.1.1.1.b, 3.0.2
protonotion 1.1.3.1.b
pseudo-comment 10.1.3.Step 7
publication language 9.3.a
(random access) 10.3.1.3.ff
(reach) 3.0.2
real number 2.1.3.1.a
refer to 2.1.2.e, 2.1.3.2.a
reference language 9.3.a
relationship 2.1.2.a
(replicator) 10.3.4.1.1.dd
representation language 9.3.a
required 1.1.4.3.b
resume (an action) 2.1.4.3.g
routine 2.1.3.5.a
(rowing) 6
same as (of scopes) 2.1.2.f
scene 2.1.l.l.d
scope (of a value) 2.1.1.3.a
scope (of an environ) 2.1.1.3.b
(scratch (a file)) 10.3.1.4.hh
select (a 'TAG' selecting a field) 2.1.3.3.a
select (a 'TAG' selecting a multiple value) 2.1.3.4.k
select (a 'TAG' selecting a subname) 2.1.3.3.e

T

ALGOL 68 Revised Report

select (a field-selector selecting a field) 2.1.5.g
select (an index selecting a subname) 2.1.3.4.g
select (an index selecting an element) 2.1.3.4.a
select (a trim selecting a multiple value) 2.1.3.4.i
semantics 1.1.l
semicolon 1.1.3.1.a
sense of numerical analysis 2.1.3.1.e
(sequential access} 10.3.1.3.ff
serial action 2.1.4.2.a
simple substitute 1.1.3.3.d
size (of an arithmetic value) 2.1.3.1.b
small syntactic mark 1.1.3.1.a
smaller (descendent smaller than a production tree) 1.1.3.2.g
smaller than (of arithmetic values) 2.1.2.d, 2.1.3.1.e
(soft (position)} 6.1.l
(sort} 6
specify (a declarer specifying a mode) 4.6.2.d
(spelling (of a mode)} 2.1.1.2
standard environment 1.1.1, 10
(standard function} 10.2
[standard mode} 10.2
(standard operator} 10.2
(state} 10.3.1.3
(staticize (a picture)} 10.3.4.1.1.dd
stowed name 2.1.3.2.b
stowed value 2.1.1.1.a
straightening 10.3.2.3.c
strict language 1.1.l.b, 1.1.3.2.e, 10.1.2
(string} 8.3
(strong (position)} 6.1.l
structured value 2.1.3.3.a
sublanguage 2.2.2.c
subname 2.1.2.g
substitute consistently 1.1.3.4.e
substitute simply 1.1.3.3.d
superlanguage 2.2.2.c
[suppressed frame} 10.3.4.l.l.cc
symbol 1.1.3.l.f
[synchronization operation} 10.2
syntax 1.1.l

terminal metaproduction (of a metanotion) 1.1.3.3.c
terminal production (of a notion) 1.1.3.2.f
terminal production (of a production tree) 1.1.3.2.f
terminate (an action) 2.1.4.3.e
textual order 1.1.3.2.i
times (of arithmetic values) 2.1.3.l.e

223

224 van Wijngaarden, et al.

transform 10.3.4.1.2.b
{transient name} 2.1.3.6.c
transitive relationship 2.1.2.a
{transput declaration} 10.2
(transput} 10.3
traverse 10.3.2.3.d
trim 2.1.3.4.h
truth value 2.1.3.1.f
typographical display feature 9.4.d
undefined 1.1.4.3.a
united from (of modes) 2.1.3.6.a
{uniting} 6
upper bound 2.1.3.4.b
vacant locale 2.1.1.1.b
value 2.1.1.1.a
variant (of a value) 4.4.2.c
variant of ALGOL 68 1.1.5.b
version (of an operator) 10.l.3.Step3
visible 1.1.3.2.h
void value 2.1.3.1.h
(voiding} 6
(weak (position)} 6.1.1
(well formed} 7.4
widenable to (an integer to a real number) 2.1.2.d, 2.1.3.1.e
(widening} 6
yield (of a scene) 2.1.2.b, 2.1.4.1.b, 2.1.5.c, d

(Denn eben, wo Begriffe fehlen,
Da stellt ein Wort zur rechten Zeit sich ein.
Faust, J.W. von Goethe.}

12.2. Paranotions

Given below are short paranotions representing the notions defined in
this Report, with references to their hyper-rules.

after-specification 10.3.4.10.1.c
alignment 10.3.4.1.1.e
alignment-code 10.3.4.1.1.f
alternate-CHOICE-clause 3.4.1.d
assignation 5.2.1.1.a
bits-denotation 8.2.1.l
bits-pattern 10.3.4.7.1.a
boolean-choice-pattern 10.3.4 .8.1. b
boolean-marker 10.3.4.4.1.b
boolean-pattern 10.3.4.4.1.a
boundscript 5.3.2.1.j

call 5.4.3.1.a
case-clause 3.4.1.p
case-part-of-CHOICE 3.4.1.i
cast 5.5.1.1.a
character-glyph 8.1.4.1.c
character-marker 10.3.4.6.1.b
choice-clause 3.4.1.n
chooser-CHOICE-clause 3.4.1.b
closed-clause 3.1.1.a
coercee 6.1.1.g
coercend 6.1.1.h

,.

ALGOL 68 Revised Report

collateral-clause 3.3.1.a, d, e
collection 10 .3 .4 .1.1. b
complex-marker 10.3.4.5.1.b
complex-pattern 10.3.4.5.1.a
conditional-clause 3.4.1.o
conformity-clause 3.4.1.q
constant 3.0.1.d

declaration 4.1.l.a
declarative 5.4.l.l.e
declarator 4.6.l.c, d, g, h, o, s
declarer 4.2.l.c, 4.4.l.b, 4.6.l.a, b
definition 4.1.1.d
denotation 8.1.0.1.a, 8.1.1.l.a,

8.1.2.1.a, 8.1.3.1.a, 8.1.4.l.a,
8.1.5.1.a, 8.2.1.a, b, c, 8.3.l.a

denoter 8.0.l.a
deprocedured-to-FORM 6.3.1.a
dereferenced-to-FORM 6.2.l.a
destination 5.2.l.l.b
digit-cypher 8.1.1.l.c
digit-marker 10.3.4.2.l.f
display 3.3.l.j
do-part 3.5.l.h
dyadic-operator 5.4.2.1.e

enquiry-clause 3.4.1.c
establishing-clause 3.2. l.i
exponent-marker 10.3.4.3.l.e
exponent-part 8.1.2.l.g
exponent-specification 10 .3. 4 .10 .1. d
expression 3.0.l.b

field-selector 4.8.1.f
fixed-point-numeral 8 .1.1.1. b
floating-point-mould 10 .3 .4 .3. l.c
floating-point-numeral 8.1.2.1.e
for-part 3.5.1.b
format-pattern 10.3.4.9.l .a
format-text 10.3.4.1.1.a
formula 5.4.2.1.d
fractional-part 8.1.2.l.d
frame 10.3.4.l.l.m

general-pattern 10.3.4.10.l.a
generator 5.2.3.l.a
go-to 5.4.4.1.b

hip 5.1.a
identifier-declaration 4.4.1.g
identity-declaration 4.4.l.a

identity-definition 4.4.l.c
identity-relation 5.2.2.l.a
identity-relator 5.2.2.l.b
in-part-of-CHOICE 3.4.l.f, g, h
in-CHOICE-clause 3.4.l.e
indexer 5.3.2.l.i
indicator 4.8.l.e
insertion 10.3.4.l.l.d
integral-choice-pattern 10 .3.4.8.l.a
integral-mould 10.3.4.2.l.b
integral-part 8.1.2.1.c
integral-pattern 10.3.4.2.l.a
intervals 3.5.l.c
joined-label-definition 10. l. l .h

joined-portrait 3.3.l.b
jump 5.4.4.l.a

label-definition 3.2.l.c
literal 10.3.4.l.l.i
loop-clause 3.5. l.a
lower-bound 4.6.l.m

marker 10.3.4.l.l.n
mode-declaration 4.2.l.a
mode-definition 4.2.l.b
monadic-operator 5.4.2.l.f

nihil 5.2.4.l.a

operand 5.4.2.l.g
operation-declaration 4 .5 .1. a
operation-definition 4.5. l.c
other-string-item 8.1.4.l.d
other-PRAGMENT-item 9.2.1.d

parallel-clause 3.3.l.c
parameter 5.4.l.l.g, 5.4.3.1.c
parameter-definition 5. 4. l. l. f
particular-postlude 10.l.l.i
particular-program 10.l.l.g
pattern 10.3.4.l.l.o
phrase 3.0.l.a
picture 10.3.4.l.l.c
plain-denotation 8.1.0.l.b
plan 4.5.l.b, 4.6.l.p
plusminus 8.1.2.l.j
point-marker 10.3.4.3.l.d
power-of-ten 8.1.2.l.i
praglit 10.3.4.8.l.c
pragment 9.2.l.a
preludes 10.l.l.b

225

--

226 van Wijngaarden, et al.

priority-declaration 4.3.1.a
priority-definition 4.3.1.b
program 2.2.1.a
program-text 10.1.1.a

radix-digit 8.2.1.m
radix-marker 10.3.4.7.1.c
range 3.0.1.f
real-pattern 10.3.4.3.1.a
repeating-part 3.5.1.e
replicator 10.3.4.1.1.g
revised-lower-bound 5.3.2.1.g
routine-declarer 4.4.1.b
routine-plan 4.5.1.b
routine-text 5.4.1.1.a, b
row-display 3.3.1.i
row-rower 4.6.1.j, k, I
row-ROWS-rower 4.6.1.i
rowed-to-FORM 6.6.1.a

sample-generator 5.2.3.1.b
selection 5.3.1.1.a
serial-clause 3.2.1.a
series 3.2.1.b
sign.marker 10.3.4.2.1.e
sign.mould 10.3.4.2.1.c
skip 5.5.2.1.a
slice 5.3.2.1.a
softly-deprocedured-to-FORM 6.3.1.b
source 5.2.1.1.c
source-for-MODINE 4.4.1.d
specification 3.4.1.j, k
stagnant-part 8.1.2.1.f
statement 3.0.1.c
string 8.3.1.b
string-denotation 8.3.1.c
string-item 8.1.4.1.b
string-pattern 10.3.4.6.1.a
structure-display 3.3.1.h
subscript 5.3.2.1.e
suppression 10.3.4.1.1.l
symbol 9.1.1.h
system-task 10.1.1.e

tasks 10.1.1.d

unchanged-from-FORM 6.1.1.f
unit 3.2.1.d
unitary-clause 3.2.1.h
united-to-FORM 6.4.1.a
unsuppressible-literal 10.3.4.1.l.i
unsuppressible-replicator 10.3.4.1.1.h
unsuppressible-suppression 10 .3.4.1.1.l
upper-bound 4.6.1.n
user-task 10.1.1.f
vacuum 3.3.1.k
variable 3.0.1.e
variable-declaration 4.4.1.e
variable-definition 4.4.1.f
variable-point-mould 10.3.4.3.1.b
variable-point-numeral 8.1.2.1.b
voided-to-FORM 6.7.1.a, b

while-do-part 3.5.1.f
while-part 3.5.1.g
widened-to-FORM 6.5.1.a, b, c, d
width-specification 10.3.4.10.1.b
zero-marker 10.3.4.2.1.d
ADIC-operand 5.4.2.1.c
CHOICE-again 9.1.1.c
CHOICE-finish 9.1.1.e
CHOICE-in 9.1.1.b
CHOICE-out 9.1.1.d
CHOICE-start 9.1.1.a
CHOICE-clause 3.4.1.a
COMMON-joined-definition 4.1.1.b, c
DYADIC-formula 5.4.2.1.a
EXTERNAL-prelude 10.1.1.c
FIELDS-definition-of-FIELD 4.6.1.f
FIELDS-portrait 3.3.1.f, g
FIELDS-portrayer-of-FIELDS! 4.6.1.e
FORM-coercee 6.1.1.a, b, c, d, e
FROBYT-part 3.5.1.d
INDICATOR 4.8.1.a, b
MOIDS-joined-declarer 4.6.1.t, u
MONADIC-formula 5.4.2.1.b
NOTETY-pack 1.3.3.d
NOTION-bracket 1.3.3.e
NOTION-list 1.3.3.c

times-ten-to-the-power-choice 8.1.2.1.h NOTION-option 1.3.3.a
token 9.1.1.g NOTION-sequence 1.3.3.b
trimmer 5.3.2.1.f NOTION-token 9.1.1.f
trimscript 5.3.2.1.h PARAMETERS 5.4.3.1.b

ALGOL 68 Revised Report

PARAMETERS-joined-declarer
4.6.1.q, r

PRAGMENT 9.2.1.b
PRAGMENT-item 9.2.1.c
QUALITY -FIELDS-field-selector

4.8.1.c, d
RADIX 8.2.1.d, e, f, g
RADIX-digit 8.2.1.h, i, j, k
RADIX-frame 10.3.4.7.1.b
ROWS-leaving-ROWSETY -indexer

5.3.2.1.b, C, d

12.3. Predicates

TALLY-declarer 4.2.1.c
THING I-or-alternatively-THING2

1.3.3.f
UNSUPPRESSE'FY -literal

10.3.4.1.l.i
UNSUPPRESSETY -suppression

10.3.4.1.1.l
UNSUPPRESSETY -CO MARK-frame

10.3.4.1.1.k
UNSUPPRESSETY -MARK-frame

10.3.4.1.1.j

227

Given below are abbreviated forms of the predicates defined in this
Report.

'and' 1.3.1.c, e
'balances' 3.2.1.f, g
'begins with' 1.3.1.h, i, j
'coincides with' 1.3.1.k, l
'contains' 1.3.1.m, n
'counts' 4.3.1.c, d
'deflexes to' 4.7.1.a, b, c, d, e
'deprefs to firm' 7.1.1.n
'develops from' 7.3.1.c
'equivalent' 7.3.1.a, b, d, e, f, g, ·

h, i, j, k, q
'false' 1.3.1.b
'firmly related' 7.1.1.k
'identified in' 7.2.1.a
'incestuous' 4.7.1.f

12.4. Index to the standard prelude

< 10.2.3.0.a, 10.2.3.3.a, 10.2.3.5.c,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.a, g, h

<= 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

+ 10.2.3.0.a, 10.2.3.3.i, j, 10.2.3.4.i, j,
10.2.3.5.a, b, 10.2.3.6.b, 10.2.3.7.j,
k, p, q, r, s, 10.2.3.10.i, j, k

+: = 10.2.3.0.a, 10.2.3.11.d, e, f, o, p, q, s
+=: 10.2.3.0.a, 10.2.3.11.r, t

'independent' 7.1.1.a, b, c, d
'is' 1.3.1.g
'is derived from' 5.3.1.1.b, c
'is firm' 7.1.1.l, m
'like' 5.4.1.1.c, d
'may follow' 3.4.1.m
'number equals' 7.3.1.o, p
'or' 1.3.1.d, f
'ravels to' 4.7.1.g
'related' 7.1.1.e, f, g, h, i, j
'resides in' 7.2.1.b, c
'shields' 7.4.1.a, b, c, d
'subset of' 7.3.1.l, m, n
'true' 1.3.1.a
'unites to' 6.4.1.b

+x 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

Hl0.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

&. 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
A 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
D 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b
r 10.2.3.0.a, 10.2.3.1.c, e
1 10.2.3.0.a, 10.2.3.8.h
L 10.2.3.0.a, 10.2.3.1.b, d,

10.2.3.4.r

-

228 van Wijngaarden, et al.

;:,:_ 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

5- 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

* 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,
10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, U, V, W, X, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

v 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c
l 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,

10.2.3.5.e, f
+ 10.2.3.0.a, 10.2.3.3.m
+x 10.2.3.0.a, 10.2.3.3.n
+x: = 10.2.3.0.a, 10.2.3.11.k
+* 10.2.3.0.a, 10.2.3.3.n
+*:= 10.2.3.0.a, 10.2.3.11.k
+:= 10.2.3.0.a, 10.2.3.11.j
X 10.2.3.0.a, 10.2.3.3.l, 10.2.3.4.l,

10.2.3.5.a, b, 10.2.3.7.l, p, q, r, s,
10.2.3.10.l, m, n, o

x: = 10.2.3.0.a, 10.2.3.11.g, h, i, n,
0, p, U

~ 10.2.3.2.c, 10.2.3.8.m
1 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,

10.2.3.7.t, 10.2.3.8.g
* 10.2.3.0.a, 10.2.3.3.l, 10.2.3.4.l,

10.2.3.5.a, b, 10.2.3.7.l, p, q, r, s,
10.2.3.10.l, m, n, o

abs 10.2.1.n, 10.2.3.2.f, 10.2.3.3.k,
10.2.3.4.k, 10.2.3.7.c, 10.2.3.8.i

and 10.2.3.0.a, 10.2.3.2.b, 10.2.3.8.d
arg 10.2.3.7.d
bin 10.2.3.8.j
bits 10.2.2.g
boo/ 10.2.2.b
bytes 10.2.2.h
channel 10.3.1.2.a
char 10.2.2.e
comp/ 10.2.2.f
conj 10.2.3.7.e
divab 10.2.3.0.a, 10.2.3.11.l, m, n, o, p
down 10.2.3.0.a, 10.2.3.8.h, 10.2.4.d
elem 10.2.3.0.a, 10.2.3.8.k, 10.2.3.9.b

**10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,
10.2.3.7.t

*: = 10.2.3.0.a, 10.2.3.11.g, h, i, n, o, p, u
~ 10.2.3.2.c, 10.2.3.8.m
- 10.2.3.0.a, 10.2.3.3.g, h, 10.2.3.4.g, h,

10.2.3.5.a, b, 10.2.3.7.h, i, p, q, r, s
-:= 10.2.3.0.a, 10.2.3.11.a, b, c, n, o, p
I 10.2.3.0.a, 10.2.3.3.o, 10·.2.3.4.m,

10.2.3.5.a, b, 10.2.3.7.m, p, q, r, s
/: = 10.2.3.0.a, 10.2.3.11.l, m, n, o, p
I= 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, U, V, W, X, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

o/'o 10.2.3.0.a, 10.2.3.3.m
%x 10.2.3.0.a, 10.2.3.3.n
'!ifix:= 10.2.3.0.a, 10.2.3.11.k
'iifi* 10.2.3.0.a, 10.2.3.3.n
%*: = 10.2.3.0.a, 10.2.3.11.k
%:= 10.2.3.0.a, 10.2.3.11.j
> 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.f, g, h

>= 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

= 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,
10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, U, V, W, X, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

entier 10.2.3.4.r
eq 10.2.3.0.a, 10.2.3.2.d, 10.2.3.3.c,

10.2.3.4.c, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.f, U, V, W, X, 10.2.3.8.a,
10.2.3.9.a, 10.2.3.10.c, g, h

file 10.3.1.3.a
format 10.3.5.a
ge 10.2.3.0.a, 10.2.3.3.e, 10.2.3.4.e,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.f,
10.2.3.9.a, 10.2.3.10.e, g, h

gt 10.2.3.0.a, 10.2.3.3.f, 10.2.3.4.f,
10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.f, g, h

I 10.2.3.0.a, 10.2.3.3.u, 10.2.3.4.s,
10.2.3.5.e, f

ALGOL 68 Revised Report 229

Im 10.2.3.7.b
Int 10.2.2.c
le 10.2.3.0.a, 10.2.3.3.b, 10.2.3.4.b,

10.2.3.5.c, d, 10.2.3.6.a, 10.2.3.8.e,
10.2.3.9.a, 10.2.3.10.b, g, h

Ieng 10.2.3.3.q, 10.2.3.4.n, 10.2.3.7.n,
10.2.3.8.n, 10.2.3.9.d

level 10.2.4.b, c
n 10.2.3.0.a, 10.2.3.3.a, 10.2.3.4.a,

10.2.3.5.c, ct, 10.2.3.6.a, 10.2.3.9.a,
10.2.3.10.a, g, h

lwb 10.2.3.0.a, 10.2.3.1.b, d
minusab 10.2.3.0.a, 10.2.3.11.a, b,

C, Il, 0, p
mod 10.2.3.0.a, 10.2.3.3.n
modab 10.2.3.0.a, 10.2.3.11.k
ne 10.2.3.0.a, 10.2.3.2.e, 10.2.3.3.d,

10.2.3.4.d, 10.2.3.5.c, d, 10.2.3.6.a,
10.2.3.7.g, U, V, W, X, 10.2.3.8.b,
10.2.3.9.a, 10.2.3.10.d, g, h

not 10.2.3.2.c, 10.2.3.8.m
odd 10.2.3.3.s
or 10.2.3.0.a, 10.2.3.2.a, 10.2.3.8.c

arccos 10.2.3.12.f
arcsin 10.2.3.12.h
arctan 10.2.3.12.j
associate 10.3.1.4.e
backspace 10.3.1.6.b
bin possible 10.3.1.3.d
bits lengths 10.2.1.h
bits pack 10.2.3.8.l
bits shorths 10.2.1.i
bits width 10.2.1.j
blank 10.2.1.u
bytes lengths 10.2.1.k
bytes pack 10.2.3.9.c
bytes shorths 10.2.1.l
bytes width 10.2.1.m
chan 10.3.1.3.i
char in string 10.3.2.1.l
char number 10.3.1.5.a
close 10.3.1.4.n
compressible 10.3.1.3.e
cos 10.2.3.12.e
create 10.3.1.4.c

over 10.2.3.0.a, 10.2.3.3.m
overab 10.2.3.0.a, 10.2.3.11.j
plusab 10.2.3.0.a, 10.2.3.11.d, e, f,

n,o, p, q, s
plusto 10.2.3.0.a, 10.2.3.11.r, t
re 10.2.3.7.a
real 10.2.2.d
repr 10.2.1.o
round 10.2.3.4.p
sema 10.2.4.a
shl 10.2.3.0.a, 10.2.3.8.g
shorten 10.2.3.3.r, 10.2.3.4.o, 10.2.3. 7.o,

10.2.3.8.o, 10.2.3.9.e
shr 10.2.3.0.a, 10.2.3.8.h
sign 10.2.3.3.t, 10.2.3.4.q
string 10.2.2.i
timesab 10.2.3.0.a, 10.2.3.11.g, h, i,

n, o, p, u
up 10.2.3.0.a, 10.2.3.3.p, 10.2.3.5.g,

10.2.3.7.t, 10.2.3.8.g, 10.2.4.e
upb 10.2.3.0.a, 10.2.3.1.c, e
void 10.2.2.a

errorchar 10.2.1.t
estab possible 10.3.1.2.c
establish 10.3.1.4.b
exp 10.2.3.12.c
exp width 10.3.2.1.o
fixed 10.3.2.1.c
flip 10.2.1.r
float 10.3.2.1.d
flop 10.2.1.s
get 10.3.3.2.a
get bin 10.3.6.2.a
getpossible 10.3.1.3.b
get{ 10.3.5.2.a .
intshorths 10.2.1.b mt lengths 10.2.l.a

int width 10.3.2.1.m
last random 10.5.1.a
line number 10.3.1.5.b
ln 10.2.3.12.d
lock 10.3.1.4.o
make conv 10.3.1.3.j
make term 10.3.1.3.k
max abs char 10.2.1.p

230 van Wijngaarden, et al.

max int 10.2.1.c
max real 10.2.1.f

newline 10.3.1.6.c
newpage 10.3.1.6.d
next random 10.2.3.12.k
null character 10.2.1.q

on char error 10.3.1.3.r
on format end 10.3.1.3.p
on line end 10.3.1.3.o
on logical file end 10.3.1.3.l
on page end 10.3.1.3.n
on physical file end 10.3.1.3.m
on value error 10.3.1.3.q
open 10.3.1.4.d

page number 10.3.1.5.c
pi 10.2.3.12.a
print 10.5.l.d
print/ 10.5.l.f
put 10.3.3.1.a
put bin 10.3.6.l.a
put possible 10.3.1.3.c
put/ 10.3.5.1.a

random 10.5.1.b
read 10.5.l.e
read bin 10.5.l.i
read/ 10.5.l.g
real lengths 10.2.l.d
real shorths 10.2.1.e
real width 10.3.2.l.n
reidf 10.3.1.3.s
reidfpossible 10.3.1.3.h
reset 10.3.1.6.j
resetpossible 10.3.1.3.f
scratch 10.3.1.4.p
set 10.3.1.6.i
set char number 10.3.1.6.k
set possible 10.3.1.3.g
sin 10.2.3.12.g
small real 10.2.l.g
space 10.3.1.6.a
sqrt 10.2.3.12.b
stand back 10.5.1.c
stand back channel 10.3.1.2.g
stand in 10.5.l.c
stand in channel 10.3.1.2.e
stand out 10.5.1.c

stand out channel 10.3.1.2.f
standconv 10.3.1.2.d
stop 10.5.2.a
tan 10.2.3.12.i
whole 10.3.2.1.b
write 10.5.l.d
write bin 10.5.1.h
write/ 10.5.l.f

L bits 10.2.2.g
L bytes 10.2.2.h
L compl 10.2.2.f
Lint 10.2.2.c
L real 10.2.2.d

L arccos 10.2.3.12.f
L arcsin 10.2.3.12.h
L arctan 10.2.3.12.j
L bits pack 10.2.3.8.l
L bits width 10.2.1.j
L bytes pack 10.2.3.9.c
L bytes width 10.2.l.m
L cos 10.2.3.12.e
L exp 10.2.3.12.c
L exp width 10.3.2.1.o
Lint width 10.3.2.1.m
L last random 10.5.1.a
L ln 10.2.3.12.d
L max int 1 0.2.l.c
L max real 10.2.l.f
L next random 10.2.3.12.k
L pi 10.2.3.12.a
L random 10.5.l.b
L real width 10.3.2.l.n
L sin 10.2.3.12.g
L small real 10.2.1.g
L sqrt 10.2.3.12.b
L tan 10.2.3.12.i

9' beyond 10.3.l.l.d
9' bfile 10.3.1.1.e
9' book 10.3.1.1.a
9' collection 10.3.5.a
9' collitem 10.3.5.a
9' com, 10.3.1.2.b
9' cpattern 10.3.5.a
9' flextext 10. 3 .1.1. b
9' fpattern 10.3.5.a
9' frame 10.3.5.a

ALGOL 68 Revised Report

9- gpattern 10.3.5.a
9- Insertion 10.3.5.a
9- intype 10.3.2.2.d
9- number 10.3.2.1.a
9- outtype 10.3.2.2.b
9- pattern 10.3.5.a
9- picture 10.3.5.a
9- piece 10.3.5.a
9- pos 10.3.1.1.c
9- rows 10.2.3.1.a
9- sframe 10.3.5.e
9- simplin 10.3.2.2.c
9- simplout 10.3.2.2.a
9- sinsert 10.3.5.c
9-straightin 10.3.2.3.b
9- straightout 10.3.2.3.a
9- text 10.3.1.1.b
9- alignment 10.3.5.i
9- associate format 10.3.5.k
9- bfileprotect 10.3.1.1.h
9- book bounds 10.3.1.5.e
9- chainbfile 10.3.1.1.f
9- char dig 10.3.2.1.k
9- check pas 10.3.3.2.c
9- current pas 10.3.1.5.d
9- dig char 10.3.2.1.h
9- do {pattern 10.3.5.j
9- edit string 10.3.5.1.b
9- false 10.3.1.4.i
9- file available 10.3.1.4.f
9- from bin 10.3.6.b
9- get char 10.3.3.2.b

9- get good file 10.3.1.6.g
9- get good line 10.3.1.6.e
9- get good page 10.3.1.6.f
9- get insertion 10.3.5.h
9- get next picture 10.3.5.b
9- gremlins 10.4.1.a
9- id{ ok 10.3.1.4.g
9- indit string 10.3.5.2.b
9- line ended 10.3.1.5.f
9- lockedbfile 10.3.1.1.g
9' logical file ended 10.3.1.5.i
9- match 10.3.1.4.h
9- next pas 10.3.3.1.c
9- page ended 10.3.1.5.g
9- physical file ended 10 .3 .1.5 .h
9- put char 10.3.3.1.b
9- put insertion 10.3.5.g
9- set bin mood 10.3.1.4.m
9- set char mood 10.3.1.4.l
9- set mood 10.3.1.6.h
9- set read mood 10.3.1.4.k
9- set write mood 10.3.1.4.j
9- standardize 10.3.2.1.g
9- staticize frames 10.3.5.f
9- staticize insertion 10.3.5.d
9- string to Lint 10.3.2.1.i
9- string to L real 10.3.2.1.j
9-subfixed 10.3.2.1.f
9-subwhole 10.3.2.1.e
9- to bin 10.3.6.a
9- undefined 10.3.1.4.a
9- L standardize 10.3.2.1.g

12.5. Alphabetic listing of metaproduction rules

ABC{942L} : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l ; m ; n ; o ; p
q ; r ; S ; t ; U ; V ; W ; X ; y ; Z,

AD1C{542C) : : DYADIC ; MONADIC.
ALPHA{l3B} : : a ; b ; c ; d ; e ; f ; g ; h ; i ; j ; k ; l ; m ; n ; o ; p

q ; r ; S ; t ; U ; V ; W ; X ; y ; Z,

BECOMESETY{942J} : : cum becomes ; cum assigns to ; EMPTY.
B1TS(65A) : : structured with

row of boolean field SITHETY letter aleph mode.
BYTES{65B) : : structured with

row of character field SITHETY letter aleph mode.
CASE{34B} : : choice using integral ; choice using UNITED.

231

232 van Wijngaarden, et al.

CHOICE{34AJ : : choice using boolean ; CASE.
COLLECTION{A341C} : : union of PICTURE COLLITEM mode.
COLLITEM(A341D} : : structured with INSERTION field letter i digit one

procedure yielding integral field letter r letter e letter p
integral field letter p
INSERTION field letter i digit two mode.

COMARK{A341N} : : zero ; digit ; character.
COMMON{41AJ : : mode ; priority ; MODINE identity ;

reference to MODINE variable ; MODINE operation ;
PARAMETER ; MODE FIELDS.

COMORF{61G} : : NEST assignation ; NEST identity relation ;
NEST LEAP generator ; NEST cast ; NEST denoter ;
NEST format text.

CPATTERN(A3411} : : structured with INSERTION field letter i
integral field letter t letter y letter p letter e
row of INSERTION field letter c mode.

DEC{l23E) : : MODE TAG ; priority PRIO TAD ; MOID TALLY TAB ;
DUO TAD; MONO TAM.

DECS{l23D) : : DEC ; DECS DEC.
DECSETY {123C} : : DECS ; EMPTY.
DEFIED{48B} : : defining ; applied.
DIGIT{942CJ : : digit zero ; digit one ; digit two ; digit three ; digit four ;

digit five ; digit six ; digit seven ; digit eight ; digit nine.
DOP(942M*) : : DY AD ; DY AD cum NOMAD.
DUO{l23H} :: procedure with PARAMETER! PARAMETER2 yielding MOID.
DY AD{942GJ : : MONAD ; NOMAD.
DY ADIC{542AJ : : priority PRIO.

EMPTY{l2G) : : .
ENCLOSED(l22AJ : : closed ; collateral ; parallel ; CHOICE ; loop.
EXTERNAL{AlA} : : standard ; library ; system ; particular.
FIELD{l2J] : : MODE field TAG.
FIELDS{l2IJ : : FIELD ; FIELDS FIELD.
FIRM{61B} : : MEEK ; united to.
FIVMAT{A341L} : : mui definition of structured with row of

structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p row of union of structured
with union of PATTERN CP ATTERN
structured with INSERTION field letter i
procedure yielding mui application field
letter p letter f mode GPATTERN void mode field letter p
INSERTION field letter i mode COLLITEM mode field
letter c mode field letter aleph mode.

FLEXETY{l2K} : : flexible ; EMPTY.
FORM{61E) : : MORF ; COM ORF.
FORMAT{A341A} : : structured with row of PIECE field letter aleph mode.

ALGOL 68 Revised Report

FPATTERN{A341J} : : structured with INSERTION field letter i
procedure yielding FIVMAT field letter p letter f mode.

FRAME{A341H} : : structured with INSERTION field letter i
procedure yielding integral field letter r letter e letter p
boolean field letter s letter u letter p letter p
character field letter m letter a letter r letter k
letter e letter r mode.

FROBYT{35A} : : from ; by ; to.

GPATTERN(A341K} : : structured with INSERTION field letter i
row of procedure yielding integral field
letter s letter p letter e letter c mode.

HEAD(73B} : : PLAIN ; PREF ; structured with ; FLEXETY ROWS of ;
procedure with ; union of ; void.

IND1CATOR(48A} : : identifier ; mode indication ; operator.
INSERTION{A341E) : : row of structured with

procedure yielding integral field letter r letter e letter p
union of row of character character mode field
letter s letter a mode.

INTREAL(l2C} : : SIZETY integral ; SIZETY real.

LAB(l23K} :: label TAG.
LABS(l23J} : : LAB ; LABS LAB.
LABSETY(l23I} : : LABS ; EMPTY.
LAYER(l23B} :: new DECSETY LABSETY.
LEAP(44B) : : local ; heap ; primal.
LENGTH(65D) : : letter I letter o letter n letter g.
LENGTHETY(65F) :: LENGTH LENGTHETY; EMPTY.
LETTER(942B} : : letter ABC ; letter aleph ; style TALLY letter ABC.
LONGSETY(l2E) :: long LONGSETY; EMPTY.

MARK(A341M} : : sign ; point ; exponent ; complex ; boolean.
MEEK(61C} : : unchanged from ; dereferenced to ; deprocedured to.
MODE(l2A) : : PLAIN ; STOWED ; REF to MODE ; PROCEDURE ;

UNITED ; MU definition of MODE ; MU application.
MOD1NE(44A) : : MODE ; routine.
MOID(12R} : : MODE ; void.
M0IDS(46C} : : MOID ; MOIDS MOID.
M0IDSETY(47C} : : MOIDS ; EMPTY.
MONAD1C{542B) : : priority iii iii iii i.
MONAD{942H) : : or ; and ; ampersand ; differs from ; is at most ;

is at least ; over ; percent ; window ; floor ; ceiling ;
plus i times ; not ; tilde ; down ; up ; plus ; minus ;
style TALLY monad.

MONO(l23G) : : procedure with PARAMETER yielding MOID.
MOOD{l2U} : :

PLAIN ; STOWED ; reference to MODE ; PROCEDURE ; void.
MOODS(l2T) : : MOOD ; MOODS MOOD.

233

234 van Wijngaarden, et al.

MOODSETY{47B) : : MOODS ; EMPTY.
MORF{61F) : : NEST selection ; NEST slice ; NEST routine text ;

NEST ADIC formula ; NEST call ;
NEST applied identifier with TAG.

MU(l2V) :: muTALLY.

NEST{l23A} : : LA YER ; NEST LA YER.
NOMAD{942I) : : is less than ; is greater than ; divided by ; equals ;

times ; asterisk.
NONPREF(71B) : : PLAIN ; STOWED ;

procedure with PARAMETERS yielding MOID ; UNITED ; void.
NONPROC{67 A) : : PLAIN ; STOWED ; REF to NONPROC ;

procedure with PARAMETERS yielding MOID ; UNITED.
NONSTOWED{47A) :: PLAIN; REF to MODE; PROCEDURE; UNITED;

void.
NOTETY{l3C} : : NOTION ; EMPTY.
NOTION{l3A} : : ALPHA ; NOTION ALPHA.
NUMERAL(810B*) : : fixed point numeral ; variable point numeral ;

floating point numeral.

PACK{31B) : : STYLE pack.
PARAMETER(I2Q) : : MODE parameter.
PARAMETERS(l2P) :: PARAMETER; PARAMETERS PARAMETER.
PARAMETY{l20} :: with PARAMETERS ; EMPTY.
PART{73E} : : FIELD ; PARAMETER.
PARTS(73D) : : PART ; PARTS PART.
PATTERN{A341G) : : structured with

integral field letter t letter y letter p letter e
row of FRAME field
letter f letter r letter a letter m letter e letter s mode.

PICTURE{A341F) : : structured with union of PATTERN CPATTERN
FP ATTERN GP ATTERN void mode field letter p
INSERTION field letter i mode.

PIECE[A341B) : : structured with integral field letter c letter p
integral field letter c letter o letter u letter n letter t
integral field letter b letter p
row of COLLECTION field letter c mode.

PLAIN(l2B) : : INTREAL ; boolean ; character.
PRAGMENT(92A} : : pragmat ; comment.
PRAM{45A) : : DUO ; MONO.
PREF[71A) : : procedure yielding ; REF to.
PREFSETY[71C*) : : PREF PREFSETY ; EMPTY.
PRIMARY[5D) : : slice coercee ; call coercee ; cast coercee ;

denoter coercee ; format text coercee ;
applied identifier with TAG coercee ; ENCLOSED clause.

PRIO{l23F) : : i ; ii ; iii ; iii i ; iii ii ; iii iii ; iii iii i ; iii iii ii ; iii iii iii.
PROCEDURE(l2N) :: procedure PARAMETY yielding MOID.
PROP{48E) : : DEC ; LAB ; FIELD.

ALGOL 68 Revised Report

PROPS(48D} : : PROP ; PROPS PROP.
PROPSETY(48C} : : PROPS ; EMPTY.

QUALITY(48F} :: MODE; MOID TALLY; DYADIC; label; MODE field.

RADIX(82A) : : radix two ; radix four ; radix eight ; radix sixteen.
REF(l2M) : : reference ; transient reference.
REFETY(531A) :: REF to ; EMPTY.
REFLEXETY(531B} : : REF to ; REF to flexible ; EMPTY.
ROWS(l2L) : : row ; ROWS row.
ROWSETY(532A) :: ROWS; EMPTY.

SAFE(73A} : : safe ; MU has MODE SAFE ; yin SAFE ; yang SAFE ;
remember MOIDI MOID2 SAFE.

SECONDARY(5C) : :
LEAP generator coercee ; selection coercee ; PRIMARY.

SHORTH(65E) : : letter s letter h letter o letter r letter t.
SHORTHETY(65G) : : SHORTH SHORTHETY ; EMPTY.
SHORTSETY(l2F} : : short SHORTSETY ; EMPTY.

235

SITHETY(65C} :: LENGTH LENGTHETY; SHORTH SHORTHETY; EMPTY.
SIZE(810A} : : long ; short.
SIZETY(l2D} :: long LONGSETY ; short SHORTSETY ; EMPTY.
SOFT(61D) : : unchanged from ; softly deprocedured to.
S0ID(31A) : : SORT MOID.
SOME(l22B) : : SORT MOID NEST.
SORT(l22C) : : strong ; firm ; meek ; weak ; soft.
STANDARD(942E} : : integral ; real ; boolean ; character ; format ; void ;

complex ; bits ; bytes ; string ; sema ; file ; channel.
STOP(AlB) : : label letter s letter t letter o letter p.
STOWED(l2H} : : structured with FIELDS mode ;

FLEXETY ROWS of MODE.
STRONG(61A) : : FIRM ; widened to ; rowed to ; voided to.
STYLE(l33A} :: brief ; bold ; style TALLY.

TAB(942D) :: bold TAG; SIZETY STANDARD.
TAD(942F) :: bold TAG; DYAD BECOMESETY;

DYAD cum NOMAD BECOMESETY.
TAG(942A} :: LETTER; TAG LETTER; TAG DIGIT.
TAILETY(73C} : : MOID ; FIELDS mode ; PARAMETERS yielding MOID ;

MOODS mode; EMPTY.
TALLETY(542D} :: TALLY; EMPTY.
TALLY(l2W) : : i ; TALLY i.
TAM(942K) :: bold TAG ; MONAD BECOMESETY ;

MONAD cum NOMAD BECOMESETY.
TA0(45B) :: TAD; TAM.
TAX(48G} :: TAG; TAB; TAD; TAM.
TERTIARY(5B) : : ADIC formula coercee ; nihil ; SECONDARY.
THING(l3D} : : NOTION ; (NOTETYI) NOTETY2 ;

THING (NOTETY I) NOTETY2.

-

236 van Wijngaarden, et al.

TYPE[A341P) : : integral ; real ; boolean ; complex ; string ; bits ;
integral choice ; boolean choice ; format ; general.

UNIT[5A) : : assignation coercee ; identity relation coercee ;
routine text coercee ; jump ; skip ; TERTIARY.

UNITED{l2S) : : union of MOODS mode.
UNSUPPRESSETY[A3410} : : unsuppressible ; EMPTY.
VICT AL{46A) : : VIRACT ; formal.
VIRACT{46B) : : virtual ; actual.
WHETHER{l3E} : : where ; unless.

	Cover
	Contents
	Acknowledgements
	0. Introduction
	Part I
	1. Language and metalanguage
	2. The computer and the program
	Part II
	3. Clauses
	4. Declarations, declarers, and indicators
	5. Units
	Part III
	6. Coercion
	7. Modes and nests
	Part IV
	8. Denotations
	9. Tokens and symbols
	Part V
	10. Standard environment
	11. Examples
	12. Glossaries

